/usr/include/CGAL/QP_solver/Initialization.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 | // Copyright (c) 1997-2007 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sven Schoenherr
// Bernd Gaertner <gaertner@inf.ethz.ch>
// Franz Wessendorp
// Kaspar Fischer
#include<CGAL/QP_functions.h>
namespace CGAL {
// creation & initialization
// -------------------------
template < typename Q, typename ET, typename Tags >
QP_solver<Q, ET, Tags>::
QP_solver(const Q& qp, const Quadratic_program_options& options)
: et0(0), et1(1), et2(2),
strategyP(0),
inv_M_B(vout4),
d(inv_M_B.denominator()),
m_phase(-1), is_phaseI(false), is_phaseII(false),
is_RTS_transition(false),
is_LP(check_tag(Is_linear())), is_QP(!is_LP),
//no_ineq(check_tag(Has_equalities_only_and_full_rank())),
no_ineq(QP_functions_detail::is_in_equational_form(qp)),
// may change after phase I
has_ineq(!no_ineq),
is_nonnegative(check_tag(Is_nonnegative()))
{
// init diagnostics
diagnostics.redundant_equations = false;
// initialization as in the standard-form case:
set_verbosity(options.get_verbosity());
// only if C_entry is double, we actually get filtered strategies,
// otherwise we fall back to the respective non-filtered ones
set_pricing_strategy(options.get_pricing_strategy());
// Note: we first set the bounds and then call set() because set()
// accesses qp_fl, qp_l, etc.
set_explicit_bounds(qp);
set(qp);
// initialize and solve immediately:
init();
solve();
}
// set-up of QP
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_D(const Q& /*qp*/, Tag_true /*is_linear*/)
{
// dummy value, never used
qp_D = 0;
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_D(const Q& qp, Tag_false /*is_linear*/)
{
qp_D = qp.get_d();
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set(const Q& qp)
{
// assertions:
CGAL_qpe_assertion(qp.get_n() >= 0);
CGAL_qpe_assertion(qp.get_m() >= 0);
// store QP
qp_n = qp.get_n(); qp_m = qp.get_m();
qp_A = qp.get_a(); qp_b = qp.get_b(); qp_c = qp.get_c(); qp_c0 = qp.get_c0();
set_D(qp, Is_linear());
qp_r = qp.get_r();
// set up slack variables and auxiliary problem
// --------------------------------------------
// reserve memory for slack and artificial part of `A':
if (has_ineq) {
const unsigned int eq = static_cast<unsigned int>(std::count(qp_r, qp_r+qp_m, CGAL::EQUAL));
slack_A.reserve(qp_m - eq);
art_A.reserve ( eq);
art_s.insert(art_s.end(), qp_m, A_entry(0));
} else
art_A.reserve( qp_m);
// decide on which bound the variables sit initially:
if (!check_tag(Is_nonnegative()))
init_x_O_v_i();
set_up_auxiliary_problem();
e = static_cast<int>(qp_m-slack_A.size()); // number of equalities
l = (std::min)(qp_n+e+1, qp_m); // maximal size of basis in phase I
// diagnostic output:
CGAL_qpe_debug {
if (vout.verbose()) {
if (vout2.verbose()) {
vout2.out() << "======" << std::endl
<< "Set-Up" << std::endl
<< "======" << std::endl;
}
}
}
vout << "[ " << (is_LP ? "LP" : "QP")
<< ", " << qp_n << " variables, " << qp_m << " constraints"
<< " ]" << std::endl;
CGAL_qpe_debug {
if (vout2.verbose() && (!slack_A.empty())) {
vout2.out() << " (" << slack_A.size() << " inequalities)";
}
if (vout2.verbose()) {
if (has_ineq)
vout2.out() << "flag: has inequalities or rank not full"
<< std::endl;
if (vout4.verbose()) print_program();
}
}
// set up pricing strategy:
if (strategyP != static_cast< Pricing_strategy*>(0))
strategyP->set(*this, vout2);
// set up basis inverse:
inv_M_B.set(qp_n, qp_m, e);
// set phase:
m_phase = 0;
is_phaseI = false;
is_phaseII = false;
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_explicit_bounds(const Q& qp)
{
set_explicit_bounds (qp, Is_nonnegative());
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_explicit_bounds(const Q& /*qp*/, Tag_true) {
// dummy values, never used
qp_fl = 0;
qp_l = 0;
qp_fu = 0;
qp_u = 0;
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_explicit_bounds(const Q& qp, Tag_false) {
qp_fl = qp.get_fl();
qp_l = qp.get_l();
qp_fu = qp.get_fu();
qp_u = qp.get_u();
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
init_x_O_v_i()
{
// allocate storage:
x_O_v_i.reserve(qp_n);
x_O_v_i.resize (qp_n);
// constants for comparisions:
const L_entry l0(0);
const U_entry u0(0);
// our initial solution will have all original variables nonbasic,
// and so we initialize them to zero (if the bound on the variable
// allows it), or to the variable's lower or upper bound:
for (int i = 0; i < qp_n; ++i) {
CGAL_qpe_assertion( !*(qp_fl+i) || !*(qp_fu+i) || *(qp_l+i)<=*(qp_u+i));
if (*(qp_fl+i)) // finite lower bound?
