This file is indexed.

/usr/include/CGAL/Delaunay_d.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
// Copyright (c) 1997-2000  Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Seel <seel@mpi-sb.mpg.de>
//---------------------------------------------------------------------
// file generated by notangle from delaunay.lw
// please debug or modify LEDA web file
// mails and bugs: Michael.Seel@mpi-sb.mpg.de
// based on LEDA architecture by S. Naeher, C. Uhrig
// coding: K. Mehlhorn, M. Seel
// debugging and templatization: M. Seel
//---------------------------------------------------------------------

#ifndef CGAL_DELAUNAY_D_H
#define CGAL_DELAUNAY_D_H

/*{\Manpage {Delaunay_d}{R,Lifted_R}{Delaunay Triangulations}{DT}}*/
/*{\Mdefinition 

An instance |\Mvar| of type |\Mname| is the nearest and furthest
site Delaunay triangulation of a set |S| of points in some
$d$-dimensional space. We call |S| the underlying point set and $d$ or
|dim| the dimension of the underlying space.  We use |dcur| to denote
the affine dimension of |S|.  The data type supports incremental
construction of Delaunay triangulations and various kind of query
operations (in particular, nearest and furthest neighbor queries and
range queries with spheres and simplices).

A Delaunay triangulation is a simplicial complex. All simplices in
the Delaunay triangulation have dimension |dcur|.  In the nearest site
Delaunay triangulation the circumsphere of any simplex in the
triangulation contains no point of $S$ in its interior. In the
furthest site Delaunay triangulation the circumsphere of any simplex
contains no point of $S$ in its exterior. If the points in $S$ are
co-circular then any triangulation of $S$ is a nearest as well as a
furthest site Delaunay triangulation of $S$. If the points in $S$ are
not co-circular then no simplex can be a simplex of both
triangulations. Accordingly, we view |\Mvar| as either one or two
collection(s) of simplices. If the points in $S$ are co-circular there
is just one collection: the set of simplices of some triangulation.
If the points in $S$ are not co-circular there are two
collections. One collection consists of the simplices of a nearest
site Delaunay triangulation and the other collection consists of the
simplices of a furthest site Delaunay triangulation.

For each simplex of maximal dimension there is a handle of type
|Simplex_handle| and for each vertex of the triangulation there is a
handle of type |Vertex_handle|. Each simplex has |1 + dcur| vertices
indexed from $0$ to |dcur|.  For any simplex $s$ and any index $i$,
|DT.vertex_of(s,i)| returns the $i$-th vertex of $s$. There may or may
not be a simplex $t$ opposite to the vertex of $s$ with index $i$.
The function |DT.opposite_simplex(s,i)| returns $t$ if it exists and
returns |Simplex_handle()| otherwise. If $t$ exists then $s$ and $t$
share |dcur| vertices, namely all but the vertex with index $i$ of $s$
and the vertex with index
|DT.index_of_vertex_in_opposite_simplex(s,i)| of $t$.  Assume that $t
= |DT.opposite_simplex(s,i)|$ exists and let $j =
|DT.index_of_vertex_in_opposite_simplex(s,i)|$. Then |s =
DT.opposite_simplex(t,j)| and |i =
DT.index_of_vertex_in_opposite_simplex(t,j)|.  In general, a vertex
belongs to many simplices.

Any simplex of |\Mvar| belongs either to the nearest or to the
furthest site Delaunay triangulation or both. The test
|DT.simplex_of_nearest(dt_simplex s)| returns true if |s| belongs to
the nearest site triangulation and the test
|DT.simplex_of_furthest(dt_simplex s)| returns true if |s| belongs to
the furthest site triangulation.
}*/

#include <CGAL/Unique_hash_map.h>
#include <CGAL/Convex_hull_d.h>

namespace CGAL {

template <typename R_, typename Lifted_R_ = R_>
class Delaunay_d : public Convex_hull_d<Lifted_R_>
{ 
typedef Delaunay_d<R_,Lifted_R_> Self;
typedef Convex_hull_d<Lifted_R_> Base;

  using Base::origin_simplex_;

public:

  using Base::associate_vertex_with_simplex;
  using Base::dcur;
  using Base::hyperplane_supporting;
  using Base::visited_mark;
  using Base::is_bounded_simplex;
  using Base::is_unbounded_simplex;
  using Base::clear_visited_marks;
  using Base::is_dimension_jump;
  using Base::point_of_simplex;
  using Base::point_of_facet;
  using Base::vertex_of_facet;

