This file is indexed.

/usr/include/CGAL/Ridges.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
// Copyright (c) 2007  INRIA Sophia-Antipolis (France), INRIA Lorraine LORIA.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Marc Pouget and Frédéric Cazals
#ifndef CGAL_RIDGE_3_H_
#define CGAL_RIDGE_3_H_

#include <utility>
#include <list>
#include <map>

#include <CGAL/basic.h>
#include <CGAL/Min_sphere_d.h>
#include <CGAL/Optimisation_d_traits_3.h>
#include <CGAL/barycenter.h>
#include <CGAL/property_map.h>
#include <CGAL/assertions.h>
#include <boost/type_traits/is_same.hpp>

namespace CGAL {
 
enum Ridge_interrogation_type {MAX_RIDGE, MIN_RIDGE, CREST_RIDGE};

enum Ridge_type {NO_RIDGE=0, 
		 MAX_ELLIPTIC_RIDGE, MAX_HYPERBOLIC_RIDGE, MAX_CREST_RIDGE, 
		 MIN_ELLIPTIC_RIDGE, MIN_HYPERBOLIC_RIDGE, MIN_CREST_RIDGE};
 
//are ridges tagged as elliptic or hyperbolic using 3rd or 4th order
//differential quantitities?
//with Ridge_order_3 P1 and P2 are not used and the sharpness is not defined.
enum Ridge_order {Ridge_order_3 = 3, Ridge_order_4 = 4};
  
//---------------------------------------------------------------------------
//Ridge_line : a connected sequence of edges of a
//TriangularPolyhedralSurface crossed by a
//ridge (with a barycentric coordinate to compute the crossing point),
//with a Ridge_type and weights : strength and sharpness. Note
//sharpness is only available (more precisely only meaningful)
//if the Ridge_approximation has
//been computed with the Ridge_order Ridge_order_4.
//(else, if it is computed with Ridge_order_3 it keeps its initial
//value 0)
//--------------------------------------------------------------------------
template < class TriangulatedSurfaceMesh > class Ridge_line
{
public:
  typedef typename TriangulatedSurfaceMesh::Traits::FT         FT;
  typedef typename TriangulatedSurfaceMesh::Traits::Vector_3   Vector_3;
  typedef typename TriangulatedSurfaceMesh::Traits::Point_3    Point_3;
  typedef typename TriangulatedSurfaceMesh::Halfedge_const_handle Halfedge_const_handle;
  typedef std::pair< Halfedge_const_handle, FT> ridge_halfhedge; 

  Ridge_type line_type() const {return m_line_type;}
  Ridge_type& line_type() {return m_line_type;}

  const FT strength() const {return m_strength;}
  FT& strength() {return m_strength;}

  const FT sharpness() const {return m_sharpness;}
  FT& sharpness() {return m_sharpness;}

  const std::list<ridge_halfhedge>* line() const { return &m_line;}
  std::list<ridge_halfhedge>* line() { return &m_line;}

  //constructor
  Ridge_line();
  
  /* The output is : line_type, strength, sharpness, list of points of
     the polyline. An insert operator << is also available.
   */
  void dump_4ogl(std::ostream& out_stream) const ;
  void dump_verbose(std::ostream& out_stream) const ;

protected:
  //one of MAX_ELLIPTIC_RIDGE, MAX_HYPERBOLIC_RIDGE, MAX_CREST_RIDGE,
  //MIN_ELLIPTIC_RIDGE, MIN_HYPERBOLIC_RIDGE or MIN_CREST_RIDGE
  Ridge_type m_line_type;  
  std::list<ridge_halfhedge> m_line;
  FT m_strength;// = integral of ppal curvature along the line
  FT m_sharpness;// = (integral of second derivative of curvature
		 // along the line) multiplied by the squared of 
                 // the size of the model
		 // (which is the radius of the smallest enclosing
		 // ball)
};

//--------------------------------------------------------------------------
// IMPLEMENTATION OF Ridge_line members
//--------------------------------------------------------------------------

 //constructor
template < class TriangulatedSurfaceMesh >
Ridge_line<TriangulatedSurfaceMesh>::
Ridge_line() : m_strength(0.), m_sharpness(0.)  {}
   

template < class TriangulatedSurfaceMesh >
void Ridge_line<TriangulatedSurfaceMesh>::
dump_4ogl(std::ostream& out_stream) const
{
  out_stream << line_type() << " "
	     << strength() << " "
	     << sharpness() << " ";

  typename std::list<ridge_halfhedge >::const_iterator
    iter = line()->begin(), 
    ite =  line()->end();
  for (;iter!=ite;iter++){
    //he: p->q, r is the crossing point
    Point_3 p = iter->first->opposite()->vertex()->point(),
            q = iter->first->vertex()->point();
    Point_3 r = CGAL::barycenter(p, iter->second, q);
    out_stream << " " << r ;	
  }
  out_stream  << std::endl;  
}

