/usr/include/CGAL/MP_Float_impl.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | // Copyright (c) 2001-2006 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sylvain Pion
#ifndef CGAL_MP_FLOAT_IMPL_H
#define CGAL_MP_FLOAT_IMPL_H
#include <CGAL/basic.h>
#include <CGAL/Quotient.h>
#include <functional>
#include <cmath>
#include <CGAL/MP_Float.h>
namespace CGAL {
namespace INTERN_MP_FLOAT {
const unsigned log_limb = 8 * sizeof(MP_Float::limb);
const MP_Float::limb2 base = 1 << log_limb;
const MP_Float::V::size_type limbs_per_double = 2 + 53/log_limb;
const double trunc_max = double(base)*(base/2-1)/double(base-1);
const double trunc_min = double(-base)*(base/2)/double(base-1);
} // namespace INTERN_MP_FLOAT
// We face portability issues with the ISO C99 functions "nearbyint",
// so I re-implement it for my need.
template < typename T >
inline
int my_nearbyint(const T& d)
{
int z = int(d);
T frac = d - z;
CGAL_assertion(CGAL::abs(frac) < T(1.0));
if (frac > 0.5)
++z;
else if (frac < -0.5)
--z;
else if (frac == 0.5 && (z&1) != 0) // NB: We also need the round-to-even rule.
++z;
else if (frac == -0.5 && (z&1) != 0)
--z;
CGAL_assertion(CGAL::abs(T(z) - d) < T(0.5) ||
(CGAL::abs(T(z) - d) == T(0.5) && ((z&1) == 0)));
return z;
}
template < typename T >
inline
void MP_Float::construct_from_builtin_fp_type(T d)
{
if (d == 0)
return;
// Protection against rounding mode != nearest, and extended precision.
Set_ieee_double_precision P;
CGAL_assertion(is_finite(d));
// This is subtle, because ints are not symetric against 0.
// First, scale d, and adjust exp accordingly.
while (d < INTERN_MP_FLOAT::trunc_min || d > INTERN_MP_FLOAT::trunc_max) {
++exp;
d /= INTERN_MP_FLOAT::base;
}
while (d >= INTERN_MP_FLOAT::trunc_min/ INTERN_MP_FLOAT::base && d <= INTERN_MP_FLOAT::trunc_max/ INTERN_MP_FLOAT::base) {
--exp;
d *= INTERN_MP_FLOAT::base;
}
// Then, compute the limbs.
// Put them in v (in reverse order temporarily).
T orig = d, sum = 0;
while (true) {
int r = my_nearbyint(d);
if (d-r >= T( INTERN_MP_FLOAT::base/2-1)/( INTERN_MP_FLOAT::base-1))
++r;
v.push_back(r);
// We used to do simply "d -= v.back();", but when the most significant
// limb is 1 and the second is -32768, then it can happen that
// |d - v.back()| > |d|, hence a bit of precision can be lost.
// Hence the need for sum/orig.
sum += v.back();
d = orig-sum;
if (d == 0)
break;
sum *= INTERN_MP_FLOAT::base;
orig *= INTERN_MP_FLOAT::base;
d *= INTERN_MP_FLOAT::base;
--exp;
}
// Reverse v.
std::reverse(v.begin(), v.end());
CGAL_assertion(v.back() != 0);
}
inline
MP_Float::MP_Float(float d):exp(0)
{
construct_from_builtin_fp_type(d);
CGAL_expensive_assertion(CGAL::to_double(*this) == d);
}
inline
MP_Float::MP_Float(double d):exp(0)
{
construct_from_builtin_fp_type(d);
CGAL_expensive_assertion(CGAL::to_double(*this) == d);
}
inline
MP_Float::MP_Float(long double d):exp(0)
{
construct_from_builtin_fp_type(d);
// CGAL_expensive_assertion(CGAL::to_double(*this) == d);
}
inline
Comparison_result
INTERN_MP_FLOAT::compare (const MP_Float & a, const MP_Float & b)
{
typedef MP_Float::exponent_type exponent_type;
if (a.is_zero())
return (Comparison_result) - b.sign();
if (b.is_zero())
return (Comparison_result) a.sign();
for (exponent_type i = (std::max)(a.max_exp(), b.max_exp()) - 1;
i >= (std::min)(a.min_exp(), b.min_exp()); i--)
{
if (a.of_exp(i) > b.of_exp(i))
return LARGER;
if (a.of_exp(i) < b.of_exp(i))
return SMALLER;
}
return EQUAL;
}
// Common code for operator+ and operator-.
