/usr/include/CGAL/Nef_polyhedron_S2.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 | // Copyright (c) 1997-2000 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
// Peter Hachenberger <hachenberger@mpi-sb.mpg.de>
#ifndef CGAL_NEF_POLYHEDRON_S2_H
#define CGAL_NEF_POLYHEDRON_S2_H
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4800) // complaint about performance in std::map where we can't do anything
#endif
#include <CGAL/basic.h>
#include <CGAL/Handle_for.h>
#include <CGAL/Nef_S2/SM_items.h>
#include <CGAL/Nef_S2/Sphere_map.h>
#include <CGAL/Nef_S2/SM_decorator.h>
#include <CGAL/Nef_S2/SM_io_parser.h>
#include <CGAL/Nef_S2/SM_point_locator.h>
#include <CGAL/Nef_S2/SM_overlayer.h>
#include <CGAL/Modifier_base.h>
#include <vector>
#include <list>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
#undef CGAL_NEF_DEBUG
#define CGAL_NEF_DEBUG 53
#include <CGAL/Nef_2/debug.h>
namespace CGAL {
template <typename K, typename I, typename Mk, typename M> class Nef_polyhedron_S2;
template <typename K, typename I, typename Mk, typename M> class Nef_polyhedron_S2_rep;
template <typename K, typename I, typename Mk> class Nef_polyhedron_3;
class SNC_items;
template <typename K, typename I, typename Mk, typename M>
std::ostream& operator<<(std::ostream&, const Nef_polyhedron_S2<K,I,Mk,M>&);
template <typename K, typename I, typename Mk, typename M>
std::istream& operator>>(std::istream&, Nef_polyhedron_S2<K,I,Mk,M>&);
template <typename K, typename I, typename Mk, typename M>
class Nef_polyhedron_S2_rep {
typedef Nef_polyhedron_S2_rep<K,I,Mk,M> Self;
friend class Nef_polyhedron_S2<K,I,Mk,M>;
public:
typedef CGAL::Sphere_geometry<K> Sphere_kernel;
typedef Mk Mark;
typedef M Sphere_map;
typedef CGAL::SM_const_decorator<Sphere_map> Const_decorator;
typedef CGAL::SM_decorator<Sphere_map> Decorator;
typedef CGAL::SM_overlayer<Decorator> Overlayer;
typedef CGAL::SM_point_locator<Const_decorator> Locator;
private:
Sphere_map sm_;
public:
Nef_polyhedron_S2_rep() : sm_() {}
Nef_polyhedron_S2_rep(const Self&) : sm_() {}
~Nef_polyhedron_S2_rep() { sm_.clear(); }
};
/*{\Moptions print_title=yes }*/
/*{\Manpage {Nef_polyhedron_S2}{K}
{Nef Polyhedra in the sphere surface}{N}}*/
/*{\Mdefinition An instance of data type |\Mname| is a subset of $S_2$
that is the result of forming complements and intersections starting
from a finite set |H| of half-spaces. |\Mtype| is closed under all
binary set operations |intersection|, |union|, |difference|,
|complement| and under the topological operations |boundary|,
|closure|, and |interior|.
The template parameter |Kernel| is specified via a kernel concept.
|Kernel| must be a model of the concept |NefSphereKernelTraits_2|.
