This file is indexed.

/usr/include/CGAL/Lazy_exact_nt.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
// Copyright (c) 1999-2007  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Sylvain Pion

#ifndef CGAL_LAZY_EXACT_NT_H
#define CGAL_LAZY_EXACT_NT_H

#define CGAL_int(T)    typename First_if_different<int,    T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type
#define CGAL_To_interval(T) To_interval<T>


#include <CGAL/number_type_basic.h>
#include <CGAL/assertions.h>

#include <boost/iterator/transform_iterator.hpp> // for Root_of functor
#include <boost/operators.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/utility/enable_if.hpp>

#include <boost/mpl/if.hpp>
#include <boost/mpl/logical.hpp>

#include <CGAL/Interval_nt.h>
#include <CGAL/Handle.h>
#include <CGAL/NT_converter.h>

#include <CGAL/Profile_counter.h>
#include <CGAL/Lazy.h>

#include <CGAL/Sqrt_extension_fwd.h>
#include <CGAL/Kernel/mpl.h>

/*
 * This file contains the definition of the number type Lazy_exact_nt<ET>,
 * where ET is an exact number type (must provide the exact operations needed).
 *
 * Lazy_exact_nt<ET> provides a DAG-based lazy evaluation, like LEDA's real,
 * Core's Expr, LEA's lazy rationals...
 *
 * The values are first approximated using Interval_base.
 * The exactness is provided when needed by ET.
 *
 * Lazy_exact_nt<ET> is just a handle to the abstract base class
 * Lazy_exact_nt_rep which has pure virtual methods .approx() and .exact().
 * From this class derives one class per operation, with one constructor.
 *
 * The DAG is managed by :
 * - Handle and Rep.
 * - virtual functions to denote the various operators (instead of an enum).
 *
 * Other packages with vaguely similar design : APU, MetaCGAL, LOOK.
 */

/*
 * TODO :
 * - Generalize it for constructions at the kernel level.
 * - Add mixed operations with ET too ?
 * - Interval refinement functionnality ?
 * - Separate the handle and the representation(s) in 2 files (?)
 *   maybe not a good idea, better if everything related to one operation is
 *   close together.
 * - Add a CT template parameter ?
 * - Add a string constant to provide an expression string (a la MetaCGAL) ?
 *   // virtual ostream operator<<() const = 0; // or string, like Core ?
 * - Have a template-expression (?) thing that evaluates a temporary element,
 *   and allocates stuff in memory only when really needs to convert to the
 *   NT.  (cf gmp++, and maybe other things, Blitz++, Synaps...)
 */

/*
 * Interface of the rep classes:
 * - .approx()      returns Interval_nt<> (assumes rounding=nearest).
 *                  [ only called from the handle, and declared in the base ]
 * - .exact()       returns ET, if not already done, computes recursively
 *
 * - .rafine_approx()   ??
 */

namespace CGAL {

template <class NT> class Lazy_exact_nt;


#ifdef CGAL_LAZY_KERNEL_DEBUG
template <typename ET>
inline
void
print_dag(const Lazy_exact_nt<ET>& l, std::ostream& os, int level=0)
{
  l.print_dag(os, level);
}
#endif

// Abstract base representation class for lazy numbers
template <typename ET>
struct Lazy_exact_nt_rep : public Lazy_exact_nt<ET>::Self_rep
{
  typedef typename Lazy_exact_nt<ET>::Self_rep  Base;

  Lazy_exact_nt_rep (const Interval_nt<false> & i)
      : Base(i) {}

#ifdef CGAL_LAZY_KERNEL_DEBUG
  void
  print_dag(std::ostream& os, int level) const
  {
    this->print_at_et(os, level);
  }
#endif
};

// int constant
template <typename ET>
struct Lazy_exact_Int_Cst : public Lazy_exact_nt_rep<ET>
{
  Lazy_exact_Int_Cst (int i)
      : Lazy_exact_nt_rep<ET>(double(i)) {}

  void update_exact() const { this->et = new ET((int)this->approx().inf()); }
};

// double constant
template <typename ET, typename X>
struct Lazy_exact_Cst : public Lazy_exact_nt_rep<ET>
{
  Lazy_exact_Cst (X x)
      : Lazy_exact_nt_rep<ET>(x), cste(x) {}

  void update_exact() const { this->et = new ET(cste); }

  private:
  X cste;
};

// Exact constant
template <typename ET>
struct Lazy_exact_Ex_Cst : public Lazy_exact_nt_rep<ET>
{
  Lazy_exact_Ex_Cst (const ET & e)
      : Lazy_exact_nt_rep<ET>(CGAL_NTS to_interval(e))
  {
    this->et = new ET(e);
  }

  void update_exact() const { CGAL_error(); }
};

// Construction from a Lazy_exact_nt<ET1> (which keeps the lazyness).
template <typename ET, typename ET1>
class Lazy_lazy_exact_Cst : public Lazy_exact_nt_rep<ET>
{
  mutable Lazy_exact_nt<ET1> l;

public:

  Lazy_lazy_exact_Cst (const Lazy_exact_nt<ET1> &x)
      : Lazy_exact_nt_rep<ET>(x.approx()), l(x)
  {
    this->set_depth(l.depth() + 1);
  }

  void update_exact() const
  {
    this->et = new ET(l.exact());
    this->at = l.approx();
    prune_dag();
  }

  void prune_dag() const { l = Lazy_exact_nt<ET1>(); }
};


// Unary  operations: abs, sqrt, square.
// Binary operations: +, -, *, /, min, max.