//verbose output
template < class TriangulatedSurfaceMesh >
void Ridge_line<TriangulatedSurfaceMesh>::
dump_verbose(std::ostream& out_stream) const
{
  out_stream << "Line type is : " << line_type() << std::endl
	     << "Strength is :  " << strength() << std::endl
	     << "Sharpness is : " << sharpness() << std::endl
	     << "Polyline point coordinates are : " << std::endl;

  typename std::list<ridge_halfhedge>::const_iterator
    iter = line()->begin(), 
    ite =  line()->end();
  for (;iter!=ite;iter++){
    //he: p->q, r is the crossing point
    Point_3 p = iter->first->opposite()->vertex()->point(),
            q = iter->first->vertex()->point();
    Point_3 r = CGAL::barycenter(p, iter->second, q);
    out_stream << r << std::endl;	
  }
}

template <class TriangulatedSurfaceMesh>
std::ostream& 
operator<<(std::ostream& out_stream, const Ridge_line<TriangulatedSurfaceMesh>& ridge_line)
{
  ridge_line.dump_verbose(out_stream);
  return out_stream;
}

//---------------------------------------------------------------------------
//Vertex2Data_Property_Map_with_std_map
// defines models for Vertex2FTPropertyMap and Vertex2VectorPropertyMap
//--------------------------------------------------------------------------
template < class TriangulatedSurfaceMesh >
class Vertex2Data_Property_Map_with_std_map 
{
 public:
  typedef typename TriangulatedSurfaceMesh::Traits::FT        FT;
  typedef typename TriangulatedSurfaceMesh::Traits::Vector_3  Vector_3;
  typedef typename TriangulatedSurfaceMesh::Vertex_const_handle Vertex_const_handle;

  struct Vertex_cmp{
    bool operator()(Vertex_const_handle a,  Vertex_const_handle b) const{
      return &*a < &*b;
    }
  };

  typedef std::map<Vertex_const_handle, FT, Vertex_cmp> Vertex2FT_map;
  typedef boost::associative_property_map< Vertex2FT_map > Vertex2FT_property_map;

  typedef std::map<Vertex_const_handle, Vector_3, Vertex_cmp> Vertex2Vector_map;
  typedef boost::associative_property_map< Vertex2Vector_map > Vertex2Vector_property_map;
};


//---------------------------------------------------------------------------
//Ridge_approximation
//--------------------------------------------------------------------------
template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
class Ridge_approximation
{
 public:  
  typedef typename TriangulatedSurfaceMesh::Traits::FT        FT;
  typedef typename TriangulatedSurfaceMesh::Traits::Vector_3  Vector_3;
  typedef typename TriangulatedSurfaceMesh::Vertex_const_handle     Vertex_const_handle;
  typedef typename TriangulatedSurfaceMesh::Halfedge_const_handle   Halfedge_const_handle;
  typedef typename TriangulatedSurfaceMesh::Facet_const_handle      Facet_const_handle;
  typedef typename TriangulatedSurfaceMesh::Facet_const_iterator    Facet_const_iterator;

  //requirements for the templates TriangulatedSurfaceMesh and Vertex2FTPropertyMap or Vertex2VectorPropertyMap
  CGAL_static_assertion((boost::is_same<Vertex_const_handle, typename Vertex2FTPropertyMap::key_type>::value));
  CGAL_static_assertion((boost::is_same<Vertex_const_handle, typename Vertex2VectorPropertyMap::key_type>::value));
  CGAL_static_assertion((boost::is_same<FT, typename Vertex2FTPropertyMap::value_type>::value));
  CGAL_static_assertion((boost::is_same<Vector_3, typename Vertex2VectorPropertyMap::value_type>::value));

  typedef std::pair< Halfedge_const_handle, FT>    Ridge_halfhedge;
  typedef CGAL::Ridge_line<TriangulatedSurfaceMesh>  Ridge_line;

  Ridge_approximation(const TriangulatedSurfaceMesh &P,
		      const Vertex2FTPropertyMap& vertex2k1_pm, 
		      const Vertex2FTPropertyMap& vertex2k2_pm,
		      const Vertex2FTPropertyMap& vertex2b0_pm, 
		      const Vertex2FTPropertyMap& vertex2b3_pm,
		      const Vertex2VectorPropertyMap& vertex2d1_pm, 
		      const Vertex2VectorPropertyMap& vertex2d2_pm,
		      const Vertex2FTPropertyMap& vertex2P1_pm, 
		      const Vertex2FTPropertyMap& vertex2P2_pm);
 
  template <class OutputIterator>
  OutputIterator compute_max_ridges(OutputIterator it, Ridge_order ord = Ridge_order_3);
  template <class OutputIterator>
  OutputIterator compute_min_ridges(OutputIterator it, Ridge_order ord = Ridge_order_3);
  template <class OutputIterator>
  OutputIterator compute_crest_ridges(OutputIterator it, Ridge_order ord = Ridge_order_3);
  
  //Find MAX_RIDGE, MIN_RIDGE or CREST_RIDGE ridges iterate on P facets,
  //find a non-visited, regular (i.e. if there is a coherent
  //orientation of ppal dir at the facet vertices), 2Xing triangle,
  //follow non-visited, regular, 2Xing triangles in both sens to
  //create a Ridge line.  Each time an edge is added the strength and
  //sharpness(if Ridge_order_4) are updated.
  template <class OutputIterator>
  OutputIterator compute_ridges(Ridge_interrogation_type r_type, 
			  OutputIterator ridge_lines_it,
			  Ridge_order ord = Ridge_order_3);

 protected:
  const TriangulatedSurfaceMesh& P;
  FT squared_model_size;//squared radius of the smallest enclosing sphere of the TriangulatedSurfaceMesh
		//used to make the sharpness scale independant and iso indep
  Ridge_order tag_order;