}*/
template <typename Kernel_, typename Items_ = SM_items, typename Mark_ = bool,
typename Map_ = Sphere_map<Sphere_geometry<Kernel_>,Items_, Mark_> >
class Nef_polyhedron_S2 : public Handle_for< Nef_polyhedron_S2_rep<Kernel_,Items_,Mark_,Map_> >,
public Nef_polyhedron_S2_rep<Kernel_,Items_,Mark_,Map_>::Const_decorator {
using Nef_polyhedron_S2_rep<Kernel_,Items_,Mark_,Map_>::Const_decorator::set_sm;
public:
/*{\Mtypes 7}*/
typedef Items_ Items;
typedef Kernel_ Kernel;
typedef Map_ Sphere_map;
typedef Mark_ Mark;
typedef Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map> Self;
typedef Nef_polyhedron_S2_rep<Kernel,Items,Mark,Sphere_map> Rep;
typedef Handle_for< Nef_polyhedron_S2_rep<Kernel,Items,Mark,Sphere_map> > Base;
typedef typename Rep::Sphere_kernel Sphere_kernel;
// typedef typename Rep::Sphere_map Sphere_map;
typedef typename Sphere_kernel::Sphere_point Sphere_point;
/*{\Mtypemember points in the sphere surface.}*/
typedef typename Sphere_kernel::Sphere_segment Sphere_segment;
/*{\Mtypemember segments in the sphere surface.}*/
typedef typename Sphere_kernel::Sphere_circle Sphere_circle;
/*{\Mtypemember oriented great circles modeling spherical half-spaces}*/
typedef typename Sphere_kernel::Sphere_direction Sphere_direction;
// typedef typename Rep::Mark Mark;
/*{\Xtypemember marking set membership or exclusion.}*/
enum Boundary { EXCLUDED=0, INCLUDED=1 };
/*{\Menum construction selection.}*/
enum Content { EMPTY=0, COMPLETE=1 };
/*{\Menum construction selection}*/
const Sphere_map& sphere_map() const { return this->ptr()->sm_; }
protected:
Sphere_map& sphere_map() { return this->ptr()->sm_; }
struct AND { bool operator()(const Mark& b1, const Mark& b2) const { return b1&&b2; } };
struct OR { bool operator()(const Mark& b1, const Mark& b2) const { return b1||b2; } };
struct DIFF { bool operator()(const Mark& b1, const Mark& b2) const { return b1&&!b2; } };
struct XOR { bool operator()(const Mark& b1, const Mark& b2) const
{ return (b1&&!b2)||(!b1&&b2); } };
typedef Nef_polyhedron_S2_rep<Kernel,Items,Mark,Sphere_map> Nef_rep;
typedef typename Nef_rep::Decorator Decorator;
public:
typedef typename Nef_rep::Const_decorator Const_decorator;
protected:
typedef typename Nef_rep::Overlayer Overlayer;
typedef typename Nef_rep::Locator Locator;
friend std::ostream& operator<< <>
(std::ostream& os, const Self& NP);
friend std::istream& operator>> <>
(std::istream& is, Self& NP);
public:
typedef typename Decorator::SVertex_handle SVertex_handle;
typedef typename Decorator::SHalfedge_handle SHalfedge_handle;
typedef typename Decorator::SHalfloop_handle SHalfloop_handle;
typedef typename Decorator::SFace_handle SFace_handle;
typedef typename Sphere_map::SVertex_base SVertex;
typedef typename Sphere_map::SHalfedge_base SHalfedge;
typedef typename Sphere_map::SHalfloop SHalfloop;
typedef typename Sphere_map::SFace_base SFace;
typedef typename Decorator::SVertex_const_handle SVertex_const_handle;
typedef typename Decorator::SHalfedge_const_handle SHalfedge_const_handle;
typedef typename Decorator::SHalfloop_const_handle SHalfloop_const_handle;
typedef typename Decorator::SFace_const_handle SFace_const_handle;
typedef typename Decorator::SVertex_iterator SVertex_iterator;
typedef typename Decorator::SHalfedge_iterator SHalfedge_iterator;
typedef typename Decorator::SHalfloop_iterator SHalfloop_iterator;
typedef typename Decorator::SFace_iterator SFace_iterator;
typedef typename Const_decorator::SVertex_const_iterator
SVertex_const_iterator;
typedef typename Const_decorator::SHalfedge_const_iterator
SHalfedge_const_iterator;
typedef typename Const_decorator::SHalfloop_const_iterator
SHalfloop_const_iterator;
typedef typename Const_decorator::SFace_const_iterator
SFace_const_iterator;