// Base unary operation
template <typename ET>
struct Lazy_exact_unary : public Lazy_exact_nt_rep<ET>
{
  mutable Lazy_exact_nt<ET> op1;

  Lazy_exact_unary (const Interval_nt<false> &i, const Lazy_exact_nt<ET> &a)
      : Lazy_exact_nt_rep<ET>(i), op1(a)
  {
    this->set_depth(op1.depth() + 1);
  }

  void prune_dag() const { op1 = Lazy_exact_nt<ET>(); }

#ifdef CGAL_LAZY_KERNEL_DEBUG
  void
  print_dag(std::ostream& os, int level) const
  {
    this->print_at_et(os, level);
    if(this->is_lazy()){
      msg(os, level, "Unary number operator:");
      CGAL::print_dag(op1, os, level+1);
    }
  }
#endif
};

// Base binary operation
template <typename ET, typename ET1 = ET, typename ET2 = ET>
struct Lazy_exact_binary : public Lazy_exact_nt_rep<ET>
{
  mutable Lazy_exact_nt<ET1> op1;
  mutable Lazy_exact_nt<ET2> op2;

  Lazy_exact_binary (const Interval_nt<false> &i,
		     const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b)
      : Lazy_exact_nt_rep<ET>(i), op1(a), op2(b)
  {
    this->set_depth((std::max)(op1.depth(), op2.depth()) + 1);
  }

  void prune_dag() const
  {
    op1 = Lazy_exact_nt<ET1>();
    op2 = Lazy_exact_nt<ET2>();
  }

#ifdef CGAL_LAZY_KERNEL_DEBUG
  void
  print_dag(std::ostream& os, int level) const
  {
    this->print_at_et(os, level);
    if(this->is_lazy()){
      msg(os, level, "Binary number operator:");
      CGAL::print_dag(op1, os, level+1);
      CGAL::print_dag(op2, os, level+1);
    }
  }
#endif
};

// Here we could use a template class for all operations (STL provides
// function objects plus, minus, multiplies, divides...).  But it would require
// a template template parameter, and GCC 2.95 seems to crash easily with them.

// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME)                                     \
template <typename ET>                                                   \
struct NAME : public Lazy_exact_unary<ET>                                \
{                                                                        \
  typedef typename Lazy_exact_unary<ET>::AT::Protector P;                \
  NAME (const Lazy_exact_nt<ET> &a)                                      \
      : Lazy_exact_unary<ET>((P(), OP(a.approx())), a) {}                \
                                                                         \
  void update_exact() const                                              \
  {                                                                      \
    this->et = new ET(OP(this->op1.exact()));                            \
    if (!this->approx().is_point())                                      \
      this->at = CGAL_NTS to_interval(*(this->et));                      \
    this->prune_dag();                                                   \
   }                                                                     \
};

CGAL_LAZY_UNARY_OP(opposite,  Lazy_exact_Opp)
CGAL_LAZY_UNARY_OP(CGAL_NTS abs,    Lazy_exact_Abs)
CGAL_LAZY_UNARY_OP(CGAL_NTS square, Lazy_exact_Square)
CGAL_LAZY_UNARY_OP(CGAL_NTS sqrt,   Lazy_exact_Sqrt)

// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME)                                    \
template <typename ET, typename ET1 = ET, typename ET2 = ET>             \
struct NAME : public Lazy_exact_binary<ET, ET1, ET2>                     \
{                                                                        \
  typedef typename Lazy_exact_binary<ET,ET1,ET2>::AT::Protector P;	 \
  NAME (const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b)        \
    : Lazy_exact_binary<ET, ET1, ET2>((P(), a.approx() OP b.approx()), a, b) {} \
                                                                         \
  void update_exact() const                                              \
  {                                                                      \
    this->et = new ET(this->op1.exact() OP this->op2.exact());           \
    if (!this->approx().is_point())                                      \
      this->at = CGAL_NTS to_interval(*(this->et));                      \
    this->prune_dag();                                                   \
   }                                                                     \
};

CGAL_LAZY_BINARY_OP(+, Lazy_exact_Add)
CGAL_LAZY_BINARY_OP(-, Lazy_exact_Sub)
CGAL_LAZY_BINARY_OP(*, Lazy_exact_Mul)
CGAL_LAZY_BINARY_OP(/, Lazy_exact_Div)

// Minimum
template <typename ET>
struct Lazy_exact_Min : public Lazy_exact_binary<ET>
{
  Lazy_exact_Min (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
    : Lazy_exact_binary<ET>((CGAL::min)(a.approx(), b.approx()), a, b) {}

  void update_exact() const
  {
    this->et = new ET((CGAL::min)(this->op1.exact(), this->op2.exact()));
    if (!this->approx().is_point()) 
      this->at = CGAL_NTS to_interval(*(this->et));
    this->prune_dag();
  }
};

// Maximum
template <typename ET>
struct Lazy_exact_Max : public Lazy_exact_binary<ET>
{
  Lazy_exact_Max (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
    : Lazy_exact_binary<ET>((CGAL::max)(a.approx(), b.approx()), a, b) {}

  void update_exact() const
  {
    this->et = new ET((CGAL::max)(this->op1.exact(), this->op2.exact()));
    if (!this->approx().is_point()) 
      this->at = CGAL_NTS to_interval(*(this->et));
    this->prune_dag();
  }
};