if (*(qp_fu+i)) // finite lower and finite upper bound?
if (*(qp_l+i) == *(qp_u+i)) // fixed variable?
x_O_v_i[i] = FIXED;
else // finite lower and finite upper?
if (*(qp_l+i) <= l0 && u0 <= *(qp_u+i))
x_O_v_i[i] = ZERO;
else
x_O_v_i[i] = LOWER;
else // finite lower and infinite upper?
if (*(qp_l+i) <= l0)
x_O_v_i[i] = ZERO;
else
x_O_v_i[i] = LOWER;
else // infinite lower bound?
if (*(qp_fu+i)) // infinite lower and finite upper?
if (u0 <= *(qp_u+i))
x_O_v_i[i] = ZERO;
else
x_O_v_i[i] = UPPER;
else // infinite lower and infinite upper?
x_O_v_i[i] = ZERO;
}
}
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
set_up_auxiliary_problem()
{
ET b_max(et0);
const C_entry c1(1);
int i_max = -1; // i_max-th inequality is the most infeasible one
int i_max_absolute = -1; // absolute index of most infeasible ineq
// TAG: TODO using variable i here, which is also the index of the entering
// variable.
for (int i = 0; i < qp_m; ++i) {
// Note: For nonstandard form problems, our initial solution is not the
// zero vector (but the vector with values original_variable_value(i),
// 0<=i<qp_n), and therefore, rhs=b-Ax is not simply b as in the standard
// form case, but Ax_init-b:
const ET rhs = check_tag(Is_nonnegative())?
ET(*(qp_b+i)) : ET(*(qp_b+i)) - multiply__A_ixO(i);
if (has_ineq && (*(qp_r+i) != CGAL::EQUAL)) { // inequality constraint, so we
// add a slack variable, and (if
// needed) a special artificial
if (*(qp_r+i) == CGAL::SMALLER) { // '<='
// add special artificial ('< -0') in case the inequality is
// infeasible for our starting point (which is the origin):
if (rhs < et0) {
art_s[i] = -c1;
if (-rhs > b_max) {
i_max = static_cast<int>(slack_A.size());
i_max_absolute = i;
b_max = -rhs;
}
}
// slack variable:
slack_A.push_back(std::make_pair(i, false));
} else { // '>='
// add special artificial ('> +0') in case the inequality is
// infeasible for our starting point (which is the origin):
if (rhs > et0) {
art_s[i] = c1;
if (rhs > b_max) {
i_max = static_cast<int>(slack_A.size());
i_max_absolute = i;
b_max = rhs;
}
}
// store slack column
slack_A.push_back(std::make_pair(i, true));
}
} else { // equality constraint, so we
// add an artificial variable
// (Note: if rhs==et0 here then the artificial variable is (at the
// moment!) not needed. However, we nonetheless add it, for the following
// reason. If we did and were given an equality problem with the zero
// vector as the right-hand side then NO artificials would be added at
// all; so our initial basis would be empty, something we do not want.)
art_A.push_back(std::make_pair(i, rhs < et0));
}
} // end for
// Note: in order to make our initial starting point (which is the origin) a
// feasible point of the auxiliary problem, we need to initialize the
// special artificial value correctly, namely to
//
// max { |b_i| | i is index of an infeasible inequality constraint }. (C1)
//
// The index of this "most infeasible" constraint is, at this point of the
// code, i_max (or i_max is -1 in which case all inequality constraints are
// feasible and hence no special artififial column is needed at all).
