/usr/include/CGAL/Polyhedron_slicer_3.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | // Copyright (c) 2013 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ilker O. Yaz
#ifndef CGAL_POLYHEDRON_SLICER_3_H
#define CGAL_POLYHEDRON_SLICER_3_H
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_halfedge_graph_segment_primitive.h>
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#include <CGAL/Vector_3.h>
#include <CGAL/Point_3.h>
#include <CGAL/Plane_3.h>
#include <CGAL/intersection_of_Polyhedra_3.h>
#include <CGAL/Timer.h>
#include <CGAL/Profile_counter.h>
#include <vector>
#include <map>
#include <deque>
#include <boost/tuple/tuple.hpp>
#include <boost/optional.hpp>
#include <boost/graph/adjacency_list.hpp>
namespace CGAL {
template<class Polyhedron, class Kernel>
class Polyhedron_slicer_3
{
private:
typedef AABB_halfedge_graph_segment_primitive<Polyhedron> AABB_primitive;
typedef AABB_traits<Kernel, AABB_primitive> AABB_traits_;
typedef AABB_tree<AABB_traits_> AABB_tree_;
typedef typename AABB_tree_::Object_and_primitive_id Object_and_primitive_id;
typedef typename AABB_tree_::Primitive_id Primitive_id;
typedef typename Kernel::Plane_3 Plane;
typedef typename Kernel::Segment_3 Segment;
typedef typename Kernel::Point_3 Point;
typedef typename boost::graph_traits<Polyhedron>::edge_descriptor Edge_const_handle;
typedef typename boost::graph_traits<Polyhedron>::edge_iterator Edge_const_iterator;
typedef typename boost::graph_traits<Polyhedron>::halfedge_descriptor Halfedge_const_handle;
typedef typename boost::graph_traits<Polyhedron>::face_descriptor Facet_const_handle;
typedef typename boost::graph_traits<Polyhedron>::vertex_descriptor Vertex_const_handle;
typedef Halfedge_around_target_circulator<Polyhedron> Halfedge_around_vertex_const_circulator;
typedef Halfedge_around_face_circulator<Polyhedron> Halfedge_around_facet_const_circulator;
// to unite halfedges under an "edge"
struct Edge_comparator {
bool operator()(Halfedge_const_handle h1, Halfedge_const_handle h2) const {
return (std::min)(&*h1, &*(h1->opposite()))
< (std::min)(&*h2, &*(h2->opposite()));
}
};
////////////////////////////////////////////////
// to represent a intersection point with plane
struct Node {
Point point;
};
struct Node_edge {
bool is_processed;
Node_edge() : is_processed(false)
{ }
};
// out_edges is setS for preventing parallel edges automatically (do not change it, or add custom check before add_edge)
typedef boost::adjacency_list<
boost::setS, boost::vecS, boost::undirectedS,
Node, Node_edge>
Node_graph;
typedef typename Node_graph::vertex_descriptor Vertex_g;
typedef typename Node_graph::vertex_iterator Vertex_iterator_g;
typedef typename Node_graph::edge_descriptor Edge_g;
typedef typename Node_graph::out_edge_iterator Out_edge_iterator_g;
////////////////////////////////////////////////
// to store intersections of an edge
// there is two nodes (intersection points) when an edge is coplanar to plane
struct Node_pair {
Vertex_g v1, v2;
int vertex_count;
Node_pair() : vertex_count(0){ }
Node_pair(Vertex_g v1, Vertex_g v2) : v1(v1), v2(v2), vertex_count(2) { }
void put(Vertex_g v) {
CGAL_assertion(vertex_count <= 2);
(vertex_count == 0 ? v1 : v2) = v;
++vertex_count;
}
};
typedef std::map<Halfedge_const_handle, Node_pair, Edge_comparator> Edge_node_map;
typedef typename Edge_node_map::iterator Edge_node_map_iterator;
enum Intersection_type { BOUNDARY, INTERVAL, PLANAR };
typedef std::map<Halfedge_const_handle, Intersection_type, Edge_comparator> Edge_intersection_map;
typedef typename Edge_intersection_map::iterator Edge_intersection_map_iterator;
// member variables //
typename Kernel::Intersect_3 intersect_3_functor;
AABB_tree_ tree;