// The real number type, handle class
template <typename ET_>
class Lazy_exact_nt
  : public Lazy<Interval_nt<false>, ET_, Lazy_exact_nt<ET_>, To_interval<ET_> >
  , boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET_>, int >
  , boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET_>, double >
{
public:

  typedef Lazy_exact_nt<ET_> Self;
  typedef Lazy<Interval_nt<false>, ET_, Self, To_interval<ET_> > Base;
  typedef typename Base::Self_rep  Self_rep;

  typedef typename Base::ET ET; // undocumented
  typedef typename Base::AT AT; // undocumented

  typedef typename Base::Exact_type        Exact_type;
  typedef typename Base::Approximate_type  Approximate_type;

public :

  Lazy_exact_nt () {}

  Lazy_exact_nt (Self_rep *r)
    : Base(r) {}

  // Also check that ET and AT are constructible from T?
  template<class T>
  Lazy_exact_nt (T i, typename boost::enable_if<boost::mpl::and_<
      boost::mpl::or_<boost::is_arithmetic<T>, boost::is_enum<T> >,
      boost::mpl::not_<boost::is_same<T,ET> > >,void*>::type=0)
    : Base(new Lazy_exact_Cst<ET,T>(i)) {}

  Lazy_exact_nt (const ET & e)
    : Base(new Lazy_exact_Ex_Cst<ET>(e)){}

  template <class ET1>
  Lazy_exact_nt (const Lazy_exact_nt<ET1> &x,
      typename boost::enable_if<is_implicit_convertible<ET1,ET>,int>::type=0)
    : Base(new Lazy_lazy_exact_Cst<ET, ET1>(x)){}

  template <class ET1>
  explicit Lazy_exact_nt (const Lazy_exact_nt<ET1> &x,
  typename boost::disable_if<is_implicit_convertible<ET1,ET>,int>::type=0)
    : Base(new Lazy_lazy_exact_Cst<ET, ET1>(x)){}

  Self operator+ () const
  { return *this; }

  Self operator- () const
  { return new Lazy_exact_Opp<ET>(*this); }

  Self & operator+=(const Self& b)
  { return *this = new Lazy_exact_Add<ET>(*this, b); }

  Self & operator-=(const Self& b)
  { return *this = new Lazy_exact_Sub<ET>(*this, b); }

  Self & operator*=(const Self& b)
  { return *this = new Lazy_exact_Mul<ET>(*this, b); }

  Self & operator/=(const Self& b)
  {
    CGAL_precondition(b != 0);
    return *this = new Lazy_exact_Div<ET>(*this, b);
  }

  // Mixed operators. (could be optimized ?)
  Self & operator+=(CGAL_int(ET) b)
  { return *this = new Lazy_exact_Add<ET>(*this, b); }

  Self & operator-=(CGAL_int(ET) b)
  { return *this = new Lazy_exact_Sub<ET>(*this, b); }

  Self & operator*=(CGAL_int(ET) b)
  { return *this = new Lazy_exact_Mul<ET>(*this, b); }

  Self & operator/=(CGAL_int(ET) b)
  {
    CGAL_precondition(b != 0);
    return *this = new Lazy_exact_Div<ET>(*this, b);
  }

  Self & operator+=(CGAL_double(ET) b)
  { return *this = new Lazy_exact_Add<ET>(*this, b); }

  Self & operator-=(CGAL_double(ET) b)
  { return *this = new Lazy_exact_Sub<ET>(*this, b); }

  Self & operator*=(CGAL_double(ET) b)
  { return *this = new Lazy_exact_Mul<ET>(*this, b); }

  Self & operator/=(CGAL_double(ET) b)
  {
    CGAL_precondition(b != 0);
    return *this = new Lazy_exact_Div<ET>(*this, b);
  }

  // % kills filtering
  Self & operator%=(const Self& b)
  {
    CGAL_precondition(b != 0);
    ET res = this->exact();
    res %= b.exact();
    return *this = Lazy_exact_nt<ET>(res);
  }

  Self & operator%=(int b)
  {
    CGAL_precondition(b != 0);
    ET res = this->exact();
    res %= b;
    return *this = Lazy_exact_nt<ET>(res);
  }

  Interval_nt<true> interval() const
  {
    const Interval_nt<false>& i = this->approx();
    return Interval_nt<true>(i.inf(), i.sup());
  }

  Interval_nt_advanced approx_adv() const
  { return this->ptr()->approx(); }

  static const double & get_relative_precision_of_to_double()
  {
      return relative_precision_of_to_double;
  }

  static void set_relative_precision_of_to_double(const double & d)
  {
      CGAL_assertion((0 < d) & (d < 1));
      relative_precision_of_to_double = d;
  }

  bool identical(const Self& b) const
  {
      return ::CGAL::identical(
              static_cast<const Handle &>(*this),
              static_cast<const Handle &>(b));
  }

  template < typename T >
  bool identical(const T&) const
  { return false; }

private:
  static double relative_precision_of_to_double;
};


template <typename ET>
double Lazy_exact_nt<ET>::relative_precision_of_to_double = 0.00001;


template <typename ET1, typename ET2>
bool
operator<(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  if (a.identical(b))
    return false;
  Uncertain<bool> res = a.approx() < b.approx();
  if (is_certain(res))
    return get_certain(res);
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return a.exact() < b.exact();
}

template <typename ET1, typename ET2>
bool
operator==(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  if (a.identical(b))
    return true;
  Uncertain<bool> res = a.approx() == b.approx();
  if (is_certain(res))
    return get_certain(res);
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return a.exact() == b.exact();
}

template <typename ET1, typename ET2>
inline
bool
operator>(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b < a; }

template <typename ET1, typename ET2>
inline
bool
operator>=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a < b); }

template <typename ET1, typename ET2>
inline
bool
operator<=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b >= a; }

template <typename ET1, typename ET2>
inline
bool
operator!=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a == b); }


template <typename ET>
inline
Lazy_exact_nt<ET>
operator%(const Lazy_exact_nt<ET>& a, const Lazy_exact_nt<ET>& b)
{
  CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
  CGAL_precondition(b != 0);
  return Lazy_exact_nt<ET>(a) %= b;
}