  //tag to visit faces
  struct Facet_cmp{ //comparison is wrt facet addresses
    bool operator()(Facet_const_handle a,  Facet_const_handle b) const{
      return &*a < &*b;
    }
  };
  typedef std::map<Facet_const_handle, bool, Facet_cmp> Facet2bool_map_type;
  Facet2bool_map_type is_visited_map;

  //Property maps
  const Vertex2FTPropertyMap &k1, &k2, &b0, &b3, &P1, &P2;
  const Vertex2VectorPropertyMap &d1, &d2;

  //is a facet crossed by a BLUE, RED or CREST_RIDGE ridge? if so, return
  //the crossed edges and more precise type from MAX_ELLIPTIC_RIDGE,
  //MAX_HYPERBOLIC_RIDGE, MAX_CREST_RIDGE, MIN_ELLIPTIC_RIDGE,
  //MIN_HYPERBOLIC_RIDGE, MIN_CREST_RIDGE or NO_RIDGE
  Ridge_type facet_ridge_type(const Facet_const_handle f, 
			      Halfedge_const_handle& he1, 
			      Halfedge_const_handle& he2,
			      Ridge_interrogation_type r_type);
  
  //is an edge crossed by a BLUE/RED ridge? (color is MAX_RIDGE or
  //MIN_RIDGE ).  As we only test edges of regular triangles, the ppal
  //direction at endpoints d_p and d_q cannot be orthogonal. If both
  //extremalities vanish, we consider no crossing occurs. If only one
  //of them vanishes, we consider it as an positive infinitesimal and
  //apply the general rule. The general rule is that for both
  //non-vanishing extremalities, a crossing occurs if their sign
  //differ; Assuming the accute rule to orient the ppal directions,
  //there is a crossing iff d_p.d_q * b_p*b_q < 0
  void xing_on_edge(const Halfedge_const_handle he, 
		    bool& is_crossed, 
		    Ridge_interrogation_type color);
 
  //given a ridge segment of a given color, in a triangle crossing he1
  //(v_p1 -> v_q1) and he2 (v_p2 -> v_q2) return true if it is
  //elliptic, false if it is hyperbolic.
  bool tag_as_elliptic_hyperbolic(const Ridge_interrogation_type color,
				  const Halfedge_const_handle he1, 
				  const Halfedge_const_handle he2);

  //for the computation with tag_order == 3 only
  //for a ridge segment [r1,r2] in a triangle (v1,v2,v3), let r = r2 -
  //r1 and normalize, the projection of a point p on the line (r1,r2)
  //is pp=r1+tr, with t=(p-r1)*r then the vector v starting at p is
  //pointing to the ridge line (r1,r2) if (pp-p)*v >0. Return the sign
  //of b, for a ppal direction pointing to the ridge segment,
  //appearing at least at two vertices of the facet.
  //
  // for color = MAX_RIDGE, sign = 1 if MAX_ELLIPTIC_RIDGE, -1 if
  // MAX_HYPERBOLIC_RIDGE 
  //
  // for color = MIN_RIDGE, sign = -1 if MIN_ELLIPTIC_RIDGE, 1 if
  // MIN_HYPERBOLIC_RIDGE
  int b_sign_pointing_to_ridge(const Vertex_const_handle v1, 
			       const Vertex_const_handle v2,
			       const Vertex_const_handle v3,
			       const Vector_3 r1, const Vector_3 r2, 
			       const Ridge_interrogation_type color);

  //a ridge line begins with a segment in a triangle given by the 2 he
  //crossed
  void init_ridge_line(Ridge_line* ridge_line, 
		       const Halfedge_const_handle h1, 
		       const Halfedge_const_handle h2, 
		       const Ridge_type r_type);
  //When the line is extended with a he, the bary coord of the
  //crossing point is computed, the pair (he,coord) is added and the
  //weights are updated 
  void addback(Ridge_line* ridge_line, 
	       const Halfedge_const_handle he, 
	       const Ridge_type r_type);
  void addfront(Ridge_line* ridge_line, 
		const Halfedge_const_handle he,
		const Ridge_type r_type);

  //compute the barycentric coordinate of the xing point (blue or red)
  //for he: p->q (wrt the extremality values b0/3).  coord is st
  //xing_point = coord*p + (1-coord)*q
  FT bary_coord(const Halfedge_const_handle he, 
		const Ridge_type r_type);
};


// IMPLEMENTATION OF Ridge_approximation members
/////////////////////////////////////////////////////////////////////////////
 //contructor
template < class TriangulatedSurfaceMesh,  
  class Vertex2FTPropertyMap,
  class Vertex2VectorPropertyMap > 
  Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap >::
  Ridge_approximation(const TriangulatedSurfaceMesh &p,
		      const Vertex2FTPropertyMap& vertex2k1_pm, 
		      const Vertex2FTPropertyMap& vertex2k2_pm,
		      const Vertex2FTPropertyMap& vertex2b0_pm, 
		      const Vertex2FTPropertyMap& vertex2b3_pm,
		      const Vertex2VectorPropertyMap& vertex2d1_pm, 
		      const Vertex2VectorPropertyMap& vertex2d2_pm,
		      const Vertex2FTPropertyMap& vertex2P1_pm, 
		      const Vertex2FTPropertyMap& vertex2P2_pm)
    : P(p), k1(vertex2k1_pm), k2(vertex2k2_pm), b0(vertex2b0_pm), b3(vertex2b3_pm), 
      P1(vertex2P1_pm), P2(vertex2P2_pm), d1(vertex2d1_pm), d2(vertex2d2_pm)
{
  //init the is_visited_map and check that the mesh is a triangular one.
  Facet_const_iterator itb = P.facets_begin(), ite = P.facets_end();
  for(;itb!=ite;itb++) {
    is_visited_map[itb] = false;
    CGAL_precondition( itb->is_triangle() );
  }