template <class BinOp>
inline
MP_Float
Add_Sub(const MP_Float &a, const MP_Float &b, const BinOp &op)
{
typedef MP_Float::exponent_type exponent_type;
CGAL_assertion(!b.is_zero());
exponent_type min_exp, max_exp;
if (a.is_zero()) {
min_exp = b.min_exp();
max_exp = b.max_exp();
}
else {
min_exp = (std::min)(a.min_exp(), b.min_exp());
max_exp = (std::max)(a.max_exp(), b.max_exp());
}
MP_Float r;
r.exp = min_exp;
r.v.resize(static_cast<int>(max_exp - min_exp + 1)); // One more for carry.
r.v[0] = 0;
for(int i = 0; i < max_exp - min_exp; i++)
{
MP_Float::limb2 tmp = r.v[i] + op(a.of_exp(i+min_exp),
b.of_exp(i+min_exp));
MP_Float::split(tmp, r.v[i+1], r.v[i]);
}
r.canonicalize();
return r;
}
inline
MP_Float
operator+(const MP_Float &a, const MP_Float &b)
{
if (a.is_zero())
return b;
if (b.is_zero())
return a;
return Add_Sub(a, b, std::plus<MP_Float::limb2>());
}
inline
MP_Float
operator-(const MP_Float &a, const MP_Float &b)
{
if (b.is_zero())
return a;
return Add_Sub(a, b, std::minus<MP_Float::limb2>());
}
inline
MP_Float
operator*(const MP_Float &a, const MP_Float &b)
{
if (a.is_zero() || b.is_zero())
return MP_Float();
// Disabled until square() is fixed.
// if (&a == &b)
// return square(a);
MP_Float r;
r.exp = a.exp + b.exp;
CGAL_assertion_msg(CGAL::abs(r.exp) < (1<<30)*1.0*(1<<23),
"Exponent overflow in MP_Float multiplication");
r.v.assign(a.v.size() + b.v.size(), 0);
for(unsigned i = 0; i < a.v.size(); ++i)
{
unsigned j;
MP_Float::limb carry = 0;
for(j = 0; j < b.v.size(); ++j)
{
MP_Float::limb2 tmp = carry + (MP_Float::limb2) r.v[i+j]
+ std::multiplies<MP_Float::limb2>()(a.v[i], b.v[j]);
MP_Float::split(tmp, carry, r.v[i+j]);
}
r.v[i+j] = carry;
}
r.canonicalize();
return r;
}
// Squaring simplifies things and is faster, so we specialize it.
inline
MP_Float
INTERN_MP_FLOAT::square(const MP_Float &a)
{
// There is a bug here (see test-case in test/NT/MP_Float.C).
// For now, I disable this small optimization.
// See also the comment code in operator*().
return a*a;
#if 0
typedef MP_Float::limb limb;
typedef MP_Float::limb2 limb2;
if (a.is_zero())
return MP_Float();
MP_Float r;
r.exp = 2*a.exp;
r.v.assign(2*a.v.size(), 0);
for(unsigned i=0; i<a.v.size(); i++)
{
unsigned j;
limb2 carry = 0;
limb carry2 = 0;
for(j=0; j<i; j++)
{
// There is a risk of overflow here :(
// It can only happen when a.v[i] == a.v[j] == -2^15 (log_limb...)
limb2 tmp0 = std::multiplies<limb2>()(a.v[i], a.v[j]);
limb2 tmp1 = carry + (limb2) r.v[i+j] + tmp0;
limb2 tmp = tmp0 + tmp1;
limb tmpcarry;
MP_Float::split(tmp, tmpcarry, r.v[i+j]);
carry = tmpcarry + (limb2) carry2;
// Is there a more efficient way to handle this carry ?
if (tmp > 0 && tmp0 < 0 && tmp1 < 0)
{
// If my calculations are correct, this case should never happen.