// Mixed operators with int.
template <typename ET>
bool
operator<(const Lazy_exact_nt<ET>& a, int b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  Uncertain<bool> res = a.approx() < b;
  if (is_certain(res))
    return res;
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return a.exact() < b;
}

template <typename ET>
bool
operator>(const Lazy_exact_nt<ET>& a, int b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  Uncertain<bool> res = b < a.approx();
  if (is_certain(res))
    return get_certain(res);
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return b < a.exact();
}

template <typename ET>
bool
operator==(const Lazy_exact_nt<ET>& a, int b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  Uncertain<bool> res = b == a.approx();
  if (is_certain(res))
    return get_certain(res);
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return b == a.exact();
}


// Mixed operators with double.
template <typename ET>
bool
operator<(const Lazy_exact_nt<ET>& a, double b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  Uncertain<bool> res = a.approx() < b;
  if (is_certain(res))
    return res;
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return a.exact() < b;
}

template <typename ET>
bool
operator>(const Lazy_exact_nt<ET>& a, double b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  Uncertain<bool> res = b < a.approx();
  if (is_certain(res))
    return res;
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return b < a.exact();
}

template <typename ET>
bool
operator==(const Lazy_exact_nt<ET>& a, double b)
{
  CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
  Uncertain<bool> res = b == a.approx();
  if (is_certain(res))
    return res;
  CGAL_BRANCH_PROFILER_BRANCH(tmp);
  return b == a.exact();
}



template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator+(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
  CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
  return new Lazy_exact_Add<typename Coercion_traits<ET1, ET2>::Type,
                            ET1, ET2>(a, b);
}

template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator-(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
  CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
  return new Lazy_exact_Sub<typename Coercion_traits<ET1, ET2>::Type,
                            ET1, ET2>(a, b);
}

template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator*(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
  CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
  return new Lazy_exact_Mul<typename Coercion_traits<ET1, ET2>::Type,
                            ET1, ET2>(a, b);
}

template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator/(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
  CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
  CGAL_precondition(b != 0);
  return new Lazy_exact_Div<typename Coercion_traits<ET1, ET2>::Type,
                            ET1, ET2>(a, b);
}

//
// Algebraic structure traits
//

namespace INTERN_LAZY_EXACT_NT {

template< class NT, class Functor >
struct Simplify_selector {
  struct Simplify : public std::unary_function<NT&, void> {
    void operator()( NT& ) const {
      // TODO: In the old implementation the Simplify-functor was the default
      //       (which does nothing). But this cannot be the correct way!?
    }
  };
};

template< class NT >
struct Simplify_selector< NT, Null_functor > {
  typedef Null_functor Simplify;
};

template< class NT, class Functor >
struct Unit_part_selector {
  struct Unit_part : public std::unary_function<NT, NT > {
    NT operator()( const NT& x ) const {
      return NT( CGAL_NTS unit_part( x.exact() ) );
    }
  };
};

template< class NT >
struct Unit_part_selector< NT, Null_functor > {
  typedef Null_functor Unit_part;
};

template< class NT, class Functor >
struct Is_zero_selector {
  struct Is_zero : public std::unary_function<NT, bool > {
    bool operator()( const NT& x ) const {
      return CGAL_NTS is_zero( x.exact() );
    }
  };
};

template< class NT >
struct Is_zero_selector< NT, Null_functor > {
  typedef Null_functor Is_zero;
};

template< class NT, class Functor >
struct Is_one_selector {
  struct Is_one : public std::unary_function<NT, bool > {
    bool operator()( const NT& x ) const {
      return CGAL_NTS is_one( x.exact() );
    }
  };
};

template< class NT >
struct Is_one_selector< NT, Null_functor > {
  typedef Null_functor Is_one;
};

template< class NT, class Functor >
struct Square_selector {
  struct Square : public std::unary_function<NT, NT > {
    NT operator()( const NT& x ) const {
      CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
      return new Lazy_exact_Square<typename NT::ET>(x);
    }
  };
};

template< class NT >
struct Square_selector< NT, Null_functor > {
  typedef Null_functor Square;
};

template< class NT, class Functor >
struct Integral_division_selector {
  struct Integral_division : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return NT( CGAL_NTS integral_division( x.exact(), y.exact() ) );
    }