  CGAL::Min_sphere_d<CGAL::Optimisation_d_traits_3<typename TriangulatedSurfaceMesh::Traits> > 
    min_sphere(P.points_begin(), P.points_end());
  squared_model_size = min_sphere.squared_radius();
  //maybe better to use CGAL::Min_sphere_of_spheres_d ?? but need to create spheres?

  tag_order = Ridge_order_3;
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
  template <class OutputIterator>
  OutputIterator Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
  compute_max_ridges(OutputIterator it, Ridge_order ord)
{
  compute_ridges(MAX_RIDGE, it, ord);
  return it;
}
template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
  template <class OutputIterator>
  OutputIterator Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
  compute_min_ridges(OutputIterator it, Ridge_order ord)
{
  compute_ridges(MIN_RIDGE, it, ord);
  return it;
}
template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
  template <class OutputIterator>
  OutputIterator Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
  compute_crest_ridges(OutputIterator it, Ridge_order ord)
{
  compute_ridges(CREST_RIDGE, it, ord);
  return it;
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
  template <class OutputIterator>
  OutputIterator Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
  compute_ridges(Ridge_interrogation_type r_type, OutputIterator ridge_lines_it, Ridge_order ord)
{
  tag_order = ord;

  //reinit the is_visited_map
  Facet_const_iterator itb = P.facets_begin(), ite = P.facets_end();
  for(;itb!=ite;itb++) is_visited_map[itb] = false;
  
  itb = P.facets_begin();
  for(;itb!=ite;itb++)
    {
      Facet_const_handle f = itb;
      if (is_visited_map.find(f)->second) continue;
      is_visited_map.find(f)->second = true;
      Halfedge_const_handle h1, h2, curhe1, curhe2, curhe;
      
      //h1 h2 are the hedges crossed if any, r_type should be
      //MAX_RIDGE, MIN_RIDGE or CREST_RIDGE ; cur_ridge_type should be
      //MAX_ELLIPTIC_RIDGE, MAX_HYPERBOLIC_RIDGE, MAX_CREST_RIDGE,
      //MIN_ELLIPTIC_RIDGE, MIN_HYPERBOLIC_RIDGE, MIN_CREST_RIDGE or NO_RIDGE
      Ridge_type cur_ridge_type = facet_ridge_type(f,h1,h2,r_type);
      if ( cur_ridge_type == NO_RIDGE ) continue;
      
      //a ridge_line is begining and stored
      Ridge_line* cur_ridge_line = new Ridge_line();
      init_ridge_line(cur_ridge_line, h1, h2, cur_ridge_type);
      *ridge_lines_it++ = cur_ridge_line;
    
      //next triangle adjacent to h1 (push_front)
      if ( !(h1->is_border_edge()) ) 
	{
	  f = h1->opposite()->facet();
	  curhe = h1;
	  while (cur_ridge_type == facet_ridge_type(f,curhe1,curhe2,r_type))
	    {
	      //follow the ridge from curhe
	      if (is_visited_map.find(f)->second) break;
	      is_visited_map.find(f)->second = true;
	      if (curhe->opposite() == curhe1) curhe = curhe2;
	      else curhe = curhe1;//curhe stays at the ridge extremity
	      addfront(cur_ridge_line, curhe, cur_ridge_type);
	      if ( !(curhe->is_border_edge()) ) f =
						  curhe->opposite()->facet();
	      else break;
	    }
	  //exit from the while if
	  //1. border or already visited (this is a ridge loop)
	  //2. not same type, then do not set visisted cause a MAX_ELLIPTIC_RIDGE
	  //	  follows a MAX_HYPERBOLIC_RIDGE
	}

      //next triangle adjacent to h2 (push_back)
      if ( !(h2->is_border_edge()) ) 
	{
	  f = h2->opposite()->facet();
	  curhe = h2;
	  while (cur_ridge_type ==
		 facet_ridge_type(f,curhe1,curhe2,r_type))
	    {
	      //follow the ridge from curhe
	      if (is_visited_map.find(f)->second) break;
	      is_visited_map.find(f)->second = true;
	      if (curhe->opposite() == curhe1) curhe = curhe2;
	      else curhe = curhe1;
	      addback(cur_ridge_line, curhe, cur_ridge_type);
	      if ( !(curhe->is_border_edge()) ) f =
						  curhe->opposite()->facet();
	      else break;
	    }
	} 
    }
  return ridge_lines_it;
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
Ridge_type Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
facet_ridge_type(const Facet_const_handle f, Halfedge_const_handle& he1, Halfedge_const_handle&
		 he2, Ridge_interrogation_type r_type)
{
  //polyhedral data
  //we have v1--h1-->v2--h2-->v3--h3-->v1
  const Halfedge_const_handle h1 = f->halfedge();
  const Vertex_const_handle v2 = h1->vertex();
  const Halfedge_const_handle h2 = h1->next();
  const Vertex_const_handle v3 = h2->vertex();
  const Halfedge_const_handle h3 = h2->next();
  const Vertex_const_handle v1 = h3->vertex();

