/usr/include/CGAL/Mesh_2/Clusters.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | // Copyright (c) 2004-2005 INRIA Sophia-Antipolis (France).
// Copyright (c) 2010 GeometryFactory Sarl (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Rineau
#ifndef CGAL_MESH_2_CLUSTERS_H
#define CGAL_MESH_2_CLUSTERS_H
#include <CGAL/Filter_circulator.h>
#include <CGAL/Unique_hash_map.h>
#include <utility>
#include <boost/iterator/transform_iterator.hpp>
namespace CGAL {
namespace Mesh_2
{
namespace details
{
template <class Tr>
class Is_edge_constrained {
const Tr* tr_;
public:
typedef Is_edge_constrained<Tr> Self;
typedef typename Tr::Edge_circulator Edge_circulator;
Is_edge_constrained(const Tr& tr) : tr_(&tr)
{}
bool operator()(const Edge_circulator& ec) const
{
return tr_->is_constrained(*ec);
}
};
} // end namespace details
template <class Tr>
class Clusters
{
typedef typename Tr::Vertex_handle Vertex_handle;
typedef typename Tr::Point Point;
typedef typename Tr::Geom_traits Geom_traits;
typedef typename Geom_traits::FT FT;
typedef FT Squared_length; /**<This typedef is used to remind that
the length is squared. */
typedef typename Tr::Edge_circulator Edge_circulator;
/**
* Special type: filtered circulator that returns only constrained
* edges.
*/
typedef Filter_circulator<Edge_circulator,
details::Is_edge_constrained<Tr> >
Constrained_edge_circulator;
public:
/** \name Clusters public types */
/**
* \c Cluster register several informations about clusters.
* A cluster is a set of vertices v_i incident to one vertice
* v_0, so that angles between segments [v_0, v_i] is less than 60
* degres.
*/
struct Cluster {
bool reduced ; /**< Is the cluster reduced? */
/**
* Smallest_angle gives the two vertices defining the
* smallest angle in the cluster.
*/
std::pair<Vertex_handle, Vertex_handle> smallest_angle;
FT rmin; // @fixme: rmin has no meaning if reduced=false!!!
Squared_length minimum_squared_length;
/**
* The following map tells what vertices are in the cluster and if
* the corresponding segment has been splitted once.
*/
typedef std::map<Vertex_handle, bool> Vertices_map;
Vertices_map vertices;
bool is_reduced() const {
return reduced;
}
bool is_reduced(const Vertex_handle v) {
return vertices[v];
}
};
private:
/** \name Clusters associated types */
typedef std::multimap<Vertex_handle, Cluster> Cluster_map;
typedef typename Cluster_map::value_type Cluster_map_value_type;
template <class Pair>
struct Pair_get_first: public std::unary_function<Pair,
typename Pair::first_type>
{
typedef typename Pair::first_type result;
const result& operator()(const Pair& p) const
{
return p.first;
}
};
typedef typename Cluster::Vertices_map Cluster_vertices_map;
private:
/* --- protected datas --- */
Tr& tr; /**< The triangulation itself. */
/**
* Multimap \c Vertex_handle -> \c Cluster
* Each vertex can have several clusters.
*/
Cluster_map cluster_map;
public:
typedef typename Cluster_map::const_iterator const_iterator;
typedef typename Cluster_map::iterator iterator;
Clusters(Tr& tr_) : tr(tr_)
{
}
/** For all vertices, calls create_clusters_of_vertex(). */
void create_clusters() {
create_clusters(typename Tr::Constraint_hierarchy_tag());
}
// function that depends of Tr::Constraint_hierarchy_tag
template <typename Constraint_hierarchy_tag>
void create_clusters(Constraint_hierarchy_tag) {
cluster_map.clear();
for(typename Tr::Finite_vertices_iterator vit = tr.finite_vertices_begin();
vit != tr.finite_vertices_end();
vit++)
{
create_clusters_of_vertex(vit);
}
}
void create_clusters(Tag_true) {
cluster_map.clear();
Unique_hash_map<Vertex_handle,bool> created(false);
for(typename Tr::Subconstraint_iterator it = tr.subconstraints_begin();
it != tr.subconstraints_end(); ++it) {
Vertex_handle vh = it->first.first;
if(!created[vh]){
created[vh] = true;
create_clusters_of_vertex(vh);
}
vh = it->first.second;
if(!created[vh]){
created[vh] = true;
create_clusters_of_vertex(vh);
}
}
}
private:
/**
* Computes clusters of the vertex \c v, using the auxiliary function
* construct_cluster().
*/
void create_clusters_of_vertex(const Vertex_handle v);
/**
* Adds the sequence [\c begin, \c end] to the cluster \c c and adds it
* to the clusters of the vertex \c v.
*/
void construct_cluster(const Vertex_handle v,
const Constrained_edge_circulator& begin,
const Constrained_edge_circulator& end,
Cluster c = Cluster());
public:
/** \name Functions to manage clusters during the refinement process. */
/**
* Update the cluster of [\c va,\c vb], putting \c vm instead of \c vb.