    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )
  };
};

template< class NT >
struct Integral_division_selector< NT, Null_functor > {
  typedef Null_functor Integral_division;
};

template< class NT, class Functor >
struct Is_square_selector {
  struct Is_square : public std::binary_function<NT, NT&, bool > {
      bool operator()( const NT& x, NT& y ) const {
          typename NT::ET y_et;
          bool result = CGAL_NTS is_square( x.exact(), y_et );
          y = NT(y_et);
          return result;
      }
      bool operator()( const NT& x) const {
          typename NT::ET y_et;
          return CGAL_NTS is_square( x.exact(), y_et );
      }
  };
};

template< class NT >
struct Is_square_selector< NT, Null_functor > {
  typedef Null_functor Is_square;
};


template <class NT, class AlgebraicStructureTag>
struct Sqrt_selector{
    struct Sqrt : public std::unary_function<NT, NT > {
        NT operator ()(const NT& x) const {
          CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
          CGAL_precondition(x >= 0);
          return new Lazy_exact_Sqrt<typename NT::ET>(x);
        }
    };
};
template <class NT>
struct Sqrt_selector<NT,Null_functor> {
    typedef Null_functor Sqrt;
};

template< class NT, class Functor >
struct Kth_root_selector {
  struct Kth_root : public std::binary_function<int, NT, NT > {
    NT operator()( int k, const NT& x ) const {
      return NT( CGAL_NTS kth_root( k, x.exact() ) );
    }
  };
};

template< class NT >
struct Kth_root_selector< NT, Null_functor > {
  typedef Null_functor Kth_root;
};

template< class NT, class Functor >
struct Root_of_selector {
  private:
      struct Cast{
        typedef typename NT::ET result_type;
        result_type operator()(const NT& lazy_exact) const {
          return lazy_exact.exact();
        }
      };

  public:
    struct Root_of {
//      typedef typename Functor::Boundary Boundary;
      typedef NT result_type;
      template< class Input_iterator >
      NT operator()( int k, Input_iterator begin, Input_iterator end ) const {
       Cast cast;
       return NT( typename Algebraic_structure_traits<typename NT::ET>::
                                 Root_of()( k,
                              ::boost::make_transform_iterator( begin, cast ),
                              ::boost::make_transform_iterator( end, cast ) ) );
      }

    };
};

template< class NT >
struct Root_of_selector< NT, Null_functor > {
  typedef Null_functor Root_of;
};

template< class NT, class Functor >
struct Gcd_selector {
  struct Gcd : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
     CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
     return NT( CGAL_NTS gcd( x.exact(), y.exact() ) );
    }

    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )
  };
};

template< class NT >
struct Gcd_selector< NT, Null_functor > {
  typedef Null_functor Gcd;
};

template< class NT, class Functor >
struct Div_selector {
  struct Div : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return NT( CGAL_NTS div( x.exact(), y.exact() ) );
    }

    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )

  };
};

template< class NT >
struct Div_selector< NT, Null_functor > {
  typedef Null_functor Div;
};

template< class NT, class Functor >
struct Inverse_selector {
  struct Inverse  {
    typedef NT result_type;
    NT operator()( const NT& x ) const {
      return NT( 1 ) / x ;
    }
  };
};

template< class NT >
struct Inverse_selector< NT, Null_functor > {
  typedef Null_functor Inverse;
};

template< class NT, class Functor >
struct Mod_selector {
  struct Mod : public std::binary_function<NT, NT, NT > {
    NT operator()( const NT& x, const NT& y ) const {
      return NT( CGAL_NTS mod( x.exact(), y.exact() ) );
    }

    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )

  };
};

template< class NT >
struct Mod_selector< NT, Null_functor > {
  typedef Null_functor Mod;
};

template< class NT, class Functor >
struct Div_mod_selector {
  struct Div_mod {
    typedef void result_type;
    typedef NT   first_argument_type;
    typedef NT   second_argument_type;
    typedef NT&  third_argument_type;
    typedef NT&  fourth_argument_type;

    void operator()( const NT& x, const NT& y, NT& q, NT& r ) const {
      typename NT::ET q_et;
      typename NT::ET r_et;
      CGAL_NTS div_mod( x.exact(), y.exact(), q_et, r_et );
      q = NT( q_et );
      r = NT( r_et );
    }

    template< class NT1, class NT2 >
    void operator()( const NT1& x, const NT2& y,
                     NT& q,
                     NT& r ) const {
      CGAL_static_assertion((::boost::is_same<
        typename Coercion_traits< NT1, NT2 >::Type, NT
                                              >::value));

      typename Coercion_traits< NT1, NT2 >::Cast cast;
      operator()( cast(x), cast(y), q, r );
    }
  };
};

template< class NT >
struct Div_mod_selector< NT, Null_functor >{
  typedef Null_functor Div_mod;
};
} // namespace INTERN_LAZY_EXACT_NT

template <class ET>
class Algebraic_structure_traits< Lazy_exact_nt<ET> >
    :public Algebraic_structure_traits_base
      < Lazy_exact_nt<ET>,
       typename Algebraic_structure_traits<ET>::Algebraic_category >
{
private:
    typedef Algebraic_structure_traits<ET> AST_ET;
    typedef typename AST_ET::Algebraic_category ET_as_tag;
public:
    typedef typename AST_ET::Is_exact               Is_exact;
    typedef typename AST_ET::Is_numerical_sensitive Is_numerical_sensitive;

    typedef typename INTERN_LAZY_EXACT_NT::Simplify_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Simplify > ::Simplify Simplify;

    typedef typename INTERN_LAZY_EXACT_NT::Unit_part_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Unit_part > ::Unit_part Unit_part;

    typedef typename INTERN_LAZY_EXACT_NT::Is_zero_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Is_zero > ::Is_zero Is_zero;

    typedef typename INTERN_LAZY_EXACT_NT::Is_one_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Is_one > ::Is_one Is_one;