  //check for regular facet
  //i.e. if there is a coherent orientation of ppal dir at the facet vertices
  if ( d1[v1]*d1[v2] * d1[v1]*d1[v3] * d1[v2]*d1[v3] < 0 ) 
    return NO_RIDGE;
   
  //determine potential crest color
  //MAX_CREST_RIDGE if |sum(k1)|>|sum(k2)| sum over facet vertices vi
  //MIN_CREST_RIDGE if |sum(k1)|<|sum(k2)|
  Ridge_type crest_color = NO_RIDGE;
  if (r_type == CREST_RIDGE) 
    {
      if ( CGAL::abs(k1[v1]+k1[v2]+k1[v3]) > CGAL::abs(k2[v1]+k2[v2]+k2[v3]) ) 
	crest_color = MAX_CREST_RIDGE; 
      if ( CGAL::abs(k1[v1]+k1[v2]+k1[v3]) < CGAL::abs(k2[v1]+k2[v2]+k2[v3]) ) 
	crest_color = MIN_CREST_RIDGE;
      if ( CGAL::abs(k1[v1]+k1[v2]+k1[v3]) == CGAL::abs(k2[v1]+k2[v2]+k2[v3]) ) 
	return NO_RIDGE;
    }
  
  //compute Xing on the 3 edges
  bool h1_is_crossed = false, h2_is_crossed = false, h3_is_crossed = false;
  if ( r_type == MAX_RIDGE || crest_color == MAX_CREST_RIDGE ) 
    {
      xing_on_edge(h1, h1_is_crossed, MAX_RIDGE);
      xing_on_edge(h2, h2_is_crossed, MAX_RIDGE);
      xing_on_edge(h3, h3_is_crossed, MAX_RIDGE);
    }
  if ( r_type == MIN_RIDGE || crest_color == MIN_CREST_RIDGE ) 
    {
      xing_on_edge(h1, h1_is_crossed, MIN_RIDGE);
      xing_on_edge(h2, h2_is_crossed, MIN_RIDGE);
      xing_on_edge(h3, h3_is_crossed, MIN_RIDGE);
    }

  //there are either 0 or 2 crossed edges
  if ( !h1_is_crossed && !h2_is_crossed && !h3_is_crossed ) 
    return NO_RIDGE; 
  if (h1_is_crossed && h2_is_crossed && !h3_is_crossed)
    {
      he1 = h1; 
      he2 = h2;
    }
  if (h1_is_crossed && !h2_is_crossed && h3_is_crossed)
    {
      he1 = h1; 
      he2 = h3;
    }
  if (!h1_is_crossed && h2_is_crossed && h3_is_crossed)
    {
      he1 = h2; 
      he2 = h3;
    }
  //check there is no other case (just one edge crossed)
  CGAL_postcondition ( !( (h1_is_crossed && !h2_is_crossed && !h3_is_crossed)
			  || (!h1_is_crossed && h2_is_crossed && !h3_is_crossed)
			  || (!h1_is_crossed && !h2_is_crossed && h3_is_crossed)) );

  //There is a ridge segment in the triangle, determine its type elliptic/hyperbolic
  bool is_elliptic;  
  if ( r_type == MAX_RIDGE || crest_color == MAX_CREST_RIDGE ) 
    is_elliptic = tag_as_elliptic_hyperbolic(MAX_RIDGE, he1, he2);
  else is_elliptic = tag_as_elliptic_hyperbolic(MIN_RIDGE, he1, he2);
  
  if (r_type == MAX_RIDGE) 
    {if (is_elliptic) return MAX_ELLIPTIC_RIDGE;
    else return MAX_HYPERBOLIC_RIDGE; }
  if (crest_color == MAX_CREST_RIDGE && is_elliptic) return MAX_CREST_RIDGE;

  if (r_type == MIN_RIDGE) 
    {if (is_elliptic) return MIN_ELLIPTIC_RIDGE;
    else return MIN_HYPERBOLIC_RIDGE; }
  if (crest_color == MIN_CREST_RIDGE && is_elliptic) return MIN_CREST_RIDGE;
  
  return NO_RIDGE;
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
void Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
xing_on_edge(const Halfedge_const_handle he, bool& is_crossed, Ridge_interrogation_type color)
{
  is_crossed = false;
  FT sign = 0;
  FT b_p, b_q; // extremalities at p and q for he: p->q
  Vector_3  d_p = d1[he->opposite()->vertex()],
    d_q = d1[he->vertex()]; //ppal dir
  if ( color == MAX_RIDGE ) {
    b_p = b0[he->opposite()->vertex()];
    b_q = b0[he->vertex()];
  }
  else {     
    b_p = b3[he->opposite()->vertex()];
    b_q = b3[he->vertex()];
  }
  if ( b_p == 0 && b_q == 0 ) return;
  if ( b_p == 0 && b_q !=0 ) sign = d_p*d_q * b_q;
  if ( b_p != 0 && b_q ==0 ) sign = d_p*d_q * b_p;
  if ( b_p != 0 && b_q !=0 ) sign = d_p*d_q * b_p * b_q;
  if ( sign < 0 ) is_crossed = true;
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
bool Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
  tag_as_elliptic_hyperbolic(const Ridge_interrogation_type color,
			     const Halfedge_const_handle he1, 
			     const Halfedge_const_handle he2)
{
  const Vertex_const_handle v_p1 = he1->opposite()->vertex(), v_q1 = he1->vertex(),
    v_p2 = he2->opposite()->vertex(), v_q2 = he2->vertex(); // hei: pi->qi