typedef typename Const_decorator::Size_type Size_type;
typedef Size_type size_type;
typedef std::list<Sphere_segment> SS_list;
typedef typename SS_list::const_iterator SS_iterator;
friend class Nef_polyhedron_3<Kernel, SNC_items, Mark>;
public:
/*{\Mcreation 3}*/
Nef_polyhedron_S2(Content sphere = EMPTY) : Base(Nef_rep())
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|
and initializes it to the empty set if |sphere == EMPTY|
and to the whole sphere if |sphere == COMPLETE|.}*/
{
set_sm(&sphere_map());
Decorator D(&sphere_map());
SFace_handle sf=D.new_sface();
sf->mark() = bool(sphere);
}
Nef_polyhedron_S2(const Sphere_circle& c,
Boundary circle = INCLUDED) : Base(Nef_rep()) {
/*{\Mcreate creates a Nef polyhedron |\Mvar| containing the half-sphere
left of |c| including |c| if |circle==INCLUDED|, excluding |c| if
|circle==EXCLUDED|.}*/
set_sm(&sphere_map());
CGAL_NEF_TRACEN("Nef_polyhedron_S2(): construction from circle "<<c);
Decorator D(&sphere_map());
Overlayer O(&sphere_map());
O.create(c);
SHalfloop_handle h = D.shalfloop();
if ( h->circle() != c ) h = h->twin();
h->incident_sface()->mark() = true;
h->mark() = h->twin()->mark() = bool(circle);
}
template <class Forward_iterator>
Nef_polyhedron_S2(Forward_iterator first, Forward_iterator beyond,
Boundary b = INCLUDED) : Base(Nef_rep())
/*{\Mcreate creates a Nef polyhedron |\Mvar| from the set of sphere
segments in the iterator range |[first,beyond)|. If the set of sphere
segments is a simple polygon that separates the sphere surface
into two regions, then the polygonal region that is left of the
segment |*first| is selected. The polygonal region includes its
boundary if |b = INCLUDED| and excludes the boundary
otherwise. |Forward_iterator| has to be an iterator with value
type |Sphere_segment|.}*/
{ CGAL_NEF_TRACEN("Nef_polyhedron_S2(): creation from segment range");
CGAL_assertion(first!=beyond);
set_sm(&sphere_map());
Overlayer D(&sphere_map());
Sphere_segment s = *first;
D.create_from_segments(first,beyond);
SHalfedge_iterator e;
CGAL_forall_shalfedges(e,D) {
Sphere_circle c(e->circle());
if ( c == s.sphere_circle() ) break;
}
if ( e != SHalfedge_iterator() ) {
if ( e->circle() != s.sphere_circle() ) e = e->twin();
CGAL_assertion( e->circle() == s.sphere_circle() );
D.set_marks_in_face_cycle(e,bool(b));
if ( D.number_of_sfaces() > 2 ) e->incident_sface()->mark() = true;
else e->incident_sface()->mark() = !bool(b);
return;
}
D.simplify();
}
Nef_polyhedron_S2(const Self& N1) : Base(N1), Const_decorator() {
set_sm(&sphere_map());
}
Nef_polyhedron_S2& operator=(const Self& N1)
{ Base::operator=(N1); set_sm(&sphere_map()); return (*this); }
~Nef_polyhedron_S2() {}
template <class Forward_iterator>
Nef_polyhedron_S2(Forward_iterator first, Forward_iterator beyond,
double p) : Base(Nef_rep())
/*{\Xcreate creates a random Nef polyhedron from the arrangement of
the set of circles |S = set[first,beyond)|. The cells of the arrangement
are selected uniformly at random with probability $p$. \precond $0 < p
< 1$.}*/
{ CGAL_assertion(0<=p && p<=1);
CGAL_assertion(first!=beyond);
set_sm(&sphere_map());
Overlayer D(&sphere_map());
D.create_from_circles(first, beyond); D.simplify();
boost::rand48 rng;
boost::uniform_real<> dist(0,1);
boost::variate_generator<boost::rand48&, boost::uniform_real<> > get_double(rng,dist);
SVertex_iterator v; SHalfedge_iterator e; SFace_iterator f;
CGAL_forall_svertices(v,D)
v->mark() = ( get_double() < p ? true : false );
CGAL_forall_shalfedges(e,D)
e->mark() = ( get_double() < p ? true : false );
CGAL_forall_sfaces(f,D)
f->mark() = ( get_double() < p ? true : false );
D.simplify();
}
void delegate( Modifier_base<Sphere_map>& modifier) {
// calls the `operator()' of the `modifier'. Precondition: The
// `modifier' returns a consistent representation.