    typedef typename INTERN_LAZY_EXACT_NT::Square_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Square > ::Square Square;

    typedef typename INTERN_LAZY_EXACT_NT::Integral_division_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Integral_division> ::Integral_division Integral_division;

    typedef typename INTERN_LAZY_EXACT_NT::Is_square_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Is_square > ::Is_square Is_square;

    typedef typename INTERN_LAZY_EXACT_NT::Sqrt_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Sqrt> ::Sqrt Sqrt;

    typedef typename INTERN_LAZY_EXACT_NT::Kth_root_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Kth_root > ::Kth_root Kth_root;

    typedef typename INTERN_LAZY_EXACT_NT::Root_of_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Root_of > ::Root_of Root_of;

    typedef typename INTERN_LAZY_EXACT_NT::Gcd_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Gcd > ::Gcd Gcd;

    typedef typename INTERN_LAZY_EXACT_NT::Div_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Div > ::Div Div;

    typedef typename INTERN_LAZY_EXACT_NT::Mod_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Mod > ::Mod Mod;

    typedef typename INTERN_LAZY_EXACT_NT::Div_mod_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Div_mod > ::Div_mod Div_mod;
    
    typedef typename INTERN_LAZY_EXACT_NT::Inverse_selector
    <Lazy_exact_nt<ET>, typename AST_ET::Inverse > ::Inverse Inverse;    
};



//
// Real embeddalbe traits
//

template < typename ET > class Real_embeddable_traits< Lazy_exact_nt<ET> >
  : public INTERN_RET::Real_embeddable_traits_base< Lazy_exact_nt<ET> , CGAL::Tag_true > {

  // Every type ET of Lazy_exact_nt<ET> has to be real embeddable.
  CGAL_static_assertion((::boost::is_same< typename Real_embeddable_traits< ET >
                                ::Is_real_embeddable, Tag_true >::value));

  public:
    typedef Lazy_exact_nt<ET> Type;

    class Abs
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& a ) const {
            CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
            return new Lazy_exact_Abs<ET>(a);
        }
    };

    class Sgn
      : public std::unary_function< Type, ::CGAL::Sign > {
      public:
        ::CGAL::Sign operator()( const Type& a ) const {
            CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
            Uncertain< ::CGAL::Sign> res = CGAL_NTS sign(a.approx());
            if (is_certain(res))
                return get_certain(res);
            CGAL_BRANCH_PROFILER_BRANCH(tmp);
            return CGAL_NTS sign(a.exact());
        }
    };

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& a,
                                            const Type& b ) const {
            CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
            if (a.identical(b))
                return EQUAL;
            Uncertain<Comparison_result> res = CGAL_NTS compare(a.approx(), b.approx());
            if (is_certain(res))
                return get_certain(res);
            CGAL_BRANCH_PROFILER_BRANCH(tmp);
            return CGAL_NTS compare(a.exact(), b.exact());
        }

        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
                                                      Comparison_result )

    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& a ) const {
            CGAL_BRANCH_PROFILER(std::string(" failures/calls to   : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);

            const Interval_nt<false>& app = a.approx();
            double r;
            if (fit_in_double(app, r))
                return r;

            // If it's precise enough, then OK.
            if (has_smaller_relative_precision(app,
                 Lazy_exact_nt<ET>::get_relative_precision_of_to_double()))
                return CGAL_NTS to_double(app);

            CGAL_BRANCH_PROFILER_BRANCH(tmp);

            // Otherwise we trigger exact computation first,
            // which will refine the approximation.
            a.exact();
            return CGAL_NTS to_double(a.approx());
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& a ) const {
            CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
            return a.approx().pair();
        }
    };

    class Is_finite
      : public std::unary_function< Type, bool > {
      public:
        bool operator()( const Type& x ) const {
          return CGAL_NTS is_finite(x.approx()) || CGAL_NTS is_finite(x.exact());
        }
    };

};

template <class ET1, class ET2, class F>
class Lazy_exact_nt_coercion_traits_base {
public:
    typedef Tag_false Are_explicit_interoperable;
    typedef Tag_false Are_implicit_interoperable;
    //typedef Null_type    Type
    typedef Null_functor Cast;
};

template <class ET1, class ET2>
class Lazy_exact_nt_coercion_traits_base < Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2>, Tag_true >
{
    typedef Coercion_traits<ET1,ET2> CT;
    typedef Lazy_exact_nt<ET1> A;
    typedef Lazy_exact_nt<ET2> B;
public:
    typedef Lazy_exact_nt<typename CT::Type> Type;
    typedef typename CT::Are_implicit_interoperable Are_explicit_interoperable;
    typedef typename CT::Are_implicit_interoperable Are_implicit_interoperable;

    class Cast{
    private:
        template <class T>
        Type cast(const T& x) const{ return Type(x); }
        Type cast(const Type& x) const{ return x; }
    public:
        typedef Type result_type;
        Type operator()(const A& x) const { return cast(x);}
        Type operator()(const B& x) const { return cast(x);}
    };
};


CGAL_DEFINE_COERCION_TRAITS_FOR_SELF_TEM(Lazy_exact_nt<ET>, class ET)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO_TEM(ET,Lazy_exact_nt<ET>,class ET)

template<class ET1, class ET2 >
struct Coercion_traits< Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2> >
    :public Lazy_exact_nt_coercion_traits_base
           <Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2>,
            typename Coercion_traits<ET1,ET2>::Are_implicit_interoperable>{};