  FT coord1, coord2;
  if (color == MAX_RIDGE) 
    {
      coord1 = CGAL::abs(b0[v_q1]) / ( CGAL::abs(b0[v_p1]) + CGAL::abs(b0[v_q1]) );
      coord2 = CGAL::abs(b0[v_q2]) / ( CGAL::abs(b0[v_p2]) + CGAL::abs(b0[v_q2]) ); 
    }
  else 
    {
      coord1 = CGAL::abs(b3[v_q1]) / ( CGAL::abs(b3[v_p1]) + CGAL::abs(b3[v_q1]) );
      coord2 = CGAL::abs(b3[v_q2]) / ( CGAL::abs(b3[v_p2]) + CGAL::abs(b3[v_q2]) ); 
    }

  if ( tag_order == Ridge_order_3 ) {
    Vector_3 r1 = CGAL::barycenter(v_p1->point(), coord1, v_q1->point()) - ORIGIN,
             r2 = CGAL::barycenter(v_p2->point(), coord2, v_q2->point()) - ORIGIN; 
    //identify the 3 different vertices v_p1, v_q1 and v3 = v_p2 or v_q2
    Vertex_const_handle v3;
    if (v_p2 == v_p1 || v_p2 == v_q1) v3 = v_q2;
    else v3 = v_p2;

    int b_sign = b_sign_pointing_to_ridge(v_p1, v_q1, v3, r1, r2, color); 

    if (color == MAX_RIDGE) 
      if (b_sign == 1) return true; 
      else return false;
    else if (b_sign == -1) return true; 
      else return false;
  }
  else {//tag_order == Ridge_order_4, check the sign of the meanvalue of the signs
    //      of Pi at the two crossing points
    FT sign_P;
    if (color == MAX_RIDGE) 
      sign_P =  P1[v_p1]*coord1 + P1[v_q1]*(1-coord1) 
	+ P1[v_p2]*coord2 + P1[v_q2]*(1-coord2);
    else sign_P =  P2[v_p1]*coord1 + P2[v_q1]*(1-coord1) 
	+ P2[v_p2]*coord2 + P2[v_q2]*(1-coord2);

    if ( sign_P < 0 ) return true; else return false;
  }
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
int Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
  b_sign_pointing_to_ridge(const Vertex_const_handle v1, 
			       const Vertex_const_handle v2,
			       const Vertex_const_handle v3,
			       const Vector_3 r1, const Vector_3 r2, 
			       const Ridge_interrogation_type color)
{
  Vector_3 r = r2 - r1, dv1, dv2, dv3;
  FT bv1, bv2, bv3;
  if ( color == MAX_RIDGE ) {
    bv1 = b0[v1];
    bv2 = b0[v2];
    bv3 = b0[v3];
    dv1 = d1[v1];
    dv2 = d1[v2];
    dv3 = d1[v3];
  }
  else {
    bv1 = b3[v1];
    bv2 = b3[v2];
    bv3 = b3[v3];
    dv1 = d2[v1];
    dv2 = d2[v2];
    dv3 = d2[v3];    
  }
  if ( r != CGAL::NULL_VECTOR ) r = r/CGAL::sqrt(r*r);
  FT sign1, sign2, sign3;
  sign1 = bv1*(r1 - (v1->point()-ORIGIN) + (((v1->point()-ORIGIN)-r1)*r)*r )*dv1;
  sign2 = bv2*(r1 - (v2->point()-ORIGIN) + (((v2->point()-ORIGIN)-r1)*r)*r )*dv2;
  sign3 = bv3*(r1 - (v3->point()-ORIGIN) + (((v3->point()-ORIGIN)-r1)*r)*r )*dv3;
  
  int compt = 0;
  if ( sign1 > 0 ) compt++; else if (sign1 < 0) compt--;
  if ( sign2 > 0 ) compt++; else if (sign2 < 0) compt--;
  if ( sign3 > 0 ) compt++; else if (sign3 < 0) compt--;
  
  if (compt > 0) return 1; else return -1;
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
void Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
init_ridge_line(Ridge_line* ridge_line, 
		const Halfedge_const_handle h1, 
		const Halfedge_const_handle h2, 
		const Ridge_type r_type)
{
  ridge_line->line_type() = r_type;
  ridge_line->line()->push_back(Ridge_halfhedge(h1, bary_coord(h1,r_type)));
  addback(ridge_line, h2, r_type);
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
void Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
addback(Ridge_line* ridge_line, const Halfedge_const_handle he,
	const Ridge_type r_type)
{
  Halfedge_const_handle he_cur = ( --(ridge_line->line()->end()) )->first;
  FT coord_cur = ( --(ridge_line->line()->end()) )->second;//bary_coord(he_cur);
  FT coord = bary_coord(he,r_type);
  Vertex_const_handle v_p = he->opposite()->vertex(), v_q = he->vertex(),
    v_p_cur = he_cur->opposite()->vertex(), v_q_cur = he_cur->vertex(); // he: p->q
  Vector_3 segment = CGAL::barycenter(v_p->point(), coord, v_q->point()) -
                     CGAL::barycenter(v_p_cur->point(), coord_cur, v_q_cur->point());