// prepare initialization of special artificial column:
// Note: the real work is done in init_basis() below.
if (i_max >= 0) {
art_s_i = i_max; // Note: the actual
art_basic = i_max_absolute; // initialization of art_s_i
// will be done in init_basis()
// below. We misuse art_s_i to
// remember i_max and art_basic
// to remember i_max_absolute
} else { // no special art col needed
art_s_i = -1;
art_s.clear();
}
}
// initialization (phase I)
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
init()
{
CGAL_qpe_debug {
vout2 << std::endl
<< "==============" << std::endl
<< "Initialization" << std::endl
<< "==============" << std::endl;
}
// set status:
m_phase = 1;
m_status = QP_UPDATE;
m_pivots = 0;
is_phaseI = true;
is_phaseII = false;
// initial basis and basis inverse
init_basis();
// initialize additional data members
init_additional_data_members();
// initial solution
init_solution();
// initialize pricing strategy
CGAL_qpe_assertion(strategyP != static_cast< Pricing_strategy*>(0));
strategyP->init(0);
// basic feasible solution already available?
if (art_basic == 0) {
// transition to phase II
CGAL_qpe_debug {
if (vout2.verbose()) {
vout2.out() << std::endl
<< "no artificial variables at all "
<< "--> skip phase I"
<< std::endl;
}
}
transition();
}
}
// Set up the initial basis and basis inverse.
template < typename Q, typename ET, typename Tags >
void QP_solver<Q, ET, Tags>::
init_basis()
{
int s_i = -1;
int s_i_absolute = -1;
const int s = static_cast<int>(slack_A.size());
// has special artificial column?
if (!art_s.empty()) {
// Note: we maintain the information about the special artificial column in
// the variable art_s_i and the vector s_art; in addition, however, we also
// add a special "fake" column to art_A. This "fake" column has (in
// constrast to the special artificial column) only one nonzero entry,
// namely a +-1 for the most infeasible row (see (C1) above).
// add "fake" column to art_A:
s_i = art_s_i; // s_i-th ineq. is most infeasible, see (C1)
s_i_absolute = art_basic; // absolute index of most infeasible ineq
art_s_i = static_cast<int>(qp_n+s+art_A.size()); // number of special artificial var
// BG: By construction of art_s_i (= i_max) in set_up_auxiliary_problem(),
// s_i conforms with the indexing of slack_A, and the sign of the +-1
// entry is just the negative of the corresponding slackie; this explains
// the second parameter of make_pair. But the index passed as the
// first parameter must refer to the ABSOLUTE index of the most
// infeasible row. Putting s_i here is therefore a mistake unless
// we only have equality constraints
// art_A.push_back(std::make_pair(s_i, !slack_A[s_i].second));
CGAL_qpe_assertion(s_i_absolute >= 0);
CGAL_qpe_assertion(s_i_absolute == slack_A[s_i].first);
art_A.push_back(std::make_pair(s_i_absolute, !slack_A[s_i].second));
}
// initialize indices of basic variables:
if (!in_B.empty()) in_B.clear();
in_B.reserve(qp_n+s+art_A.size());
in_B.insert(in_B.end(), qp_n, -1); // no original variable is basic
init_basis__slack_variables(s_i, no_ineq);
if (!B_O.empty()) B_O.clear();
B_O.reserve(qp_n); // all artificial variables are basic
for (int i = 0; i < static_cast<int>(art_A.size()); ++i) {
B_O .push_back(qp_n+s+i);
in_B.push_back(i);
}
art_basic = static_cast<int>(art_A.size());
// initialize indices of 'basic' and 'nonbasic' constraints:
if (!C.empty()) C.clear();
init_basis__constraints(s_i, no_ineq);
// diagnostic output:
CGAL_qpe_debug {
if (vout.verbose()) print_basis();
}
// initialize basis inverse (explain: 'art_s' not needed here (todo kf: don't
// understand this note)):
// BG: as we only look at the basic constraints, the fake column in art_A
// will do as nicely as the actual column arts_s
inv_M_B.init(static_cast<unsigned int>(art_A.size()), art_A.begin());
}
template < typename Q, typename ET, typename Tags > inline // no ineq.
void QP_solver<Q, ET, Tags>::
init_basis__slack_variables( int, Tag_true)
{
// nop
}
template < typename Q, typename ET, typename Tags > // has ineq.
void QP_solver<Q, ET, Tags>::
init_basis__slack_variables(int s_i, Tag_false) // Note: s_i-th inequality is
// the most infeasible one,
// see (C1).