modifier(sphere_map());
// CGAL_expensive_postcondition( is_valid());
}
//protected:
Nef_polyhedron_S2(const Sphere_map& H, bool clone=true) : Base(Nef_rep())
/*{\Xcreate makes |\Mvar| a new object. If |clone==true| then the
underlying structure of |H| is copied into |\Mvar|.}*/
{
if(clone)
this->ptr()->sm_ = H;
set_sm(&sphere_map());
}
void clone_rep() { *this = Self(sphere_map()); }
/*{\Moperations 4 3 }*/
public:
void clear(Content plane = EMPTY)
{ *this = Nef_polyhedron_S2(plane); }
/*{\Mop makes |\Mvar| the empty set if |plane == EMPTY| and the
full plane if |plane == COMPLETE|.}*/
bool is_empty() const
/*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/
{ Const_decorator D(&sphere_map());
CGAL_NEF_TRACEN("is_empty()"<<*this);
SFace_const_iterator f = D.sfaces_begin();
return (D.number_of_svertices()==0 &&
D.number_of_sedges()==0 &&
D.number_of_sloops()==0 &&
D.number_of_sfaces()==1 &&
f->mark() == false);
}
bool is_plane() const
/*{\Mop returns true if |\Mvar| is the whole plane, false otherwise.}*/
{ Const_decorator D(&sphere_map());
SFace_const_iterator f = D.sfaces_begin();
return (D.number_of_svertices()==0 &&
D.number_of_sedges()==0 &&
D.number_of_sloops()==0 &&
D.number_of_sfaces()==1 &&
f->mark() == true);
}
void extract_complement()
{ CGAL_NEF_TRACEN("extract complement");
if ( this->is_shared() ) clone_rep();
Overlayer D(&sphere_map());
SVertex_iterator v;
SHalfedge_iterator e;
SFace_iterator f;
CGAL_forall_svertices(v,D) v->mark() = !v->mark();
CGAL_forall_sedges(e,D) e->mark() = !e->mark();
CGAL_forall_sfaces(f,D) f->mark() = !f->mark();
if ( D.has_shalfloop() )
D.shalfloop()->mark() =
D.shalfloop()->twin()->mark() =
!D.shalfloop()->mark();
}
void extract_interior()
{ CGAL_NEF_TRACEN("extract interior");
if ( this->is_shared() ) clone_rep();
Overlayer D(&sphere_map());
SVertex_iterator v;
SHalfedge_iterator e;
CGAL_forall_svertices(v,D) v->mark() = false;
CGAL_forall_sedges(e,D) e->mark() = false;
if ( D.has_sloop() ) D.shalfloop()->mark() = false;
D.simplify();
}
void extract_boundary()
{ CGAL_NEF_TRACEN("extract boundary");
if ( this->is_shared() ) clone_rep();
Overlayer D(&sphere_map());
SVertex_iterator v;
SHalfedge_iterator e;
SFace_iterator f;
CGAL_forall_svertices(v,D) v->mark() = true;
CGAL_forall_sedges(e,D) e->mark() = true;
CGAL_forall_sfaces(f,D) f->mark() = false;
if ( D.has_sloop() ) D.shalfloop()->mark() = D.shalfoop()->twin() = true;
D.simplify();
}
void extract_closure()
/*{\Xop converts |\Mvar| to its closure. }*/
{ CGAL_NEF_TRACEN("extract closure");
extract_complement();
extract_interior();
extract_complement();
}
void extract_regularization()
/*{\Xop converts |\Mvar| to its regularization. }*/
{ CGAL_NEF_TRACEN("extract regularization");
extract_interior();
extract_closure();
}
/*{\Mtext \headerline{Constructive Operations}}*/
Self complement() const
/*{\Mop returns the complement of |\Mvar| in the plane.}*/
{ Self res = *this;
res.extract_complement();
return res;
}
Self interior() const
/*{\Mop returns the interior of |\Mvar|.}*/
{ Self res = *this;
res.extract_interior();
return res;
}
Self closure() const
/*{\Mop returns the closure of |\Mvar|.}*/
{ Self res = *this;
res.extract_closure();
return res;
}
Self boundary() const
/*{\Mop returns the boundary of |\Mvar|.}*/
{ Self res = *this;
res.extract_boundary();
return res;
}
Self regularization() const