#define CGAL_COERCION_TRAITS_LAZY_EXACT(NTX)                            \
    template<class ET>                                                  \
    struct Coercion_traits< NTX, Lazy_exact_nt<ET> >{                   \
    private:                                                            \
        typedef Coercion_traits<NTX,ET> CT;                             \
        typedef Lazy_exact_nt<ET> NT;                                   \
    public:                                                             \
        typedef typename CT::Are_explicit_interoperable                 \
        Are_explicit_interoperable;                                     \
        typedef typename CT::Are_implicit_interoperable                 \
        Are_implicit_interoperable;                                     \
    private:                                                            \
        static const  bool interoperable                                \
        =boost::is_same< Are_implicit_interoperable, Tag_false>::value; \
    public:                                                             \
        typedef typename boost::mpl::if_c <interoperable,Null_tag,NT>   \
        ::type  Type;                                          \
        typedef typename boost::mpl::if_c <interoperable, Null_functor, \
    INTERN_CT::Cast_from_to<NTX,NT> >::type Cast;                       \
    };                                                                  \
                                                                        \
    template<class ET>                                                  \
    struct Coercion_traits< Lazy_exact_nt<ET>, NTX >                    \
        :public Coercion_traits<NTX, Lazy_exact_nt<ET> >{};             \


CGAL_COERCION_TRAITS_LAZY_EXACT(int)
CGAL_COERCION_TRAITS_LAZY_EXACT(short)
CGAL_COERCION_TRAITS_LAZY_EXACT(double)
CGAL_COERCION_TRAITS_LAZY_EXACT(float)
#undef CGAL_COERCION_TRAITS_LAZY_EXACT

namespace INTERN_LAZY_EXACT_NT {

template < typename NT, typename TAG  > class Fraction_traits_base;

template < class ET >
class Fraction_traits_base <Lazy_exact_nt<ET> , CGAL::Tag_false>
    : public Fraction_traits<ET> {
public:
    typedef Lazy_exact_nt<ET>  Type;
};

template < class ET >
class Fraction_traits_base <Lazy_exact_nt<ET> , CGAL::Tag_true>{
    typedef Fraction_traits<ET> ETT;
    typedef typename ETT::Numerator_type ET_numerator;
    typedef typename ETT::Denominator_type ET_denominator;
public:
    typedef Lazy_exact_nt<ET>  Type;
    typedef Tag_true Is_fraction;
    typedef Lazy_exact_nt<ET_numerator> Numerator_type;
    typedef Lazy_exact_nt<ET_denominator> Denominator_type;

    struct Common_factor : std::binary_function<Denominator_type,Denominator_type,Denominator_type>{
        Denominator_type operator()(const Denominator_type& a, const Denominator_type& b) const {
            typename ETT::Common_factor common_factor;
            return Denominator_type(common_factor(a.exact(),b.exact()));
        }
    };
    struct Compose : std::binary_function<Type,Numerator_type,Denominator_type>{
        Type operator()(const Numerator_type& n, const Denominator_type& d) const {
            typename ETT::Compose compose;
            return Type(compose(n.exact(),d.exact()));
        }
    };
    struct Decompose {
        typedef void result_type;
        typedef Type first_argument_type;
        typedef Numerator_type second_argument_type;
        typedef Denominator_type third_argument_type;
        void operator()(const Type& f, Numerator_type& n, Denominator_type& d) const {
            typename ETT::Decompose decompose;
            ET_numerator nn;
            ET_denominator dd;
            decompose(f.exact(),nn,dd);
            n = Numerator_type(nn);
            d = Denominator_type(dd);
        }
    };
};
} // namespace INTERN_LAZY_EXACT_NT


template < class ET >
class Fraction_traits< Lazy_exact_nt< ET > >
    :public INTERN_LAZY_EXACT_NT::Fraction_traits_base<Lazy_exact_nt<ET>,
            typename Fraction_traits<ET>::Is_fraction>
{};

template < class ET >
struct Min <Lazy_exact_nt<ET> >
    : public std::binary_function<Lazy_exact_nt<ET>,Lazy_exact_nt<ET>,Lazy_exact_nt<ET> > {

    Lazy_exact_nt<ET> operator()( const Lazy_exact_nt<ET>& x, const Lazy_exact_nt<ET>& y) const
    {
      if (x.identical(y)){
        return x;
      }
      Uncertain<bool> res = x.approx() < y.approx();
      if(is_certain(res)){
        return res.make_certain() ? x : y;
      }
      CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
      return new Lazy_exact_Min<ET>(x, y);
    }
};

template < class ET >
struct Max <Lazy_exact_nt<ET> >
    : public std::binary_function<Lazy_exact_nt<ET>,Lazy_exact_nt<ET>,Lazy_exact_nt<ET> > {