mutable Node_graph node_graph;
Polyhedron& polyhedron;
boost::tuple<Point, Intersection_type, Vertex_const_handle>
halfedge_intersection(Halfedge_const_handle hf, const Plane& plane) const
{
boost::tuple<Point, Intersection_type, Vertex_const_handle> ret;
const Point& s = hf->vertex()->point();
const Point& t = hf->opposite()->vertex()->point();
Oriented_side s_os, t_os;
s_os = plane.oriented_side(s);
t_os = plane.oriented_side(t);
// in case of planar just Intersection_type is not empty in tuple
if(t_os == ON_ORIENTED_BOUNDARY && s_os == ON_ORIENTED_BOUNDARY) {
ret.template get<1>() = PLANAR;
return ret;
}
// in case of boundary Intersection_type and vertex are not empty in tuple
if(t_os == ON_ORIENTED_BOUNDARY || s_os == ON_ORIENTED_BOUNDARY) {
ret.template get<1>() = BOUNDARY;
ret.template get<2>() = t_os == ON_ORIENTED_BOUNDARY ? hf->opposite()->vertex() :
hf->vertex();
return ret;
}
CGAL_assertion(t_os != s_os); // should one positive one negative
// in case of interval Intersection_type and point are not empty in tuple
ret.template get<1>() = INTERVAL;
Object intersection = intersect_3_functor(plane, Segment(s,t));
if(const Point* i_point = object_cast<Point>(&intersection)) {
ret.template get<0>() = *i_point;
}
else if( object_cast<Segment>(&intersection) ) {
// is it possible to predicate not-planar but construct segment ?
CGAL_warning(!"on interval case - predicate not-planar but construct segment");
ret.template get<1>() = PLANAR;
}
else {
// prediction indicates intersection but construction returns nothing, returning closest point
CGAL_warning(!"on interval case - no intersection found");
ret.template get<0>() = squared_distance(plane, s) < squared_distance(plane, t) ? s : t;
}
return ret;
}
void add_intersection_node_to_one_ring(Vertex_const_handle v, Edge_node_map& edge_node_map) const {
Vertex_g v_g = boost::add_vertex(node_graph);
node_graph[v_g].point = v->point();
Halfedge_around_vertex_const_circulator around_vertex_c(v,polyhedron), done(around_vertex_c);
do {
edge_node_map[*around_vertex_c].put(v_g);
}
while(++around_vertex_c != done);
}
void add_intersection_edge_to_facet_neighbors(Halfedge_const_handle hf, Edge_node_map& edge_node_map) const {
Node_pair& hf_node_pair = edge_node_map.find(hf)->second;
CGAL_assertion(hf_node_pair.vertex_count == 1);
for(int i = 0; i < 2; ++i) // loop for hf and hf->opposite
{
if(i == 1) { hf = hf->opposite(); }
if(hf->is_border()) { continue;}
for(int i = 0; i < 2; ++i)
{
Halfedge_const_handle facet_hf = i == 0 ? hf->next() : hf->prev();
Edge_node_map_iterator facet_hf_it = edge_node_map.find(facet_hf);
if(facet_hf_it != edge_node_map.end()) {
Node_pair& facet_hf_node_pair = facet_hf_it->second;
CGAL_assertion(facet_hf_node_pair.vertex_count == 1); // == 2 if hf is planar and that cant happen
boost::add_edge(hf_node_pair.v1, facet_hf_node_pair.v1, node_graph);
}
}
} // for hf and hf->opposite
}
void add_intersection_edge_to_vertex_neighbors(Halfedge_const_handle hf, Vertex_const_handle v, Edge_node_map& edge_node_map) const {
// do not worry about duplicate edges, they are not allowed (but performance might be a concern)
Node_pair& hf_node_pair = edge_node_map.find(hf)->second;
Vertex_g v_g = node_graph[hf_node_pair.v1].point == v->point() ? hf_node_pair.v1 : hf_node_pair.v2;// find node containing v
Halfedge_around_vertex_const_circulator around_vertex_c(v, polyhedron), done(around_vertex_c);
do {
if((*around_vertex_c)->is_border()) { continue;}
Node_pair& around_vertex_node_pair = edge_node_map.find(*around_vertex_c)->second;
Halfedge_around_facet_const_circulator around_facet_c(*around_vertex_c,polyhedron), done2(around_facet_c);
do {
CGAL_assertion(around_vertex_node_pair.vertex_count != 0);