* If reduction=false, the edge [va,vm] is not set reduced.
*/
void update_cluster(Cluster& c, iterator it,
const Vertex_handle va, const Vertex_handle vb,
const Vertex_handle vm,
bool reduction = true);
/**
* Returns the cluster of [\c va,\c vb] in \c c and return true
* if it is in a cluster. Returns also a const_iterator in \c it.
*/
bool get_cluster(const Vertex_handle va, const Vertex_handle vb,
Cluster& c, iterator& it);
/** Const version of get_cluster(). */
bool get_cluster(const Vertex_handle va, const Vertex_handle vb,
Cluster& c, const_iterator& it) const;
/** \name Auxiliary functions that return a boolean. */
/**
* Tells if the angle <pleft, pmiddle, pright> is less than 60 degres.
* Uses squared_cosine_of_angle_times_4() and used by
* create_clusters_of_vertex().
*/
bool is_small_angle(const Point& pleft,
const Point& pmiddle,
const Point& pright) const;
private:
/** \name Helping computing functions */
/** Returns the squared cosine of the angle <pleft, pmiddle, pright>
times 4. */
FT squared_cosine_of_angle_times_4(const Point& pleft,
const Point& pmiddle,
const Point& pright) const;
/** Helper functions to access the two vertices of an Edge
source is the vertex around which the circulator turns. */
//@{
Vertex_handle source(const Edge_circulator& ec) const
{
return ec->first->vertex(tr.cw(ec->second));
}
Vertex_handle target(const Edge_circulator& ec) const
{
return ec->first->vertex(tr.ccw(ec->second));
}
//@}
public:
/** \name CONST ACCESS FUNCTIONS */
typedef typename boost::transform_iterator<
Pair_get_first<typename Cluster_map::value_type>,
typename Cluster_map::const_iterator>
Cluster_vertices_iterator;
typedef typename boost::transform_iterator<
Pair_get_first<typename Cluster_vertices_map::value_type>,
typename Cluster_vertices_map::const_iterator>
Vertices_in_cluster_iterator;
int size() const
{
return cluster_map.size();
}
Cluster_vertices_iterator clusters_vertices_begin() const
{
return Cluster_vertices_iterator(cluster_map.begin());
}
Cluster_vertices_iterator clusters_vertices_end() const
{
return Cluster_vertices_iterator(cluster_map.end());
}
unsigned int number_of_clusters_at_vertex(const Vertex_handle& vh) const
{
typedef typename Cluster_map::const_iterator Iterator;
typedef std::pair<Iterator, Iterator> Range;
Range range = cluster_map.equal_range(vh);
return std::distance(range.first, range.second);
}
// returns the sequence of vertices bellonging to the n-th cluster of vh
std::pair<Vertices_in_cluster_iterator, Vertices_in_cluster_iterator>
vertices_in_cluster_sequence(const Vertex_handle& vh,
const unsigned int n) const
{
typedef typename Cluster_map::const_iterator Iterator;
typedef std::pair<Iterator, Iterator> Range;
Range range = cluster_map.equal_range(vh);
Iterator first = range.first;
std::advance(first, n);
const Cluster& c = first->second;
return
std::make_pair(Vertices_in_cluster_iterator(c.vertices.begin()),
Vertices_in_cluster_iterator(c.vertices.end()));
}
}; // end class Clusters
template <typename Tr>
void Clusters<Tr>::
update_cluster(Cluster& c, iterator it, Vertex_handle va,
Vertex_handle vb, Vertex_handle vm, bool reduction)
{
typename Geom_traits::Compute_squared_distance_2 squared_distance =
tr.geom_traits().compute_squared_distance_2_object();
cluster_map.erase(it);
c.vertices.erase(vb);
c.vertices[vm] = reduction;
if(vb==c.smallest_angle.first)
c.smallest_angle.first = vm;
if(vb==c.smallest_angle.second)
c.smallest_angle.second = vm;
FT l = squared_distance(va->point(),vm->point());
if(l<c.minimum_squared_length)
c.minimum_squared_length = l;
if(!c.is_reduced())
{
typename Cluster::Vertices_map::iterator it = c.vertices.begin();
while(it!=c.vertices.end() && c.is_reduced(it->first))
++it; // @todo: use std::find and an object class
if(it==c.vertices.end())
c.reduced = true;
}
if(c.is_reduced())
c.rmin = squared_distance(c.smallest_angle.first->point(),
c.smallest_angle.second->point())/FT(4);
cluster_map.insert(Cluster_map_value_type(va,c));
}
template <typename Tr>
bool Clusters<Tr>::
get_cluster(Vertex_handle va, Vertex_handle vb, Cluster& c,
const_iterator& it) const
{
typedef std::pair<const_iterator, const_iterator> Range;
Range range = cluster_map.equal_range(va);
for(it = range.first; it != range.second; it++)
{
const Cluster &cl = it->second;
if(cl.vertices.find(vb)!=cl.vertices.end()) {
c = it->second;
return true;
}
}
return false;
}
template <typename Tr>
bool Clusters<Tr>::
get_cluster(Vertex_handle va, Vertex_handle vb, Cluster& c,
iterator& it)
{
typedef std::pair<iterator, iterator> Range;
Range range = cluster_map.equal_range(va);
for(it = range.first; it != range.second; it++)
{
const Cluster &cl = it->second;
if(cl.vertices.find(vb)!=cl.vertices.end()) {
c = it->second;
return true;
}
}
return false;
}
template <typename Tr>
void Clusters<Tr>::
create_clusters_of_vertex(const Vertex_handle v)
{
details::Is_edge_constrained<Tr> test(tr);
Constrained_edge_circulator begin(tr.incident_edges(v),test);
// This circulator represents all constrained edges around the
// vertex v. An edge [v,v'] is represented by the vertex v'.