/*{\Mop returns the regularized polyhedron (closure of interior).}*/
{ Self res = *this;
res.extract_regularization();
return res;
}
Self intersection(const Self& N1) const
/*{\Mop returns |\Mvar| $\cap$ |N1|. }*/
{ Self res(sphere_map(),false); // empty
Overlayer D(&res.sphere_map());
D.subdivide(&sphere_map(),&N1.sphere_map());
AND _and; D.select(_and); D.simplify();
return res;
}
Self join(const Self& N1) const
/*{\Mop returns |\Mvar| $\cup$ |N1|. }*/
{ Self res(sphere_map(),false); // empty
Overlayer D(&res.sphere_map());
D.subdivide(&sphere_map(),&N1.sphere_map());
OR _or; D.select(_or); D.simplify();
return res;
}
Self difference(const Self& N1) const
/*{\Mop returns |\Mvar| $-$ |N1|. }*/
{ Self res(sphere_map(),false); // empty
Overlayer D(&res.sphere_map());
D.subdivide(&sphere_map(),&N1.sphere_map());
DIFF _diff; D.select(_diff); D.simplify();
return res;
}
Self symmetric_difference(
const Self& N1) const
/*{\Mop returns the symmectric difference |\Mvar - T| $\cup$
|T - \Mvar|. }*/
{ Self res(sphere_map(),false); // empty
Overlayer D(&res.sphere_map());
D.subdivide(&sphere_map(),&N1.sphere_map());
XOR _xor; D.select(_xor); D.simplify();
return res;
}
/*{\Mtext Additionally there are operators |*,+,-,^,!| which
implement the binary operations \emph{intersection}, \emph{union},
\emph{difference}, \emph{symmetric difference}, and the unary
operation \emph{complement} respectively. There are also the
corresponding modification operations |*=,+=,-=,^=|.}*/
Self operator*(const Self& N1) const
{ return intersection(N1); }
Self operator+(const Self& N1) const
{ return join(N1); }
Self operator-(const Self& N1) const
{ return difference(N1); }
Self operator^(const Self& N1) const
{ return symmetric_difference(N1); }
Self operator!() const
{ return complement(); }
Self& operator*=(const Self& N1)
{ *this = intersection(N1); return *this; }
Self& operator+=(const Self& N1)
{ *this = join(N1); return *this; }
Self& operator-=(const Self& N1)
{ *this = difference(N1); return *this; }
Self& operator^=(const Self& N1)
{ *this = symmetric_difference(N1); return *this; }
/*{\Mtext There are also comparison operations like |<,<=,>,>=,==,!=|
which implement the relations subset, subset or equal, superset, superset
or equal, equality, inequality, respectively.}*/
bool operator==(const Self& N1) const
{ return symmetric_difference(N1).is_empty(); }
bool operator!=(const Self& N1) const
{ return !operator==(N1); }
bool operator<=(const Self& N1) const
{ return difference(N1).is_empty(); }
bool operator<(const Self& N1) const
{ return difference(N1).is_empty() && !N1.difference(*this).is_empty(); }
bool operator>=(const Self& N1) const
{ return N1.difference(*this).is_empty(); }
bool operator>(const Self& N1) const
{ return N1.difference(*this).is_empty() && !difference(N1).is_empty(); }
/*{\Mtext \headerline{Exploration - Point location - Ray shooting}
As Nef polyhedra are the result of forming complements
and intersections starting from a set |H| of half-spaces that are
defined by oriented lines in the plane, they can be represented by
an attributed plane map $M = (V,E,F)$. For topological queries
within |M| the following types and operations allow exploration
access to this structure.}*/
/*{\Mtypes 3}*/
typedef Const_decorator Topological_explorer;
typedef Const_decorator Explorer;
/*{\Mtypemember a decorator to examine the underlying plane map.
