This file is indexed.

/usr/include/CGAL/Nef_polynomial.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright (c) 1997-2000  Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Seel <seel@mpi-sb.mpg.de>

#ifndef CGAL_NEF_POLYNOMIAL_H
#define CGAL_NEF_POLYNOMIAL_H

#include <CGAL/Nef_2/Polynomial.h>
//#include <CGAL/basic.h>
//#include <CGAL/kernel_assertions.h>
//#include <CGAL/Handle_for.h>
//#include <CGAL/number_type_basic.h>
//#include <CGAL/number_utils.h>
//#include <CGAL/Number_type_traits.h>
//#include <CGAL/IO/io.h>
#include <cstddef>
#undef CGAL_NEF_DEBUG
#define CGAL_NEF_DEBUG 3
#include <CGAL/Nef_2/debug.h>
#include <vector>

#include <CGAL/Kernel/mpl.h>

#include <boost/operators.hpp>

namespace CGAL {

#define CGAL_int(T)    typename First_if_different<int,    T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type

template <class NT> 
class Nef_polynomial
  : boost::ordered_field_operators1< Nef_polynomial<NT>
  , boost::ordered_field_operators2< Nef_polynomial<NT>, int
  > >
  , public Nef::Polynomial<NT>
{
  typedef typename CGAL::Nef::Polynomial<NT>  Base;
  typedef typename Base::size_type       size_type;

 protected:
  Nef_polynomial(size_type s) : Base(s) {}

 public:
  Nef_polynomial() : Base() {}
  Nef_polynomial(const NT& a0) : Base(a0) {}
  Nef_polynomial(const NT& a0, const NT& a1) : Base(a0,a1) {}
  Nef_polynomial(const NT& a0, const NT& a1, const NT& a2) : Base(a0,a1,a2) {}

  template <class Fwd_iterator>
  Nef_polynomial(std::pair<Fwd_iterator, Fwd_iterator> poly) : Base(poly) {}

  Nef_polynomial(CGAL_double(NT) n) : Base(n) {}
  Nef_polynomial(CGAL_double(NT) n1, CGAL_double(NT) n2) : Base(n1, n2) {}
  Nef_polynomial(CGAL_int(NT) n) : Base(NT(n)) {}
  Nef_polynomial(CGAL_int(NT) n1, CGAL_int(NT) n2) : Base(n1,n2) {}

  Nef_polynomial(const Base& p) : Base(p) {}

  Base & polynomial() { return static_cast<Base&>(*this); }
  const Base & polynomial() const  { return static_cast<const Base&>(*this); }

    static NT& infi_maximal_value() {
      static NT R_ = 1;
      return R_;
    }
};

template <class NT> 
inline
Nef_polynomial<NT> operator+(const Nef_polynomial<NT> &a)
{
  return a;
}

template <class NT> 
inline
Nef_polynomial<NT> operator-(const Nef_polynomial<NT> &a)
{
  return - a.polynomial();
}

template <class NT> 
inline
bool operator<(const Nef_polynomial<NT> &a, const Nef_polynomial<NT> &b)
{
  return a.polynomial() < b.polynomial();
}

template <class NT> 
inline
bool operator==(const Nef_polynomial<NT> &a, const Nef_polynomial<NT> &b)
{
  return a.polynomial() == b.polynomial();
}

template <class NT> 
inline
bool operator==(const Nef_polynomial<NT> &a, int b)
{
  return a.polynomial() == b;
}

template <class NT> 
inline
bool operator<(const Nef_polynomial<NT> &a, int b)
{
  return a.polynomial() < b;
}

template <class NT> 
inline
bool operator>(const Nef_polynomial<NT> &a, int b)
{
  return a.polynomial() > b;
}


#undef CGAL_double
#undef CGAL_int


// TODO: integral_division to get it an UniqueFactorizationDomain
// TODO: div / mod  for EuclideanRing
template <class NT> class Algebraic_structure_traits< Nef_polynomial<NT> >
    : public Algebraic_structure_traits_base
             < Nef_polynomial<NT>, CGAL::Integral_domain_without_division_tag> 
{
    typedef Algebraic_structure_traits<NT> AST_NT;
public:
    typedef Nef_polynomial<NT> Type;
    typedef typename AST_NT::Is_exact            Is_exact;
    typedef Tag_false                            Is_numerical_sensitive;                                                           
    class Integral_division
        : public std::binary_function< Type, Type,
                                Type > {
    public:
        Type operator()( const Type& x,
                const Type& y ) const {
	  Type result = x / y;
	  CGAL_postcondition_msg(result * y == x, "exact_division failed\n");
	  return result;
        }
    };