/*{\Mgeneralization Convex_hull_d<Lifted_R>}*/

/*{\Mtypes 7}*/
typedef R_ R;
typedef Lifted_R_ Lifted_R;

typedef typename Base::Simplex_handle Simplex_handle;
/*{\Mtypemember handles to the simplices of the complex.}*/

typedef typename Base::Vertex_handle Vertex_handle;
/*{\Mtypemember handles to vertices of the complex.}*/

typedef typename Base::Simplex_const_handle Simplex_const_handle;
typedef typename Base::Vertex_const_handle Vertex_const_handle;

class Simplex_iterator;
class Simplex_const_iterator;
friend class Simplex_iterator;
friend class Simplex_const_iterator;

typedef typename R::Point_d Point_d;
/*{\Mtypemember the point type}*/
typedef typename R::Sphere_d Sphere_d;
/*{\Mtypemember the sphere type}*/
typedef typename R::FT FT;

typedef typename Lifted_R::Point_d Lifted_point_d;
typedef typename Lifted_R::Vector_d Lifted_vector_d;
typedef typename Lifted_R::Hyperplane_d Lifted_hyperplane_d;
typedef typename Lifted_R::RT RT;

enum Delaunay_voronoi_kind { NEAREST, FURTHEST };
/*{\Menum interface flags}*/

/*{\Mtext To use these types you can typedef them into the global
scope after instantiation of the class. We use |Vertex_handle| instead
of |\Mname::Vertex_handle| from now on. Similarly we use
|Simplex_handle|.}*/
private:
  enum type_of_S { unknown, non_cocircular, cocircular };  
  type_of_S ts;

  const R& Delaunay_kernel_;

  enum type_of_facet { lower_hull, upper_hull, vertical };

  type_of_facet type_of(typename Base::Facet_const_handle f) const
  /*{\Xop returns the type of the facet $f$.}*/
  { typename Lifted_R::Orthogonal_vector_d ortho =
      lifted_kernel().orthogonal_vector_d_object();
    Lifted_vector_d normal = ortho(hyperplane_supporting(f));
    typename Lifted_R::Component_accessor_d access =
      lifted_kernel().component_accessor_d_object();
    int d = CGAL_NTS sign( 
      access.homogeneous(normal,access.dimension(normal)-1));
    if (d > 0) return upper_hull;
    if (d < 0) return lower_hull;
    return vertical;
  }

  type_of_facet type_of(typename Base::Facet_handle f) const
  { return type_of(static_cast<typename Base::Facet_const_handle>(f)); }


  bool incident_simplex_search(Vertex_handle v, Simplex_handle s) const;

public:
  
  typedef typename Base::Point_const_iterator Point_const_iterator;
  /*{\Mtypemember the iterator for points.}*/

  typedef typename Base::Vertex_iterator Vertex_iterator;
  /*{\Mtypemember the iterator for vertices.}*/

  typedef typename Base::Simplex_iterator CH_simplex_iterator;
  typedef typename Base::Simplex_const_iterator CH_simplex_const_iterator;

  class Simplex_iterator 
  /*{\Mtypemember the iterator for simplices.}*/ 
    : public CH_simplex_iterator 
  {
    typedef Delaunay_d<R,Lifted_R> Delaunay;
    typedef CH_simplex_iterator Base_iterator;

    Delaunay* DT;
    type_of_facet tf;
    Base_iterator base() { return Base_iterator(*this); }
  public:
    Simplex_iterator(Base_iterator y = Base_iterator()) : 
      Base_iterator(y) {}

    Simplex_iterator(Delaunay* x,  Base_iterator y, 
      Delaunay_voronoi_kind z = NEAREST) : Base_iterator(y), DT(x) 
    /* if the facet is not nil we set the current marker to
       the facet and insert all it's neighbors into the
       candidates stack */
    { CGAL_assertion(base() != Base_iterator());
      tf = (z == NEAREST ? lower_hull : upper_hull); 
      bool cocirc = DT->is_S_cocircular();
      // Note [Sylvain,2007-03-08] : I added some parentheses to fix a warning,
      // I hope I got the logic right.
      // Note: I have add a new pair of parentheses. Laurent Rineau, 2010/08/20
      while ( base() != DT->simplices_end() &&
              !( ( cocirc && DT->is_bounded_simplex(base()) ) ||
                ( ( !cocirc && DT->is_unbounded_simplex(base()) ) && 
                  DT->type_of(base()) == tf ) ) ) {
         Base_iterator::operator++();
      }
    }

    Simplex_iterator(const Simplex_iterator& it) : Base_iterator(it) {}

    Simplex_iterator& operator++()
    /* here we get a new candidate from the stack
       and insert all its not-visited neighbors */
    { 
      bool cocirc = DT->is_S_cocircular();
      do {
        Base_iterator::operator++();
      // Note [Sylvain,2007-03-08] : I added some parentheses to fix a warning,
      // I hope I got the logic right.
      // Note: I have add a new pair of parentheses. Laurent Rineau, 2010/08/20
      } while ( base() != DT->simplices_end() &&
                !( ( cocirc && DT->is_bounded_simplex(base()) ) ||
                   ( ( !cocirc && DT->is_unbounded_simplex(base()) ) && 
                   DT->type_of(base()) == tf ) ) );
      return *this; 
    }
    Simplex_iterator  operator++(int) 
    { Simplex_iterator tmp = *this; ++(*this); return tmp; }