See the manual page of |Explorer|.}*/
typedef typename Locator::Object_handle Object_handle;
/*{\Mtypemember a generic handle to an object of the underlying
plane map. The kind of object |(vertex, halfedge, face)| can
be determined and the object can be assigned to a corresponding
handle by the three functions:\\
|bool assign(SVertex_const_handle& h, Object_handle)|\\
|bool assign(SHalfedge_const_handle& h, Object_handle)|\\
|bool assign(SFace_const_handle& h, Object_handle)|\\
where each function returns |true| iff the assignment to
|h| was done.}*/
/*{\Moperations 3 1 }*/
bool contains(Object_handle h) const
/*{\Mop returns true iff the object |h| is contained in the set
represented by |\Mvar|.}*/
{ Locator PL(&sphere_map()); return PL.mark(h); }
bool contained_in_boundary(Object_handle h) const
/*{\Mop returns true iff the object |h| is contained in the $1$-skeleton
of |\Mvar|.}*/
{ SVertex_const_handle v;
SHalfedge_const_handle e;
return ( CGAL::assign(v,h) || CGAL::assign(e,h) );
}
Object_handle locate(const Sphere_point& p) const
/*{\Mop returns a generic handle |h| to an object (face, halfedge, vertex)
of the underlying plane map that contains the point |p| in its relative
interior. The point |p| is contained in the set represented by |\Mvar| if
|\Mvar.contains(h)| is true. The location mode flag |m| allows one to choose
between different point location strategies.}*/
{
Locator PL(&sphere_map());
return PL.locate(p);
}
struct INSET {
const Const_decorator& D;
INSET(const Const_decorator& Di) : D(Di) {}
bool operator()(SVertex_const_handle v) const { return v->mark(); }
bool operator()(SHalfedge_const_handle e) const { return e->mark(); }
bool operator()(SHalfloop_const_handle l) const { return l->mark(); }
bool operator()(SFace_const_handle f) const { return f->mark(); }
};
Object_handle ray_shoot(const Sphere_point& p,
const Sphere_direction& d) const
/*{\Mop returns a handle |h| with |\Mvar.contains(h)| that can be
converted to a |SVertex_/SHalfedge_/SFace_const_handle| as described
above. The object returned is intersected by the ray starting in |p|
with direction |d| and has minimal distance to |p|. The operation
returns the null handle |NULL| if the ray shoot along |d| does not hit
any object |h| of |\Mvar| with |\Mvar.contains(h)|.}*/
{
Locator PL(&sphere_map());
return PL.ray_shoot(p,d,INSET(PL));
}
struct INSKEL {
bool operator()(SVertex_const_handle) const { return true; }
bool operator()(SHalfedge_const_handle) const { return true; }
bool operator()(SHalfloop_const_handle) const { return true; }
bool operator()(SFace_const_handle) const { return false; }
};
Object_handle ray_shoot_to_boundary(const Sphere_point& p,
const Sphere_direction& d) const
/*{\Mop returns a handle |h| that can be converted to a
|SVertex_/SHalfedge_const_handle| as described above. The object
returned is part of the $1$-skeleton of |\Mvar|, intersected by the
ray starting in |p| with direction |d| and has minimal distance to
|p|. The operation returns the null handle |NULL| if the ray shoot
along |d| does not hit any $1$-skeleton object |h| of |\Mvar|. The
