This file is indexed.

/usr/include/CGAL/Polyhedron_slicer_3.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
// Copyright (c) 2013 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Ilker O. Yaz

#ifndef CGAL_POLYHEDRON_SLICER_3_H
#define CGAL_POLYHEDRON_SLICER_3_H

#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_halfedge_graph_segment_primitive.h>
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>

#include <CGAL/Vector_3.h>
#include <CGAL/Point_3.h>
#include <CGAL/Plane_3.h>
#include <CGAL/intersection_of_Polyhedra_3.h>

#include <CGAL/Timer.h>
#include <CGAL/Profile_counter.h>

#include <vector>
#include <map>
#include <deque>

#include <boost/tuple/tuple.hpp>
#include <boost/optional.hpp>
#include <boost/graph/adjacency_list.hpp>

namespace CGAL {

template<class Polyhedron, class Kernel>
class Polyhedron_slicer_3
{
private:
  typedef AABB_halfedge_graph_segment_primitive<Polyhedron>         AABB_primitive;
  typedef AABB_traits<Kernel, AABB_primitive>                       AABB_traits_;
  typedef AABB_tree<AABB_traits_>                                   AABB_tree_;

  typedef typename AABB_tree_::Object_and_primitive_id             Object_and_primitive_id;
  typedef typename AABB_tree_::Primitive_id                        Primitive_id;

  typedef typename Kernel::Plane_3    Plane;
  typedef typename Kernel::Segment_3  Segment;
  typedef typename Kernel::Point_3    Point;

  typedef typename boost::graph_traits<Polyhedron>::edge_descriptor   Edge_const_handle;
  typedef typename boost::graph_traits<Polyhedron>::edge_iterator   Edge_const_iterator;
  typedef typename boost::graph_traits<Polyhedron>::halfedge_descriptor Halfedge_const_handle;
  typedef typename boost::graph_traits<Polyhedron>::face_descriptor    Facet_const_handle;
  typedef typename boost::graph_traits<Polyhedron>::vertex_descriptor   Vertex_const_handle;
  typedef Halfedge_around_target_circulator<Polyhedron> Halfedge_around_vertex_const_circulator;
  typedef Halfedge_around_face_circulator<Polyhedron>  Halfedge_around_facet_const_circulator;

  // to unite halfedges under an "edge"
  struct Edge_comparator {
    bool operator()(Halfedge_const_handle h1, Halfedge_const_handle h2) const {
      return (std::min)(&*h1, &*(h1->opposite())) 
        < (std::min)(&*h2, &*(h2->opposite()));
    }
  };

  ////////////////////////////////////////////////
  // to represent a intersection point with plane
  struct Node {
    Point point;
  };

  struct Node_edge { 
    bool is_processed;
    Node_edge() : is_processed(false) 
    { }
  };

  // out_edges is setS for preventing parallel edges automatically (do not change it, or add custom check before add_edge)
  typedef boost::adjacency_list<
    boost::setS, boost::vecS, boost::undirectedS,
    Node, Node_edge>
  Node_graph;

  typedef typename Node_graph::vertex_descriptor Vertex_g;
  typedef typename Node_graph::vertex_iterator   Vertex_iterator_g;
  typedef typename Node_graph::edge_descriptor   Edge_g;
  typedef typename Node_graph::out_edge_iterator Out_edge_iterator_g;
  ////////////////////////////////////////////////

  // to store intersections of an edge
  // there is two nodes (intersection points) when an edge is coplanar to plane
  struct Node_pair {
    Vertex_g v1, v2;
    int vertex_count;

    Node_pair() : vertex_count(0){ }
    Node_pair(Vertex_g v1, Vertex_g v2) : v1(v1), v2(v2), vertex_count(2) { }

    void put(Vertex_g v) {
      CGAL_assertion(vertex_count <= 2);

      (vertex_count == 0 ? v1 : v2) = v;
      ++vertex_count;
    }
  };

  typedef std::map<Halfedge_const_handle, Node_pair, Edge_comparator> Edge_node_map;
  typedef typename Edge_node_map::iterator Edge_node_map_iterator;

  enum Intersection_type { BOUNDARY, INTERVAL, PLANAR };

  typedef std::map<Halfedge_const_handle, Intersection_type, Edge_comparator> Edge_intersection_map;
  typedef typename Edge_intersection_map::iterator Edge_intersection_map_iterator;