if(begin == 0) return; // if there is only one vertex
Constrained_edge_circulator
current(begin), next(begin), cluster_begin(begin);
++next; // next is always just after current.
if(current == next) return;
bool in_a_cluster = false;
do
{
if(is_small_angle(target(current)->point(), v->point(),
target(next)->point()))
{
if(!in_a_cluster)
{
// at this point, current is the beginning of a cluster
in_a_cluster = true;
cluster_begin = current;
}
}
else {
if(in_a_cluster)
{
// at this point, current is the end of a cluster and
// cluster_begin is its beginning
construct_cluster(v, cluster_begin, current);
in_a_cluster = false;
}
}
current = next;
++next;
} while( current!=begin );
if(in_a_cluster)
{
Cluster c;
iterator it;
if(get_cluster(v, target(begin), c, it))
{
// get the cluster and erase it from the clusters map
cluster_map.erase(it);
construct_cluster(v, cluster_begin, begin, c);
}
else
construct_cluster(v, cluster_begin, current);
}
}
template <typename Tr>
void Clusters<Tr>::
construct_cluster(Vertex_handle v,
const Constrained_edge_circulator& begin,
const Constrained_edge_circulator& end,
Cluster c)
{
typename Geom_traits::Compute_squared_distance_2 squared_distance =
tr.geom_traits().compute_squared_distance_2_object();
if(c.vertices.empty())
{
c.reduced = false;
// c.rmin is not initialized because
// reduced=false!
c.minimum_squared_length =
squared_distance(v->point(), target(begin)->point());
Constrained_edge_circulator second(begin);
++second;
c.smallest_angle.first = target(begin);
c.smallest_angle.second = target(second);
}
const bool all_edges_in_cluster = (begin == end); // tell if all incident edges
// are in the cluster
const Point& vp = v->point();
FT greatest_cosine =
squared_cosine_of_angle_times_4(c.smallest_angle.first->point(),
v->point(),
c.smallest_angle.second->point());
bool one_full_loop_is_needed = all_edges_in_cluster;
bool stop = false;
Constrained_edge_circulator circ(begin);
Constrained_edge_circulator next(begin);
while(!stop)
{
c.vertices[target(circ)] = false;
Squared_length l = squared_distance(vp,
target(circ)->point());
c.minimum_squared_length =
(std::min)(l,c.minimum_squared_length);
if(circ!=end || one_full_loop_is_needed)
{
FT cosine =
squared_cosine_of_angle_times_4(target(circ)->point(),
v->point(),
target(next)->point());
if(cosine>greatest_cosine)
{
greatest_cosine = cosine;
c.smallest_angle.first = target(circ);
c.smallest_angle.second = target(next);
}
}
if(one_full_loop_is_needed) {
one_full_loop_is_needed = false;
} else {
stop = (circ == end);
}
++circ;
++next;
}
typedef typename Cluster_map::value_type Value_key_pair;
cluster_map.insert(Value_key_pair(v,c));
}
template <typename Tr>
bool Clusters<Tr>::
is_small_angle(const Point& pleft,
const Point& pmiddle,
const Point& pright) const
{
typename Geom_traits::Angle_2 angle =
tr.geom_traits().angle_2_object();
typename Geom_traits::Orientation_2 orient =
tr.geom_traits().orientation_2_object();
if( angle(pleft, pmiddle, pright)==OBTUSE )
return false;
if( orient(pmiddle,pleft,pright)==RIGHT_TURN)
return false;
FT cos_alpha = squared_cosine_of_angle_times_4(pleft, pmiddle,
pright);
if(cos_alpha > 1)
{
return true; //the same cluster
}
else
{
return false; //another cluster
}
}
template <typename Tr>
typename Clusters<Tr>::FT
Clusters<Tr>::
squared_cosine_of_angle_times_4(const Point& pb, const Point& pa,
const Point& pc) const
{
typename Geom_traits::Compute_squared_distance_2 squared_distance =
tr.geom_traits().compute_squared_distance_2_object();
const FT
a = squared_distance(pb, pc),
b = squared_distance(pa, pb),
c = squared_distance(pa, pc);
const FT num = a-(b+c);
return (num*num)/(b*c);
}
} // end namespace Mesh_2
} // end namespace CGAL
#endif // CGAL_MESH_2_CLUSTERS_H
|