This file is indexed.

/usr/include/CGAL/Robust_construction.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Copyright (c) 2005-2008  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Sylvain Pion, Mariette Yvinec, Laurent Rineau

#ifndef CGAL_ROBUST_CONSTRUCTION_H
#define CGAL_ROBUST_CONSTRUCTION_H

#include <CGAL/config.h>

namespace CGAL {

// This template class is a functor adaptor targetting geometric constructions.
//
// They are "robust" in the following sense : the input and output are
// approximate (doubles), but the internal computation tries to guarantees the
// approximation quantitatively.
//
// This is especially useful in order to minimize the bad things that happen
// in close-to-degenerate cases (e.g. computing the circumcenter of an almost
// flat tetrahedron).
//
// The implementation strategy is to:
// - convert the input to Lazy kernel objects
// - perform the computation with it
// - convert back to double in a guaranteed way (since Lazy_exact_nt guarantees
//   a precision on to_double).

// TODO :
// - possible improvement by avoiding the constructions of Lazy_exact_nt's.

template <class EC, class A2E, class E2A, class Result_type>
class Robust_construction
{
  EC ec;
  A2E a2e;
  E2A e2a;

public:

  typedef Result_type  result_type;

  typedef EC    Exact_construction;
  typedef A2E   Approximate_to_exact_converter;
  typedef E2A   Exact_to_approximate_converter;

#ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
  template <typename... Args>
  result_type
  operator()(const Args&... args) const
  { return e2a(ec(a2e(args)...)); }
#else

  template <class A1>
  result_type
  operator()(const A1 &a1) const
  { return e2a(ec(a2e(a1))); }

  template <class A1, class A2>
  result_type
  operator()(const A1 &a1, const A2 &a2) const
  { return e2a(ec(a2e(a1), a2e(a2))); }

  template <class A1, class A2, class A3>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3))); }

  template <class A1, class A2, class A3, class A4>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4))); }

  template <class A1, class A2, class A3, class A4, class A5>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4,
	     const A5 &a5) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4), a2e(a5))); }

  template <class A1, class A2, class A3, class A4, class A5, class A6>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4,
	     const A5 &a5, const A6 &a6) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4), a2e(a5), a2e(a6))); }

  template <class A1, class A2, class A3, class A4, class A5, class A6,
            class A7>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4,
	     const A5 &a5, const A6 &a6, const A7 &a7) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4), a2e(a5),
		  a2e(a6), a2e(a7))); }

  template <class A1, class A2, class A3, class A4, class A5, class A6,
            class A7, class A8>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4,
             const A5 &a5, const A6 &a6, const A7 &a7, const A8 &a8) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4), a2e(a5),
		  a2e(a6), a2e(a7), a2e(a8))); }

  template <class A1, class A2, class A3, class A4, class A5, class A6,
            class A7, class A8, class A9>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4,
             const A5 &a5, const A6 &a6, const A7 &a7, const A8 &a8,
             const A9 &a9) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4), a2e(a5),
		  a2e(a6), a2e(a7), a2e(a8), a2e(a9))); }

  template <class A1, class A2, class A3, class A4, class A5, class A6,
            class A7, class A8, class A9, class A10>
  result_type
  operator()(const A1 &a1, const A2 &a2, const A3 &a3, const A4 &a4,
             const A5 &a5, const A6 &a6, const A7 &a7, const A8 &a8,
             const A9 &a9, const A10 &a10) const
  { return e2a(ec(a2e(a1), a2e(a2), a2e(a3), a2e(a4), a2e(a5),
		  a2e(a6), a2e(a7), a2e(a8), a2e(a9), a2e(a10))); }

  // Idem for more than 10 arguments.  Do it on demand (or use C++0x).

#endif
};

} //namespace CGAL

#endif // CGAL_ROBUST_CONSTRUCTION_H