  // member variables //
  typename Kernel::Intersect_3 intersect_3_functor;
  AABB_tree_ tree;
  mutable Node_graph node_graph;
  Polyhedron& polyhedron;

  boost::tuple<Point, Intersection_type, Vertex_const_handle>
  halfedge_intersection(Halfedge_const_handle hf, const Plane& plane) const
  { 
    boost::tuple<Point, Intersection_type, Vertex_const_handle> ret;

    const Point& s = hf->vertex()->point();
    const Point& t = hf->opposite()->vertex()->point();
    Oriented_side s_os, t_os;
    s_os = plane.oriented_side(s);
    t_os = plane.oriented_side(t);

    // in case of planar just Intersection_type is not empty in tuple
    if(t_os == ON_ORIENTED_BOUNDARY && s_os == ON_ORIENTED_BOUNDARY) {
      ret.template get<1>() = PLANAR;
      return ret;
    }
    // in case of boundary Intersection_type and vertex are not empty in tuple
    if(t_os == ON_ORIENTED_BOUNDARY || s_os == ON_ORIENTED_BOUNDARY) { 
      ret.template get<1>() = BOUNDARY;
      ret.template get<2>() = t_os == ON_ORIENTED_BOUNDARY ? hf->opposite()->vertex() :
                                                    hf->vertex();
      return ret;
    }

    CGAL_assertion(t_os != s_os); // should one positive one negative
    // in case of interval Intersection_type and point are not empty in tuple
    ret.template get<1>() = INTERVAL;
    Object intersection = intersect_3_functor(plane, Segment(s,t));

    if(const Point* i_point  = object_cast<Point>(&intersection)) { 
      ret.template get<0>() = *i_point;
    }
    else if( object_cast<Segment>(&intersection) ) {
      // is it possible to predicate not-planar but construct segment ?
      CGAL_warning(!"on interval case - predicate not-planar but construct segment");
      ret.template get<1>() = PLANAR;
    }
    else {
      // prediction indicates intersection but construction returns nothing, returning closest point
      CGAL_warning(!"on interval case - no intersection found");
      ret.template get<0>() = squared_distance(plane, s) < squared_distance(plane, t) ? s : t; 
    }
    return ret;
  }

  void add_intersection_node_to_one_ring(Vertex_const_handle v, Edge_node_map& edge_node_map) const {
    Vertex_g v_g = boost::add_vertex(node_graph);
    node_graph[v_g].point = v->point();

    Halfedge_around_vertex_const_circulator around_vertex_c(v,polyhedron), done(around_vertex_c);
    do {
      edge_node_map[*around_vertex_c].put(v_g);
    } 
    while(++around_vertex_c != done);
  }
  
  void add_intersection_edge_to_facet_neighbors(Halfedge_const_handle hf, Edge_node_map& edge_node_map) const {
    Node_pair& hf_node_pair = edge_node_map.find(hf)->second;
    CGAL_assertion(hf_node_pair.vertex_count == 1);

    for(int i = 0; i < 2; ++i) // loop for hf and hf->opposite
    {
      if(i == 1) { hf = hf->opposite(); }
      if(hf->is_border()) { continue;} 

      for(int i = 0; i < 2; ++i) 
      {
        Halfedge_const_handle facet_hf = i == 0 ? hf->next() : hf->prev();
        Edge_node_map_iterator facet_hf_it = edge_node_map.find(facet_hf);

        if(facet_hf_it != edge_node_map.end()) {
          Node_pair& facet_hf_node_pair = facet_hf_it->second;
          CGAL_assertion(facet_hf_node_pair.vertex_count == 1); // == 2 if hf is planar and that cant happen 
          boost::add_edge(hf_node_pair.v1, facet_hf_node_pair.v1, node_graph); 
        }
      }
    } // for hf and hf->opposite
  }

  void add_intersection_edge_to_vertex_neighbors(Halfedge_const_handle hf, Vertex_const_handle v, Edge_node_map& edge_node_map) const {
    // do not worry about duplicate edges, they are not allowed (but performance might be a concern)
    Node_pair& hf_node_pair = edge_node_map.find(hf)->second;
    Vertex_g v_g = node_graph[hf_node_pair.v1].point == v->point() ? hf_node_pair.v1 : hf_node_pair.v2;// find node containing v

    Halfedge_around_vertex_const_circulator around_vertex_c(v, polyhedron), done(around_vertex_c);
    do {
      if((*around_vertex_c)->is_border()) { continue;} 
      Node_pair& around_vertex_node_pair = edge_node_map.find(*around_vertex_c)->second;
      Halfedge_around_facet_const_circulator around_facet_c(*around_vertex_c,polyhedron), done2(around_facet_c);
      do {
        CGAL_assertion(around_vertex_node_pair.vertex_count != 0);
        if(around_vertex_node_pair.v1 != v_g) {
          boost::add_edge(around_vertex_node_pair.v1, v_g, node_graph); 
        }
        if(around_vertex_node_pair.vertex_count == 2 && around_vertex_node_pair.v2 != v_g) {
          boost::add_edge(around_vertex_node_pair.v2, v_g, node_graph); 
        }
      } 
      while(++around_facet_c != done2);
    } 
    while(++around_vertex_c != done);
  }

  template<class OutputIterator>
  OutputIterator intersect_plane(const Plane& plane, OutputIterator out) const
  {
    node_graph.clear();