    class Gcd 
      : public std::binary_function< Type, Type, Type > {
    public:
        Type operator()( const Type& x, const Type& y ) const {
            // By definition gcd(0,0) == 0
          if( x == Type(0) && y == Type(0) )
            return Type(0);
            
          return CGAL::Nef::gcd( x, y );
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };
};

template <class NT> class Real_embeddable_traits< Nef_polynomial<NT> > 
  : public INTERN_RET::Real_embeddable_traits_base< Nef_polynomial<NT> , CGAL::Tag_true > {
  public:
    typedef Nef_polynomial<NT> Type;
    class Abs 
        : public std::unary_function< Type, Type> {
    public:
        Type inline operator()( const Type& x ) const {
            return (CGAL::Nef::sign( x ) == CGAL::NEGATIVE)? -x : x;
        }        
    };

    class Sgn 
      : public std::unary_function< Type, CGAL::Sign > {
      public:
        CGAL::Sign inline operator()( const Type& x ) const {
            return CGAL::Nef::sign( x );
        }        
    };
    
    class Compare 
      : public std::binary_function< Type, Type,
                                CGAL::Comparison_result > {
      public:
        CGAL::Comparison_result inline operator()( 
                const Type& x, 
                const Type& y ) const {
            return (CGAL::Comparison_result) CGAL::Nef::sign( x - y );
        }
    };
    
    class To_double 
      : public std::unary_function< Type, double > {
      public:
        double inline operator()( const Type& p ) const {
            return CGAL::to_double(
                    p.eval_at(Nef_polynomial<NT>::infi_maximal_value()));
        }
    };
    
    class To_interval 
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& p ) const {
            return CGAL::to_interval(p.eval_at(Nef_polynomial<NT>::infi_maximal_value()));
        }
    };
};

template <typename NT>
inline Nef_polynomial<NT> min BOOST_PREVENT_MACRO_SUBSTITUTION
(const Nef_polynomial<NT>& x,const Nef_polynomial<NT>& y){
  return (x<=y)?x:y; 
}

template <typename NT>
inline Nef_polynomial<NT> max BOOST_PREVENT_MACRO_SUBSTITUTION
(const Nef_polynomial<NT>& x,const Nef_polynomial<NT>& y){
  return (x>=y)?x:y; 
}

template <typename NT>
class Fraction_traits<Nef_polynomial<NT> > {
public:
    typedef Nef_polynomial<NT> Type;
    typedef Fraction_traits<NT> Base_traits;
    typedef typename Base_traits::Is_fraction Is_fraction;
    typedef CGAL::Nef_polynomial<typename Base_traits::Numerator_type>
      Numerator_type;
    typedef typename Base_traits::Denominator_type Denominator_type;
    //TODO:    typedef Base_traits::Common_factor Common_factor;
    class Decompose {
    public:
        typedef Type first_argument_type;
        typedef Numerator_type second_argument_type;
        typedef Denominator_type third_argument_type;
        void operator () (const first_argument_type& rat, 
			  second_argument_type& num,
			  third_argument_type& den) {
	  typename Base_traits::Decompose decompose;
	  third_argument_type num0;
	  third_argument_type num1;
	  third_argument_type den1;
	  third_argument_type den0;
	  decompose(rat[0], num0, den0);
	  if(rat.degree() > 0) {
	    decompose(rat[1], num1, den1);
	    // TODO	    den = den1/gcd(den0, den1)*den0;
	    den = den1*den0;
	    num = Numerator_type(num0*den1, num1*den0);
	  } else {
	    den = den0;
	    num = Numerator_type(num0);
	  }
        }
    };
    class Compose {
    public:
        typedef Numerator_type first_argument_type;
        typedef Denominator_type second_argument_type;
        typedef Type result_type;
        result_type operator () (const first_argument_type& num,
				 const second_argument_type& den) {
	  typename Base_traits::Compose compose;
	  if(num.degree() == 0)
	    return result_type(compose(num[0],den));
	  else
	    return result_type(compose(num[0],den),
			       compose(num[1],den));
        }
    };
};


} //namespace CGAL

#endif  // CGAL_NEF_POLYNOMIAL_H