if(around_vertex_node_pair.v1 != v_g) {
boost::add_edge(around_vertex_node_pair.v1, v_g, node_graph);
}
if(around_vertex_node_pair.vertex_count == 2 && around_vertex_node_pair.v2 != v_g) {
boost::add_edge(around_vertex_node_pair.v2, v_g, node_graph);
}
}
while(++around_facet_c != done2);
}
while(++around_vertex_c != done);
}
template<class OutputIterator>
OutputIterator intersect_plane(const Plane& plane, OutputIterator out) const
{
node_graph.clear();
// find out intersecting halfedges (note that tree contains edges only with custom comparator)
std::vector<Edge_const_handle> intersected_edges;
tree.all_intersected_primitives(plane, std::back_inserter(intersected_edges));
// create node graph from segments
// each node is associated with multiple edges
Edge_node_map edge_node_map;
Edge_intersection_map edge_intersection_map;
for(typename std::vector<Edge_const_handle>::iterator it = intersected_edges.begin();
it != intersected_edges.end(); ++it)
{
Halfedge_const_handle hf = halfedge(*it,polyhedron);
Node_pair& assoc_nodes = edge_node_map[hf];
CGAL_assertion(assoc_nodes.vertex_count < 3); // every Node_pair can at most contain 2 nodes
boost::tuple<Point, Intersection_type, Vertex_const_handle> intersection = halfedge_intersection(hf, plane);
edge_intersection_map[hf] = intersection.template get<1>(); // save intersection type
if(intersection.template get<1>() == INTERVAL) {
CGAL_PROFILER(" number of INTERVAL intersections.");
CGAL_assertion(assoc_nodes.vertex_count == 0);
Vertex_g v = boost::add_vertex(node_graph);
node_graph[v].point = intersection.template get<0>();
assoc_nodes.put(v);
// no related hf to edge node, done
}
else if(intersection.template get<1>() == BOUNDARY) {
CGAL_PROFILER(" number of BOUNDARY intersections.");
CGAL_assertion(assoc_nodes.vertex_count < 2);
if(assoc_nodes.vertex_count == 0) {
Vertex_const_handle v_h = intersection.template get<2>(); // boundary vertex
// update edge_node_map for neighbor halfedges of v_h
add_intersection_node_to_one_ring(v_h, edge_node_map);
} // else node is already added by other hf
}
else {// intersection.get<1>() == PLANAR
CGAL_PROFILER(" number of PLANAR intersections.");
CGAL_assertion(intersection.template get<1>() == PLANAR);
if(assoc_nodes.vertex_count != 2) {
if(assoc_nodes.vertex_count == 1) { // there is one intersection node that we need to add
if(node_graph[assoc_nodes.v1].point == hf->vertex()->point()) {
add_intersection_node_to_one_ring(hf->opposite()->vertex(), edge_node_map);
}
else {
CGAL_assertion(node_graph[assoc_nodes.v1].point == hf->opposite()->vertex()->point());
add_intersection_node_to_one_ring(hf->vertex(), edge_node_map);
}
}
else { // assoc_nodes.vertex_count == 0
// update edge_node_map for neighbor halfedges
add_intersection_node_to_one_ring(hf->vertex(), edge_node_map);
add_intersection_node_to_one_ring(hf->opposite()->vertex(), edge_node_map);
}
} // else both nodes are already added by other hfs
}
} // for(typename std::vector<Halfedge_const_handle>::iterator it = intersected_edges.begin()...
// introduce node connectivity
for(typename std::vector<Edge_const_handle>::iterator it = intersected_edges.begin();
it != intersected_edges.end(); ++it)
{
Halfedge_const_handle hf = halfedge(*it,polyhedron);
Edge_intersection_map_iterator intersection_it = edge_intersection_map.find(hf);
CGAL_assertion(intersection_it != edge_intersection_map.end());
Intersection_type intersection = intersection_it->second;
if(intersection == INTERVAL) {
add_intersection_edge_to_facet_neighbors(hf, edge_node_map);
}
else if(intersection == BOUNDARY) {
Node_pair& node_pair = edge_node_map[hf];
Vertex_const_handle v = hf->vertex()->point() == node_graph[node_pair.v1].point ?