    // find out intersecting halfedges (note that tree contains edges only with custom comparator)
    std::vector<Edge_const_handle> intersected_edges;
    tree.all_intersected_primitives(plane, std::back_inserter(intersected_edges));

    // create node graph from segments
    // each node is associated with multiple edges
    Edge_node_map edge_node_map;
    Edge_intersection_map edge_intersection_map;
    for(typename std::vector<Edge_const_handle>::iterator it = intersected_edges.begin();
      it != intersected_edges.end(); ++it)
    {
      Halfedge_const_handle hf = halfedge(*it,polyhedron);
      Node_pair& assoc_nodes = edge_node_map[hf];
      CGAL_assertion(assoc_nodes.vertex_count < 3); // every Node_pair can at most contain 2 nodes

      boost::tuple<Point, Intersection_type, Vertex_const_handle> intersection = halfedge_intersection(hf, plane);
      edge_intersection_map[hf] = intersection.template get<1>(); // save intersection type

      if(intersection.template get<1>() == INTERVAL) {
        CGAL_PROFILER(" number of INTERVAL intersections.");
        CGAL_assertion(assoc_nodes.vertex_count == 0); 

        Vertex_g v = boost::add_vertex(node_graph);
        node_graph[v].point = intersection.template get<0>();
        assoc_nodes.put(v);
        // no related hf to edge node, done
      }
      else if(intersection.template get<1>() == BOUNDARY) {
        CGAL_PROFILER(" number of BOUNDARY intersections.");
        CGAL_assertion(assoc_nodes.vertex_count < 2); 

        if(assoc_nodes.vertex_count == 0) {
          Vertex_const_handle v_h = intersection.template get<2>(); // boundary vertex
          // update edge_node_map for neighbor halfedges of v_h
          add_intersection_node_to_one_ring(v_h, edge_node_map);
        } // else node is already added by other hf
      }
      else {// intersection.get<1>() == PLANAR
        CGAL_PROFILER(" number of PLANAR intersections.");
        CGAL_assertion(intersection.template get<1>() == PLANAR);

        if(assoc_nodes.vertex_count != 2) {
          if(assoc_nodes.vertex_count == 1) { // there is one intersection node that we need to add
            if(node_graph[assoc_nodes.v1].point == hf->vertex()->point()) {
              add_intersection_node_to_one_ring(hf->opposite()->vertex(), edge_node_map);
            }
            else {
              CGAL_assertion(node_graph[assoc_nodes.v1].point == hf->opposite()->vertex()->point());
              add_intersection_node_to_one_ring(hf->vertex(), edge_node_map);
            }
          }
          else { // assoc_nodes.vertex_count == 0
            // update edge_node_map for neighbor halfedges 
            add_intersection_node_to_one_ring(hf->vertex(), edge_node_map);
            add_intersection_node_to_one_ring(hf->opposite()->vertex(), edge_node_map);
          }
        } // else both nodes are already added by other hfs
      }
    } // for(typename std::vector<Halfedge_const_handle>::iterator it = intersected_edges.begin()...
    
    // introduce node connectivity
    for(typename std::vector<Edge_const_handle>::iterator it = intersected_edges.begin();
      it != intersected_edges.end(); ++it)
    {
      Halfedge_const_handle hf = halfedge(*it,polyhedron);
      Edge_intersection_map_iterator intersection_it = edge_intersection_map.find(hf);
      CGAL_assertion(intersection_it != edge_intersection_map.end());

      Intersection_type intersection = intersection_it->second;
      if(intersection == INTERVAL) {
        add_intersection_edge_to_facet_neighbors(hf, edge_node_map);
      }
      else if(intersection == BOUNDARY) {
        Node_pair& node_pair = edge_node_map[hf];
        Vertex_const_handle v = hf->vertex()->point() == node_graph[node_pair.v1].point ?
          hf->vertex() : hf->opposite()->vertex();
        add_intersection_edge_to_vertex_neighbors(hf, v, edge_node_map);
      }
      else {
        add_intersection_edge_to_vertex_neighbors(hf, hf->vertex(), edge_node_map);
        add_intersection_edge_to_vertex_neighbors(hf, hf->opposite()->vertex(), edge_node_map);
      }
    }
    