  FT k1x, k2x; //abs value of the ppal curvatures at the Xing point on he.
  FT k_second = 0; // abs value of the second derivative of the curvature
               // along the line of curvature
  k1x = CGAL::abs(k1[v_p]) * coord + CGAL::abs(k1[v_q]) * (1-coord) ;   
  k2x = CGAL::abs(k2[v_p]) * coord + CGAL::abs(k2[v_q]) * (1-coord) ;   

  if ( (ridge_line->line_type() == MAX_ELLIPTIC_RIDGE) 
       || (ridge_line->line_type() == MAX_HYPERBOLIC_RIDGE) 
       || (ridge_line->line_type() == MAX_CREST_RIDGE) ) {
    ridge_line->strength() += k1x * CGAL::sqrt(segment * segment); 
    if (tag_order == Ridge_order_4) { 
      if (k1x != k2x) 
	k_second =CGAL::abs(( CGAL::abs(P1[v_p]) * coord + CGAL::abs(P1[v_q]) * (1-coord) )/(k1x-k2x));
      ridge_line->sharpness() += k_second * CGAL::sqrt(segment * segment) * squared_model_size; }
  }
  if ( (ridge_line->line_type() == MIN_ELLIPTIC_RIDGE) 
       || (ridge_line->line_type() == MIN_HYPERBOLIC_RIDGE) 
       || (ridge_line->line_type() == MIN_CREST_RIDGE) ) {
   ridge_line->strength() += k2x * CGAL::sqrt(segment * segment); 
   if (tag_order == Ridge_order_4) {
     if (k1x != k2x) 
       k_second =CGAL::abs(( CGAL::abs(P2[v_p]) * coord + CGAL::abs(P2[v_q]) * (1-coord) )/(k1x-k2x));
     ridge_line->sharpness() += k_second * CGAL::sqrt(segment * segment) * squared_model_size; }
   } 
  ridge_line->line()->push_back( Ridge_halfhedge(he, coord));
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
void Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
addfront(Ridge_line* ridge_line, 
	 const Halfedge_const_handle he, 
	 const Ridge_type r_type)
{
  Halfedge_const_handle he_cur = ( ridge_line->line()->begin() )->first;
  FT coord_cur = ( ridge_line->line()->begin() )->second;
  FT coord = bary_coord(he,r_type);
  Vertex_const_handle v_p = he->opposite()->vertex(), v_q = he->vertex(),
    v_p_cur = he_cur->opposite()->vertex(), v_q_cur = he_cur->vertex(); // he: p->q
  Vector_3 segment = CGAL::barycenter(v_p->point(), coord, v_q->point()) -
                     CGAL::barycenter(v_p_cur->point(), coord_cur, v_q_cur->point());

  FT k1x, k2x; //abs value of the ppal curvatures at the Xing point on he.
  FT k_second = 0.; // abs value of the second derivative of the curvature
               // along the line of curvature
  k1x = CGAL::abs(k1[v_p]) * coord + CGAL::abs(k1[v_q]) * (1-coord) ;   
  k2x = CGAL::abs(k2[v_p]) * coord + CGAL::abs(k2[v_q]) * (1-coord) ;   

  if ( (ridge_line->line_type() == MAX_ELLIPTIC_RIDGE) 
       || (ridge_line->line_type() == MAX_HYPERBOLIC_RIDGE) 
       || (ridge_line->line_type() == MAX_CREST_RIDGE) ) {
    ridge_line->strength() += k1x * CGAL::sqrt(segment * segment); 
   if (tag_order == Ridge_order_4) {
     if (k1x != k2x) 
       k_second =CGAL::abs(( CGAL::abs(P1[v_p]) * coord + CGAL::abs(P1[v_q]) * (1-coord) )/(k1x-k2x));
     ridge_line->sharpness() += k_second * CGAL::sqrt(segment * segment) * squared_model_size; }
  }
  if ( (ridge_line->line_type() == MIN_ELLIPTIC_RIDGE) 
       || (ridge_line->line_type() == MIN_HYPERBOLIC_RIDGE) 
       || (ridge_line->line_type() == MIN_CREST_RIDGE) ) {
   ridge_line->strength() += k2x * CGAL::sqrt(segment * segment); 
   if (tag_order == Ridge_order_4) {
     if (k1x != k2x) 
       k_second =CGAL::abs(( CGAL::abs(P2[v_p]) * coord + CGAL::abs(P2[v_q]) * (1-coord) )/(k1x-k2x));
     ridge_line->sharpness() += k_second * CGAL::sqrt(segment * segment) * squared_model_size; }
   } 
  ridge_line->line()->push_front( Ridge_halfhedge(he, coord));
}