hf->vertex() : hf->opposite()->vertex();
add_intersection_edge_to_vertex_neighbors(hf, v, edge_node_map);
}
else {
add_intersection_edge_to_vertex_neighbors(hf, hf->vertex(), edge_node_map);
add_intersection_edge_to_vertex_neighbors(hf, hf->opposite()->vertex(), edge_node_map);
}
}
// use node_graph to construct polylines
return construct_polylines(out);
}
// find a new node to advance, if no proper node exists return v
std::pair<Vertex_g, bool> find_next(Vertex_g v) const {
std::pair<Vertex_g, bool> ret;
Out_edge_iterator_g ei_b, ei_e;
for(boost::tie(ei_b, ei_e) = boost::out_edges(v, node_graph); ei_b != ei_e; ++ei_b) {
if(node_graph[*ei_b].is_processed) { continue; } // do not go over same edge twice
ret.first = boost::target(*ei_b, node_graph);
ret.second = true;
node_graph[*ei_b].is_processed = true;
CGAL_assertion(ret.first != v);
return ret;
}
ret.second = false;
return ret;
}
template<class OutputIterator>
OutputIterator construct_polylines(OutputIterator out) const {
//std::cout << boost::num_vertices(node_graph) << std::endl;
//std::cout << boost::num_edges(node_graph) << std::endl;
//Vertex_iterator_g v_b, v_e;
//for(boost::tie(v_b, v_e) = boost::vertices(node_graph); v_b != v_e; ++v_b)
//{
// Out_edge_iterator_g e_b, e_e;
// boost::tie(e_b, e_e) = boost::out_edges(*v_b, node_graph);
// for( ;e_b != e_e; ++e_b) // keep current vertex active while there is
// {
// std::cout << "source " << boost::source(*e_b, node_graph)
// << " target " << boost::target(*e_b, node_graph) << std::endl;
// }
//}
Vertex_iterator_g v_b, v_e;
for(boost::tie(v_b, v_e) = boost::vertices(node_graph); v_b != v_e; ++v_b)
{
Vertex_g v = *v_b;
Out_edge_iterator_g e_b, e_e;
boost::tie(e_b, e_e) = boost::out_edges(v, node_graph);
// isolated intersection, construct a polyline with one point
if(e_b == e_e) {
std::vector<Point> polyline;
polyline.push_back(node_graph[v].point);
*out++ = polyline;
continue;
}
Vertex_g v_head = v;
// there are edges, construct one or more polylines
for( ;e_b != e_e; ++e_b) // keep current vertex active while there is an non-processed edge to go
{
if(node_graph[*e_b].is_processed) { continue; } // we previously put it to polylines
// construct new polyline
std::vector<Point> polyline;
bool first_border = true;
while(true) {
polyline.push_back(node_graph[v].point);
bool found;
boost::tie(v, found) = find_next(v);
if(!found) { // intersection at boundary
if(!first_border) { break; } // completed non-loop polyline
first_border = false;
boost::tie(v, found) = find_next(v_head); // try to go other direction
if(!found) { break; }
std::reverse(polyline.begin(), polyline.end());
continue;
}
if(v == v_head) { // loop is completed
polyline.push_back(node_graph[v_head].point); // put first point again
break;
}
} // while( true )...
*out++ = polyline;
} // for( ;e_b != e_e;...
} // for(boost::tie(v_b, v_e) = boost::vertices(node_graph)...
return out;
}
public:
/**
* Constructor. `polyhedron` must be valid polyhedron as long as this functor is used.
* @param polyhedron the polyhedron to be cut
* @param kernel the kernel
*/
Polyhedron_slicer_3(const Polyhedron& polyhedron, const Kernel& kernel = Kernel())
: intersect_3_functor(kernel.intersect_3_object()),
tree( edges(polyhedron).first,
edges(polyhedron).second,
polyhedron),
polyhedron(const_cast<Polyhedron&>(polyhedron))
{ }
/**
* @tparam OutputIterator an output iterator accepting polylines. A polyline is considered to be a `std::vector<Kernel::Point_3>`. A polyline is closed if its first and last points are identical.
* @param plane the plane to intersect the polyhedron with
* @out output iterator of polylines
* computes the intersection polylines of the polyhedron passed in the constructor with `plane` and puts each of them in `out`
*/
template <class OutputIterator>
OutputIterator operator() (const typename Kernel::Plane_3& plane, OutputIterator out) const {
CGAL_precondition(!plane.is_degenerate());
return intersect_plane(plane, out);
}
};
}// end of namespace CGAL
#endif //CGAL_POLYHEDRON_SLICER_3_H
|