    // use node_graph to construct polylines
    return construct_polylines(out);
  }

  // find a new node to advance, if no proper node exists return v
  std::pair<Vertex_g, bool> find_next(Vertex_g v) const {
    std::pair<Vertex_g, bool> ret;
    Out_edge_iterator_g ei_b, ei_e;
    for(boost::tie(ei_b, ei_e) = boost::out_edges(v, node_graph); ei_b != ei_e; ++ei_b) {
      if(node_graph[*ei_b].is_processed) { continue; } // do not go over same edge twice

      ret.first = boost::target(*ei_b, node_graph);
      ret.second = true;
      node_graph[*ei_b].is_processed = true;
      
      CGAL_assertion(ret.first != v);
      return ret;
    }

    ret.second = false;
    return ret;
  }

  template<class OutputIterator>
  OutputIterator construct_polylines(OutputIterator out) const  {
    //std::cout << boost::num_vertices(node_graph) << std::endl;
    //std::cout << boost::num_edges(node_graph) << std::endl;
    //Vertex_iterator_g v_b, v_e;
    //for(boost::tie(v_b, v_e) = boost::vertices(node_graph); v_b != v_e; ++v_b)
    //{
    //  Out_edge_iterator_g e_b, e_e;
    //  boost::tie(e_b, e_e) = boost::out_edges(*v_b, node_graph);
    //  for( ;e_b != e_e; ++e_b) // keep current vertex active while there is 
    //  {
    //    std::cout << "source " << boost::source(*e_b, node_graph) 
    //      << " target " << boost::target(*e_b, node_graph) << std::endl;
    //  }
    //}

    Vertex_iterator_g v_b, v_e;
    for(boost::tie(v_b, v_e) = boost::vertices(node_graph); v_b != v_e; ++v_b)
    {
      Vertex_g v = *v_b;
      Out_edge_iterator_g e_b, e_e;
      boost::tie(e_b, e_e) = boost::out_edges(v, node_graph);
      // isolated intersection, construct a polyline with one point
      if(e_b == e_e) {
        std::vector<Point> polyline;
        polyline.push_back(node_graph[v].point);
        *out++ = polyline;
        continue;
      }

      Vertex_g v_head = v;
      // there are edges, construct one or more polylines
      for( ;e_b != e_e; ++e_b) // keep current vertex active while there is an non-processed edge to go
      {
        if(node_graph[*e_b].is_processed) { continue; } // we previously put it to polylines

        // construct new polyline
        std::vector<Point> polyline;

        bool first_border = true;
        while(true) {
          polyline.push_back(node_graph[v].point);
          bool found;
          boost::tie(v, found) = find_next(v);

          if(!found) { // intersection at boundary
            if(!first_border) { break; } // completed non-loop polyline

            first_border = false;
            boost::tie(v, found) = find_next(v_head); // try to go other direction
            if(!found) { break; }
            std::reverse(polyline.begin(), polyline.end());
            continue;
          }

          if(v == v_head) { // loop is completed
            polyline.push_back(node_graph[v_head].point); // put first point again
            break;
          }
        } // while( true )...
        *out++ = polyline;

      } // for( ;e_b != e_e;...
    } // for(boost::tie(v_b, v_e) = boost::vertices(node_graph)...
    return out;
  }

public:

  /**
  * Constructor. `polyhedron` must be valid polyhedron as long as this functor is used.
  * @param polyhedron the polyhedron to be cut
  * @param kernel the kernel
  */
  Polyhedron_slicer_3(const Polyhedron& polyhedron, const Kernel& kernel = Kernel())
  : intersect_3_functor(kernel.intersect_3_object()),
    tree( edges(polyhedron).first,
          edges(polyhedron).second,
          polyhedron),
    polyhedron(const_cast<Polyhedron&>(polyhedron))
  { }

  /**
   * @tparam OutputIterator an output iterator accepting polylines. A polyline is considered to be a `std::vector<Kernel::Point_3>`. A polyline is closed if its first and last points are identical.
   * @param plane the plane to intersect the polyhedron with
   * @out output iterator of polylines
   * computes the intersection polylines of the polyhedron passed in the constructor with `plane` and puts each of them in `out`
   */
  template <class OutputIterator>
  OutputIterator operator() (const typename Kernel::Plane_3& plane, OutputIterator out) const {
    CGAL_precondition(!plane.is_degenerate());
    return intersect_plane(plane, out);
  }
};

}// end of namespace CGAL
#endif //CGAL_POLYHEDRON_SLICER_3_H