CGAL_error();
}
else if (tmp < 0 && tmp0 > 0 && tmp1 > 0)
carry2 = 1;
else
carry2 = 0;
}
// last round for j=i :
limb2 tmp0 = carry + (limb2) r.v[i+i]
+ std::multiplies<limb2>()(a.v[i], a.v[i]);
MP_Float::split(tmp0, r.v[i+i+1], r.v[i+i]);
r.v[i+i+1] += carry2;
}
r.canonicalize();
return r;
#endif
}
// Division by Newton (code by Valentina Marotta & Chee Yap) :
/*
Integer reciprocal(const Integer A, Integer k) {
Integer t, m, ld;
Integer e, X, X1, X2, A1;
if (k == 1)
return 2;
A1 = A >> k/2; // k/2 most significant bits
X1 = reciprocal(A1, k/2);
// To avoid the adjustment :
Integer E = (1 << (2*k - 1)) - A*X1;
if (E > A)
X1 = X1 + 1;
e = 1 << 3*k/2; // 2^(3k/2)
X2 = X1*e - X1*X1*A;
X = X2 >> k-1;
return X;
}
*/
inline
MP_Float
approximate_division(const MP_Float &a, const MP_Float &b)
{
CGAL_assertion_msg(! b.is_zero(), " Division by zero");
return MP_Float(CGAL::to_double(a)/CGAL::to_double(b));
}
inline
MP_Float
approximate_sqrt(const MP_Float &d)
{
return MP_Float(CGAL_NTS sqrt(CGAL::to_double(d)));
}
// Returns (first * 2^second), an approximation of b.
inline
std::pair<double, int>
to_double_exp(const MP_Float &b)
{
typedef MP_Float::exponent_type exponent_type;
if (b.is_zero())
return std::make_pair(0.0, 0);
exponent_type exp = b.max_exp();
int steps = static_cast<int>((std::min)( INTERN_MP_FLOAT::limbs_per_double, b.v.size()));
double d_exp_1 = std::ldexp(1.0, - static_cast<int>( INTERN_MP_FLOAT::log_limb));
double d_exp = 1.0;
double d = 0;
for (exponent_type i = exp - 1; i > exp - 1 - steps; i--) {
d_exp *= d_exp_1;
d += d_exp * b.of_exp(i);
}
CGAL_assertion_msg(CGAL::abs(exp* INTERN_MP_FLOAT::log_limb) < (1<<30)*2.0,
"Exponent overflow in MP_Float to_double");
return std::make_pair(d, static_cast<int>(exp * INTERN_MP_FLOAT::log_limb));
}
// Returns (first * 2^second), an interval surrounding b.
inline
std::pair<std::pair<double, double>, int>
to_interval_exp(const MP_Float &b)
{
typedef MP_Float::exponent_type exponent_type;
if (b.is_zero())
return std::make_pair(std::pair<double, double>(0, 0), 0);
exponent_type exp = b.max_exp();
int steps = static_cast<int>((std::min)( INTERN_MP_FLOAT::limbs_per_double, b.v.size()));
double d_exp_1 = std::ldexp(1.0, - (int) INTERN_MP_FLOAT::log_limb);
double d_exp = 1.0;
Interval_nt_advanced::Protector P;
Interval_nt_advanced d = 0;
exponent_type i;
for (i = exp - 1; i > exp - 1 - steps; i--) {
d_exp *= d_exp_1;
if (d_exp == 0) // Take care of underflow.