template < class TriangulatedSurfaceMesh,  
           class Vertex2FTPropertyMap,
           class Vertex2VectorPropertyMap > 
typename TriangulatedSurfaceMesh::Traits::FT 
Ridge_approximation< TriangulatedSurfaceMesh, Vertex2FTPropertyMap , Vertex2VectorPropertyMap  >::
bary_coord(const Halfedge_const_handle he, const Ridge_type r_type)
{
  FT b_p = 0., b_q = 0.; // extremalities at p and q for he: p->q
  if ( (r_type == MAX_ELLIPTIC_RIDGE) 
       || (r_type == MAX_HYPERBOLIC_RIDGE) 
       || (r_type == MAX_CREST_RIDGE) ) {
    b_p = b0[he->opposite()->vertex()];
    b_q = b0[he->vertex()];    
  }
  if ( (r_type == MIN_ELLIPTIC_RIDGE) 
       || (r_type == MIN_HYPERBOLIC_RIDGE) 
       || (r_type == MIN_CREST_RIDGE) ) {
    b_p = b3[he->opposite()->vertex()];
    b_q = b3[he->vertex()];    
  }
  //denominator cannot be 0 since there is no crossing when both extremalities are 0
  return CGAL::abs(b_q) / ( CGAL::abs(b_q) + CGAL::abs(b_p) );
}
  

//---------------------------------------------------------------------------
//Global functions
//--------------------------------------------------------------------------
template < class TriangulatedSurfaceMesh,  
  class Vertex2FTPropertyMap,
  class Vertex2VectorPropertyMap,
  class OutputIterator>
  OutputIterator compute_max_ridges(const TriangulatedSurfaceMesh &P,
				    const Vertex2FTPropertyMap& vertex2k1_pm, 
				    const Vertex2FTPropertyMap& vertex2k2_pm,
				    const Vertex2FTPropertyMap& vertex2b0_pm, 
				    const Vertex2FTPropertyMap& vertex2b3_pm,
				    const Vertex2VectorPropertyMap& vertex2d1_pm, 
				    const Vertex2VectorPropertyMap& vertex2d2_pm,
				    const Vertex2FTPropertyMap& vertex2P1_pm, 
				    const Vertex2FTPropertyMap& vertex2P2_pm,
				    OutputIterator it, 
				    Ridge_order order = Ridge_order_3)
{
  typedef Ridge_approximation < TriangulatedSurfaceMesh, 
    Vertex2FTPropertyMap, Vertex2VectorPropertyMap > Ridge_approximation;
  
  Ridge_approximation ridge_approximation(P, 
					  vertex2k1_pm, vertex2k2_pm,
					  vertex2b0_pm, vertex2b3_pm,
					  vertex2d1_pm, vertex2d2_pm,
					  vertex2P1_pm, vertex2P2_pm );
  return ridge_approximation.compute_max_ridges(it, order);  
}

template < class TriangulatedSurfaceMesh,  
  class Vertex2FTPropertyMap,
  class Vertex2VectorPropertyMap,
  class OutputIterator>
  OutputIterator compute_min_ridges(const TriangulatedSurfaceMesh &P,
				    const Vertex2FTPropertyMap& vertex2k1_pm, 
				    const Vertex2FTPropertyMap& vertex2k2_pm,
				    const Vertex2FTPropertyMap& vertex2b0_pm, 
				    const Vertex2FTPropertyMap& vertex2b3_pm,
				    const Vertex2VectorPropertyMap& vertex2d1_pm, 
				    const Vertex2VectorPropertyMap& vertex2d2_pm,
				    const Vertex2FTPropertyMap& vertex2P1_pm, 
				    const Vertex2FTPropertyMap& vertex2P2_pm,
				    OutputIterator it, 
				    Ridge_order order = Ridge_order_3)
{
  typedef Ridge_approximation < TriangulatedSurfaceMesh, 
    Vertex2FTPropertyMap, Vertex2VectorPropertyMap > Ridge_approximation;
  
  Ridge_approximation ridge_approximation(P, 
					  vertex2k1_pm, vertex2k2_pm,
					  vertex2b0_pm, vertex2b3_pm,
					  vertex2d1_pm, vertex2d2_pm,
					  vertex2P1_pm, vertex2P2_pm );
  return ridge_approximation.compute_min_ridges(it, order);  
}

template < class TriangulatedSurfaceMesh,  
  class Vertex2FTPropertyMap,
  class Vertex2VectorPropertyMap,
  class OutputIterator>
  OutputIterator compute_crest_ridges(const TriangulatedSurfaceMesh &P,
				    const Vertex2FTPropertyMap& vertex2k1_pm, 
				    const Vertex2FTPropertyMap& vertex2k2_pm,
				    const Vertex2FTPropertyMap& vertex2b0_pm, 
				    const Vertex2FTPropertyMap& vertex2b3_pm,
				    const Vertex2VectorPropertyMap& vertex2d1_pm, 
				    const Vertex2VectorPropertyMap& vertex2d2_pm,
				    const Vertex2FTPropertyMap& vertex2P1_pm, 
				    const Vertex2FTPropertyMap& vertex2P2_pm,
				    OutputIterator it, 
				    Ridge_order order = Ridge_order_3)
{
  typedef Ridge_approximation < TriangulatedSurfaceMesh, 
    Vertex2FTPropertyMap, Vertex2VectorPropertyMap > Ridge_approximation;
  
  Ridge_approximation ridge_approximation(P, 
					  vertex2k1_pm, vertex2k2_pm,
					  vertex2b0_pm, vertex2b3_pm,
					  vertex2d1_pm, vertex2d2_pm,
					  vertex2P1_pm, vertex2P2_pm );
  return ridge_approximation.compute_crest_ridges(it, order);  
}


} //namespace CGAL

#endif