location mode flag |m| allows one to choose between different point
location strategies.}*/
{
Locator PL(&sphere_map());
return PL.ray_shoot(p,d,INSKEL());
}
// Explorer explorer() const
/*{\Mop returns a decorator object which allows read-only access of
the underlying plane map. See the manual page |Explorer| for its
usage.}*/
// { return Explorer(const_cast<Sphere_map*>(&sphere_map())); }
/*{\Mtext\headerline{Input and Output}
A Nef polyhedron |\Mvar| can be visualized in an open GL window. The
output operator is defined in the file
|CGAL/IO/Nef_\-poly\-hedron_2_\-Win\-dow_\-stream.h|.
}*/
/*{\Mimplementation Nef polyhedra are implemented on top of a halfedge
data structure and use linear space in the number of vertices, edges
and facets. Operations like |empty| take constant time. The
operations |clear|, |complement|, |interior|, |closure|, |boundary|,
|regularization|, input and output take linear time. All binary set
operations and comparison operations take time $O(n \log n)$ where $n$
is the size of the output plus the size of the input.
The point location and ray shooting operations are implemented in
the naive way. The operations run in linear query time without
any preprocessing.}*/
/*{\Mexample Nef polyhedra are parameterized by a standard CGAL
kernel.
\begin{Mverb}
#include <CGAL/Homogeneous.h>
#include <CGAL/leda_integer.h>
#include <CGAL/Nef_polyhedron_S2.h>
#include <CGAL/SM_items.h>
using namespace CGAL;
typedef Homogeneous<leda_integer> Kernel;
typedef SM_items<Kernel, bool> SM_items;
typedef Nef_polyhedron_S2<SM_items> Nef_polyhedron;
typedef Nef_polyhedron::Sphere_circle Sphere_circle;
int main()
{
Nef_polyhedron N1(Sphere_circle(1,0,0));
Nef_polyhedron N2(Sphere_circle(0,1,0), Nef_polyhedron::EXCLUDED);
Nef_polyhedron N3 = N1 * N2; // line (*)
return 0;
}
\end{Mverb}
After line (*) |N3| is the intersection of |N1| and |N2|.}*/
}; // end of Nef_polyhedron_S2
template <typename Kernel,typename Items,typename Mark, typename Sphere_map>
std::ostream& operator<<
(std::ostream& os, const Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map>& NP)
{
os << "Nef_polyhedron_S2\n";
typedef typename Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map>::Explorer Decorator;
CGAL::SM_io_parser<Decorator> O(os, Decorator(&NP.sphere_map()));
O.print();
return os;
}
template <typename Kernel,typename Items, typename Mark, typename Sphere_map>
std::istream& operator>>
(std::istream& is, Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map>& NP)
{
typedef typename Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map>::Decorator Decorator;
CGAL::SM_io_parser<Decorator> I(is, Decorator(&NP.sphere_map()));
// if ( I.check_sep("Nef_polyhedron_S2") )
I.read();
/*
else {
std::cerr << "Nef_polyhedron_S2 input corrupted." << std::endl;
NP = Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map>();
}
*/
/*
typename Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map>::Topological_explorer D(NP.explorer());
D.check_integrity_and_topological_planarity();
*/
return is;
}
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
} //namespace CGAL
#endif //CGAL_NEF_POLYHEDRON_S2_H
|