d_exp = CGAL_IA_MIN_DOUBLE;
d += d_exp * b.of_exp(i);
}
if (i >= b.min_exp() && d.is_point()) {
if (b.of_exp(i) > 0)
d += Interval_nt_advanced(0, d_exp);
else if (b.of_exp(i) < 0)
d += Interval_nt_advanced(-d_exp, 0);
else
d += Interval_nt_advanced(-d_exp, d_exp);
}
#ifdef CGAL_EXPENSIVE_ASSERTION // force it always in early debugging
if (d.is_point())
CGAL_assertion(MP_Float(d.inf()) == b);
else
CGAL_assertion(MP_Float(d.inf()) <= b & MP_Float(d.sup()) >= b);
#endif
CGAL_assertion_msg(CGAL::abs(exp* INTERN_MP_FLOAT::log_limb) < (1<<30)*2.0,
"Exponent overflow in MP_Float to_interval");
return std::make_pair(d.pair(), static_cast<int>(exp * INTERN_MP_FLOAT::log_limb));
}
// to_double() returns, not the closest double, but a one bit error is allowed.
// We guarantee : to_double(MP_Float(double d)) == d.
inline
double
INTERN_MP_FLOAT::to_double(const MP_Float &b)
{
std::pair<double, int> ap = to_double_exp(b);
return ap.first * std::ldexp(1.0, ap.second);
}
inline
double
INTERN_MP_FLOAT::to_double(const Quotient<MP_Float> &q)
{
std::pair<double, int> n = to_double_exp(q.numerator());
std::pair<double, int> d = to_double_exp(q.denominator());
double scale = std::ldexp(1.0, n.second - d.second);
return (n.first / d.first) * scale;
}
// FIXME : This function deserves proper testing...
inline
std::pair<double,double>
INTERN_MP_FLOAT::to_interval(const MP_Float &b)
{
std::pair<std::pair<double, double>, int> ap = to_interval_exp(b);
return ldexp(Interval_nt<>(ap.first), ap.second).pair();
}
// FIXME : This function deserves proper testing...
inline
std::pair<double,double>
INTERN_MP_FLOAT::to_interval(const Quotient<MP_Float> &q)
{
std::pair<std::pair<double, double>, int> n = to_interval_exp(q.numerator());
std::pair<std::pair<double, double>, int> d = to_interval_exp(q.denominator());
CGAL_assertion_msg(CGAL::abs(1.0*n.second - d.second) < (1<<30)*2.0,
"Exponent overflow in Quotient<MP_Float> to_interval");
return ldexp(Interval_nt<>(n.first) / Interval_nt<>(d.first),
n.second - d.second).pair();
}
inline
std::ostream &
operator<< (std::ostream & os, const MP_Float &b)
{
os << CGAL::to_double(b);
return os;
}
inline
std::ostream &
print (std::ostream & os, const MP_Float &b)
{
typedef MP_Float::exponent_type exponent_type;
// Binary format would be nice and not hard to have too (useful ?).
if (b.is_zero())
return os << 0 << " [ double approx == " << 0.0 << " ]";
MP_Float::const_iterator i;
exponent_type exp = b.min_exp() * INTERN_MP_FLOAT::log_limb;
double approx = 0; // only for giving an idea.
for (i = b.v.begin(); i != b.v.end(); i++)
{
os << ((*i > 0) ? " +" : " ") << *i;
if (exp != 0)
os << " * 2^" << exp;
approx += std::ldexp(static_cast<double>(*i),
static_cast<int>(exp));
exp += INTERN_MP_FLOAT::log_limb;
}
os << " [ double approx == " << approx << " ]";
return os;
}
inline
std::istream &
operator>> (std::istream & is, MP_Float &b)
{
double d;
is >> d;
if (is)
b = MP_Float(d);
return is;
}
} //namespace CGAL
#endif // CGAL_MP_FLOAT_IMPL_H
|