{
const int s = static_cast<int>(slack_A.size());
// reserve memory:
if (!B_S.empty()) B_S.clear();
B_S.reserve(s);
// all slack variables are basic, except the slack variable corresponding to
// special artificial variable (which is nonbasic): (todo kf: I do not
// understand this)
// BG: the s_i-th inequality is the most infeasible one, and the i-th
// inequality corresponds to the slackie of index qp_n + i
for (int i = 0; i < s; ++i) // go through all inequalities
if (i != s_i) {
in_B.push_back(static_cast<typename Indices::value_type>(B_S.size()));
B_S .push_back(i+qp_n);
} else
in_B.push_back(-1);
}
template < typename Q, typename ET, typename Tags > inline // no ineq.
void QP_solver<Q, ET, Tags>::
init_basis__constraints( int, Tag_true)
{
// reserve memory:
C.reserve(qp_m);
in_C.reserve(qp_m);
// As there are no inequalities, C consists of all inequality constraints
// only, so we add them all:
for (int i = 0; i < qp_m; ++i) {
C.push_back(i);
}
}
template < typename Q, typename ET, typename Tags > // has ineq.
void QP_solver<Q, ET, Tags>::
init_basis__constraints(int s_i, Tag_false) // Note: s_i-th inequality is the
// most infeasible one, see (C1).
{
int i, j;
// reserve memory:
if (!in_C.empty()) in_C.clear();
if (! S_B.empty()) S_B.clear();
C.reserve(l);
S_B.reserve(slack_A.size());
// store constraints' indices:
in_C.insert(in_C.end(), qp_m, -1);
if (s_i >= 0) s_i = slack_A[s_i].first; // now s_i is absolute index
// of most infeasible row
for (i = 0, j = 0; i < qp_m; ++i)
if (*(qp_r+i) == CGAL::EQUAL) { // equal. constraint basic
C.push_back(i);
in_C[i] = j;
++j;
} else { // ineq. constraint nonbasic
if (i != s_i) // unless it's most infeasible
S_B.push_back(i);
}
// now handle most infeasible inequality if any
if (s_i >= 0) {
C.push_back(s_i);
in_C[s_i] = j;
}
}
// Initialize r_C.
template < typename Q, typename ET, typename Tags > // Standard form
void QP_solver<Q, ET, Tags>::
init_r_C(Tag_true)
{
}
// Initialize r_C.
template < typename Q, typename ET, typename Tags > // Upper bounded
void QP_solver<Q, ET, Tags>::
init_r_C(Tag_false)
{
r_C.resize(C.size());
multiply__A_CxN_O(r_C.begin());
}
// Initialize r_S_B.
template < typename Q, typename ET, typename Tags > // Standard form
void QP_solver<Q, ET, Tags>::
init_r_S_B(Tag_true)
{
}
// Initialize r_S_B.
template < typename Q, typename ET, typename Tags > // Upper bounded
void QP_solver<Q, ET, Tags>::
init_r_S_B(Tag_false)
{
r_S_B.resize(S_B.size());
multiply__A_S_BxN_O(r_S_B.begin());
}
template < typename Q, typename ET, typename Tags > inline // no ineq.
void QP_solver<Q, ET, Tags>::
init_solution__b_C(Tag_true)
{
b_C.reserve(qp_m);
std::copy(qp_b, qp_b+qp_m, std::back_inserter(b_C));
}
template < typename Q, typename ET, typename Tags > inline // has ineq.
void QP_solver<Q, ET, Tags>::
init_solution__b_C(Tag_false)
{
b_C.insert(b_C.end(), l, et0);
B_by_index_accessor b_accessor(qp_b); // todo kf: is there some boost
// replacement for this accessor?