    Lazy_exact_nt<ET> operator()( const Lazy_exact_nt<ET>& x, const Lazy_exact_nt<ET>& y) const
    {
      if (x.identical(y)){
        return x;
      }
      Uncertain<bool> res = x.approx() > y.approx();
      if(is_certain(res)){
        return  res.make_certain() ? x : y;
      }
        CGAL_PROFILER(std::string("calls to    : ") + std::string(CGAL_PRETTY_FUNCTION));
        return new Lazy_exact_Max<ET>(x, y);
    }
};

template<typename ET> inline 
Lazy_exact_nt<ET> min BOOST_PREVENT_MACRO_SUBSTITUTION(
const Lazy_exact_nt<ET> & x,
const Lazy_exact_nt<ET> & y){
  return CGAL::Min<Lazy_exact_nt<ET> > ()(x,y);
}
template<typename ET> inline 
Lazy_exact_nt<ET> max BOOST_PREVENT_MACRO_SUBSTITUTION(
const Lazy_exact_nt<ET> & x,
const Lazy_exact_nt<ET> & y){
  return CGAL::Max<Lazy_exact_nt<ET> > ()(x,y);
}

template <typename ET>
std::ostream &
operator<< (std::ostream & os, const Lazy_exact_nt<ET> & a)
{ return os << CGAL_NTS to_double(a); }

template <typename ET>
std::istream &
operator>> (std::istream & is, Lazy_exact_nt<ET> & a)
{
  ET e;
  is >> e;
  if (is)
    a = e;
  return is;
}

template< class ET >
class Is_valid< Lazy_exact_nt<ET> >
  : public std::unary_function< Lazy_exact_nt<ET>, bool > {
  public :
    bool operator()( const Lazy_exact_nt<ET>& x ) const {
      return is_valid(x.approx());
    }
};

template < typename ET >
struct NT_converter < Lazy_exact_nt<ET>, ET >
{
  const ET& operator()(const Lazy_exact_nt<ET> &a) const
  { return a.exact(); }
};

// Forward declaration to break inclusion cycle
namespace internal {
template<class>struct Exact_field_selector;
template<class>struct Exact_ring_selector;
}
// Compiler can deduce ET from the first argument.
template < typename ET >
struct NT_converter < Lazy_exact_nt<ET>,
  typename First_if_different<
    typename internal::Exact_field_selector<ET>::Type,
    ET>::Type>
{
  typename internal::Exact_field_selector<ET>::Type
    operator()(const Lazy_exact_nt<ET> &a) const
  { return NT_converter<ET,typename internal::Exact_field_selector<ET>::Type>()(a.exact()); }
};

template < typename ET >
struct NT_converter < Lazy_exact_nt<ET>,
  typename First_if_different<
   typename First_if_different<
    typename internal::Exact_ring_selector<ET>::Type,
    ET>::Type,
   typename internal::Exact_field_selector<ET>::Type>::Type>
{
  typename internal::Exact_ring_selector<ET>::Type operator()(const Lazy_exact_nt<ET> &a) const
  { return NT_converter<ET,typename internal::Exact_ring_selector<ET>::Type>()(a.exact()); }
};

namespace internal {
// Returns true if the value is representable by a double and to_double()
// would return it.  False means "don't know" (the exact number type is not
// queried).
template < typename ET >
inline bool
fit_in_double(const Lazy_exact_nt<ET>& l, double& r)
{ return fit_in_double(l.approx(), r); }

} // namespace internal

template <class NT_,class ROOT_, class ACDE_TAG_, class FP_TAG>
void
print(std::ostream &os, const CGAL::Lazy_exact_nt< Sqrt_extension<NT_,ROOT_,ACDE_TAG_,FP_TAG> > &r)
{
  print(os,r.exact());
}

namespace INTERN_LAZY_EXACT_NT {
template< typename ET , typename Tag>
class Modular_traits_base{
public:
  typedef Lazy_exact_nt<ET> NT;
  typedef ::CGAL::Tag_false Is_modularizable;
  typedef ::CGAL::Null_functor Residue_type;
  typedef ::CGAL::Null_functor Modular_image;  
  typedef ::CGAL::Null_functor Modular_image_representative;    
};

template< typename ET >
class Modular_traits_base<ET, Tag_true>{
  typedef Modular_traits<ET> MT_ET;
public:
  typedef Lazy_exact_nt<ET> NT;
  typedef CGAL::Tag_true Is_modularizable;
  typedef typename MT_ET::Residue_type Residue_type;

  struct Modular_image{
    Residue_type operator()(const NT& a){
      typename MT_ET::Modular_image modular_image;
      return modular_image(a.exact());
    }
  };
  struct Modular_image_representative{
    NT operator()(const Residue_type& x){
      typename MT_ET::Modular_image_representative modular_image_representative;
      return NT(modular_image_representative(x));
    }
  };    
};
} // namespace INTERN_LAZY_EXACT_NT

template < typename ET > 
class Modular_traits<Lazy_exact_nt<ET> >
  :public INTERN_LAZY_EXACT_NT::Modular_traits_base
<ET,typename Modular_traits<ET>::Is_modularizable>{};


#undef CGAL_double
#undef CGAL_int
#undef CGAL_To_interval

} //namespace CGAL

namespace Eigen {
  template<class> struct NumTraits;
  template<typename ET> struct NumTraits<CGAL::Lazy_exact_nt<ET> >
  {
    typedef CGAL::Lazy_exact_nt<ET> Real;
    // typedef CGAL::Lazy_exact_nt<ET> NonInteger;
    typedef CGAL::Lazy_exact_nt<typename NumTraits<ET>::NonInteger> NonInteger;
    typedef CGAL::Lazy_exact_nt<ET> Nested;

    static inline Real epsilon() { return 0; }
    static inline Real dummy_precision() { return 0; }

    enum {
      IsInteger = NumTraits<ET>::IsInteger,
      IsSigned = NumTraits<ET>::IsSigned,
      IsComplex = NumTraits<ET>::IsComplex,
      RequireInitialization = 1,
      ReadCost = 8,
      AddCost = 30,
      MulCost = 30
    };
  };
}

#endif // CGAL_LAZY_EXACT_NT_H