/usr/include/CGAL/Gmpzf.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | // Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
#ifndef CGAL_GMPZF_H
#define CGAL_GMPZF_H
// includes
#include <CGAL/number_type_basic.h>
#include <CGAL/Gmp_coercion_traits.h>
#include <CGAL/Gmpz.h>
#include <CGAL/Interval_nt.h>
namespace CGAL {
// Algebraic structure traits
template <> class Algebraic_structure_traits< Gmpzf >
: public Algebraic_structure_traits_base< Gmpzf, Euclidean_ring_tag > {
public:
typedef Tag_true Is_exact;
struct Is_zero
: public std::unary_function< Type, bool > {
public:
bool operator()( const Type& x ) const {
return x.is_zero();
}
};
struct Integral_division
: public std::binary_function< Type,
Type,
Type > {
public:
Type operator()(
const Type& x,
const Type& y ) const {
return x.integral_division(y);
}
};
struct Gcd
: public std::binary_function< Type,
Type,
Type > {
public:
Type operator()(
const Type& x,
const Type& y ) const {
return x.gcd(y);
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR(int)
};
class Div
: public std::binary_function< Type, Type, Type > {
public:
Type operator()( const Type& x, const Type& y ) const {
return Type(x).div( y );
}
};
typedef INTERN_AST::Mod_per_operator< Type > Mod;
class Is_square
: public std::binary_function< Type, Type&, bool > {
public:
bool operator()( const Type& x, Type& y ) const {
y = CGAL::approximate_sqrt(x);
return y * y == x;
}
bool operator()( const Type& x) const {
Type dummy;
return operator()(x,dummy);
}
};
};
// Real embeddable traits
template <>
class Real_embeddable_traits< Gmpzf >
: public INTERN_RET::Real_embeddable_traits_base< Gmpzf , CGAL::Tag_true > {
typedef Algebraic_structure_traits<Gmpzf> AST;
public:
typedef AST::Is_zero Is_zero;
struct Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return x.sign();
}
};
struct Compare
: public std::binary_function< Type,
Type,
Comparison_result > {
public:
Comparison_result operator()(
const Type& x,
const Type& y ) const {
return x.compare(y);
}
};
struct To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
return x.to_double();
}
};
struct To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return x.to_interval();
}
};
};
// specialization of to double functor
template<>
class Real_embeddable_traits< Quotient<Gmpzf> >
: public
INTERN_QUOTIENT::Real_embeddable_traits_quotient_base< Quotient<Gmpzf> >
{
public:
struct To_double: public std::unary_function<Quotient<Gmpzf>, double>{
inline
double operator()(const Quotient<Gmpzf>& q) const {
std::pair<double, long> n = q.numerator().to_double_exp();
std::pair<double, long> d = q.denominator().to_double_exp();
double scale = std::ldexp(1.0, n.second - d.second);
return (n.first / d.first) * scale;
}
};
struct To_interval
: public std::unary_function<Quotient<Gmpzf>, std::pair<double,double> >{
inline
std::pair<double,double> operator()(const Quotient<Gmpzf>& q) const {
// do here as MP_Float does
std::pair<std::pair<double, double>, long> n =
q.numerator().to_interval_exp();
std::pair<std::pair<double, double>, long> d =
q.denominator().to_interval_exp();
CGAL_assertion_msg(CGAL::abs(1.0*n.second - d.second) < (1<<30)*2.0,
"Exponent overflow in Quotient<MP_Float> to_interval");
return ldexp(Interval_nt<>(n.first) / Interval_nt<>(d.first),
n.second - d.second).pair();
}
};
};
} //namespace CGAL
//since types are included by Gmp_coercion_traits.h:
#include <CGAL/Gmpz.h>
#include <CGAL/Gmpq.h>
#include <CGAL/Gmpzf.h>
#endif // CGAL_GMPZF_H
// ===== EOF ==================================================================
|