std::copy(B_by_index_iterator(C.begin(), b_accessor),
B_by_index_iterator(C.end (), b_accessor),
b_C.begin());
}
// initial solution
template < typename Q, typename ET, typename Tags >
void
QP_solver<Q, ET, Tags>::
init_solution()
{
// initialize exact version of `qp_b' restricted to basic constraints C
// (implicit conversion to ET):
if (!b_C.empty()) b_C.clear();
init_solution__b_C(no_ineq);
// initialize exact version of `aux_c' and 'minus_c_B', the
// latter restricted to basic variables B_O:
if (!minus_c_B.empty()) minus_c_B.clear();
minus_c_B.insert(minus_c_B.end(), l, -et1); // todo: what is minus_c_B?
CGAL_qpe_assertion(l >= static_cast<int>(art_A.size()));
if (art_s_i > 0)
minus_c_B[art_A.size()-1] *= ET(qp_n+qp_m); // Note: the idea here is to
// give more weight to the
// special artifical variable
// so that it gets removed very
// early, - todo kf: why?
// ...and now aux_c: as we want to make all artificial variables (including
// the special one) zero, we weigh these variables with >= 1 in the objective
// function (and leave the other entries in the objective function at zero):
aux_c.reserve(art_A.size());
aux_c.insert(aux_c.end(), art_A.size(), 0);
for (int col=static_cast<int>(qp_n+slack_A.size()); col<number_of_working_variables(); ++col)
if (col==art_s_i) // special artificial?
aux_c[col-qp_n-slack_A.size()]= qp_n+qp_m;
else // normal artificial
aux_c[col-qp_n-slack_A.size()]= 1;
// allocate memory for current solution:
if (!lambda.empty()) lambda.clear();
if (!x_B_O .empty()) x_B_O .clear();
if (!x_B_S .empty()) x_B_S .clear();
lambda.insert(lambda.end(), l, et0);
x_B_O .insert(x_B_O .end(), l, et0);
x_B_S .insert(x_B_S .end(), slack_A.size(), et0);
#if 0 // todo kf: I guess the following can be removed...
//TESTING the updates of r_C, r_S_B, r_B_O, w
// ratio_test_bound_index = LOWER;
//direction = 1;
#endif
// The following sets the pricing direction to "up" (meaning that
// the priced variable will be increased and not decreased); the
// statement is completely useless except that it causes debugging
// output to be consistent in case we are running in standard form.
// (If we are in standard form, the variable 'direction' is never
// touched; otherwise, it will be set to the correct value during
// each pricing step.)
direction = 1;
// initialization of vectors r_C, r_S_B:
init_r_C(Is_nonnegative());
init_r_S_B(Is_nonnegative());
// compute initial solution:
compute_solution(Is_nonnegative());
// diagnostic output:
CGAL_qpe_debug {
if (vout.verbose()) print_solution();
}
}
// Initialize additional data members.
template < typename Q, typename ET, typename Tags >
void
QP_solver<Q, ET, Tags>::
init_additional_data_members()
{
// todo kf: do we really have to insert et0, or would it suffice to just
// resize() in the following statements?
// BG: no clue, but it's at least safe that way
if (!A_Cj.empty()) A_Cj.clear();
A_Cj.insert(A_Cj.end(), l, et0);
if (!two_D_Bj.empty()) two_D_Bj.clear();
two_D_Bj.insert(two_D_Bj.end(), l, et0);
if (!q_lambda.empty()) q_lambda.clear();
q_lambda.insert(q_lambda.end(), l, et0);
if (!q_x_O.empty()) q_x_O.clear();
q_x_O.insert(q_x_O.end(), l, et0);
if (!q_x_S.empty()) q_x_S.clear();
q_x_S.insert(q_x_S.end(), slack_A.size(), et0);
if (!tmp_l.empty()) tmp_l.clear();
tmp_l.insert(tmp_l.end(), l, et0);
if (!tmp_l_2.empty()) tmp_l_2.clear();
tmp_l_2.insert(tmp_l_2.end(), l, et0);
if (!tmp_x.empty()) tmp_x.clear();
tmp_x.insert(tmp_x.end(), l, et0);
if (!tmp_x_2.empty()) tmp_x_2.clear();
tmp_x_2.insert(tmp_x_2.end(), l, et0);
}
} //namespace CGAL
// ===== EOF ==================================================================
|