    // change modus:
    typedef std::forward_iterator_tag iterator_category;
  private:
    Simplex_iterator  operator--(int);
    Simplex_iterator& operator--();

  }; // Simplex_iterator


  class Simplex_const_iterator : public CH_simplex_const_iterator {
    typedef Delaunay_d<R,Lifted_R> Delaunay;
    typedef CH_simplex_const_iterator Base_iterator;

    const Delaunay* DT;
    type_of_facet tf;
    Base_iterator base() { return Base_iterator(*this); }
  public:
    Simplex_const_iterator(Base_iterator y = Base_iterator()) : 
      Base_iterator(y) {}

    Simplex_const_iterator(const Delaunay* x,  Base_iterator y, 
      Delaunay_voronoi_kind z = NEAREST) : Base_iterator(y), DT(x) 
    /* if the facet is not nil we set the current marker to
       the facet and insert all it's neighbors into the
       candidates stack */
    { CGAL_assertion(base() != Base_iterator());
      tf = (z == NEAREST ? lower_hull : upper_hull); 
      bool cocirc = const_cast<Delaunay*>(DT)->is_S_cocircular();
      while ( (base() != DT->simplices_end()) &&
              !( (cocirc && DT->is_bounded_simplex(base())) ||
                 (!cocirc && DT->is_unbounded_simplex(base()) && 
                  DT->type_of(base()) == tf ) ) ) {
         Base_iterator::operator++();
      }
    }

    Simplex_const_iterator(const Simplex_const_iterator& it) : 
      Base_iterator(it) {}

    Simplex_const_iterator& operator++()
    /* here we get a new candidate from the stack
       and insert all its not-visited neighbors */
    { 
      bool cocirc = const_cast<Delaunay*>(DT)->is_S_cocircular();
      do {
        Base_iterator::operator++();
      } while ( (base() != DT->simplices_end()) &&
                !( (cocirc && DT->is_bounded_simplex(base())) ||
                   (!cocirc && DT->is_unbounded_simplex(base()) && 
                    DT->type_of(base()) == tf ) ) ); 
      return *this; 
    }
    Simplex_const_iterator  operator++(int) 
    { Simplex_iterator tmp = *this; ++(*this); return tmp; }

    // change modus:
    typedef std::forward_iterator_tag iterator_category;
  private:
    Simplex_const_iterator  operator--(int);
    Simplex_const_iterator& operator--();

  }; // Simplex_iterator




  void project(Regular_complex_d<R>& RC, int which = -1) const;
  /*{\Xop projects the upper (|which = 1|) or lower (|which = -1|) hull
  into regular complex |RC|. }*/

    
  bool is_S_cocircular();
  /*{\Xop returns |true| if the points of |S| are cocircular and returns
  |false| otherwise}*/

  /*{\Mcreation 3}*/

  Delaunay_d(int d, const R& k1 = R(), const Lifted_R& k2 = Lifted_R())
  /*{\Mcreate creates an instance |\Mvar| of type |\Mtype|. The
  dimension of the underlying space is $d$ and |S| is initialized to the
  empty point set. The traits class |R| specifies the models of
  all types and the implementations of all geometric primitives used by
  the Delaunay class. The traits class |Lifted_R| specifies the models of
  all types and the implementations of all geometric primitives used by
  the base class of |\Mname|. The second template parameter defaults to
  the first: |Delaunay_d<R> = Delaunay_d<R, Lifted_R = R >|.}*/
   : Base(d+1,k2), Delaunay_kernel_(k1) { ts = unknown; }

  /*{\Mtext Both template arguments have to be models that fit a
  subset of requirements of the d-dimensional kernel. We list them at
  the end of this manual page.}*/

  const R& kernel() const { return Delaunay_kernel_; }
  const R& lifted_kernel() const { return Base::kernel(); }

  private:
  /*{\Mtext The data type |\Mtype| offers neither copy constructor nor
  assignment operator.}*/
  Delaunay_d(const Self&); 
  Self& operator=(const Self&);
  public:


  /*{\Moperations 3 3}*/
  /*{\Mtext All operations below that take a point |x| as an argument
  have the common precondition that $|x.dimension()| = |\Mvar.dimension()|$.}*/

  int dimension() const 
  /*{\Mop returns the dimension of ambient space}*/
  { return (Base::dimension() - 1); } 

  int current_dimension() const
  /*{\Mop returns the affine dimension of the current point set, i.e.,
  $-1$ is $S$ is empty, $0$ if $S$ consists of a single point,
  $1$ if all points of $S$ lie on a common line, etcetera.}*/
  { int d = Base::current_dimension();
    if (d == -1) return d;
    return ( const_cast<Self*>(this)->is_S_cocircular() ? d : d-1 );
  }

  bool is_simplex_of_nearest(Simplex_handle s) const
  /*{\Mop returns true if |s| is a simplex of the nearest site 
  triangulation.}*/
  { if ( const_cast<Self*>(this)->is_S_cocircular() ) return true;
    return ( type_of(s) == lower_hull );
  }

  bool is_simplex_of_furthest(Simplex_handle s) const
  /*{\Mop returns true if |s| is a simplex of the furthest site 
  triangulation.}*/
  { if ( const_cast<Self*>(this)->is_S_cocircular() ) return true;
    return (type_of(s) == upper_hull);
  }  

  bool is_simplex_of_nearest(Simplex_const_handle s) const
  { if ( const_cast<Self*>(this)->is_S_cocircular() ) return true;
    return ( type_of(s) == lower_hull );
  }
  bool is_simplex_of_furthest(Simplex_const_handle s) const
  { if ( const_cast<Self*>(this)->is_S_cocircular() ) return true;
    return (type_of(s) == upper_hull);
  }  

     
  Vertex_handle vertex_of_simplex(Simplex_handle s, int i) const
  /*{\Mop returns the vertex associated with the $i$-th node of $s$.
  \precond $0 \leq i \leq |dcur|$. }*/
  { if ( const_cast<Self*>(this)->is_S_cocircular() )
      return Base::vertex_of_simplex(s,i);
    else 
     return Base::vertex_of_simplex(s,i+1);
  }

  Vertex_const_handle vertex_of_simplex(Simplex_const_handle s, 
                                        int i) const
  { if ( const_cast<Self*>(this)->is_S_cocircular() )
      return Base::vertex_of_simplex(s,i);
    else 
      return Base::vertex_of_simplex(s,i+1);
  }

  Point_d associated_point(Vertex_handle v) const
  /*{\Mop returns the point associated with vertex $v$.}*/
  { typename Lifted_R::Project_along_d_axis_d project =
      lifted_kernel().project_along_d_axis_d_object();
    return project(Base::associated_point(v)); }

  Point_d associated_point(Vertex_const_handle v) const
  { typename Lifted_R::Project_along_d_axis_d project =
      lifted_kernel().project_along_d_axis_d_object();
    return project(Base::associated_point(v)); }

  Point_d point_of_simplex(Simplex_handle s,int i) const
  /*{\Mop returns the point associated with the $i$-th vertex of $s$.
  \precond $0 \leq i \leq |dcur|$. }*/
  { return associated_point(vertex_of_simplex(s,i)); }

  Point_d point_of_simplex(Simplex_const_handle s,int i) const
  { return associated_point(vertex_of_simplex(s,i)); }


  Simplex_handle opposite_simplex(Simplex_handle s, int i) const
  /*{\Mop returns the simplex opposite to the $i$-th vertex of $s$
  (|Simplex_handle()| if there is no such simplex).
  \precond $0 \leq i \leq |dcur|$. }*/
  { 
    if ( const_cast<Self*>(this)->is_S_cocircular() ) {
      Simplex_handle f = Base::opposite_simplex(s,i);
      return ( Base::is_unbounded_simplex(f) ? 
	       Simplex_handle() : f );    
    } else {
      Simplex_handle f = Base::opposite_simplex(s,i+1);
      return ( type_of(f) == type_of(s) ? f : Simplex_handle() );
    }
  }  

  Simplex_const_handle opposite_simplex(Simplex_const_handle s, 
                                        int i) const
  { 
    if ( const_cast<Self*>(this)->is_S_cocircular() ) {
      Simplex_const_handle f = Base::opposite_simplex(s,i);
      return ( Base::is_unbounded_simplex(f) ? 
	       Simplex_const_handle() : f );    
    } else {
      Simplex_const_handle f = Base::opposite_simplex(s,i+1);
      return ( type_of(f) == type_of(s) ? f : Simplex_const_handle() );
    }
  }  
   
  int index_of_vertex_in_opposite_simplex(Simplex_handle s,int i) const
  /*{\Mop returns the index of the vertex opposite to the $i$-th vertex 
  of $s$. \precond $0 \leq i \leq |dcur|$.}*/
  { 
    if ( const_cast<Self*>(this)->is_S_cocircular() ) 
      return Base::index_of_vertex_in_opposite_simplex(s,i);
    else
      return Base::index_of_vertex_in_opposite_simplex(s,i+1) - 1; 
  }  

  int index_of_vertex_in_opposite_simplex(Simplex_const_handle s,
                                          int i) const
  { 
    if ( const_cast<Self*>(this)->is_S_cocircular() ) 
      return Base::index_of_vertex_in_opposite_simplex(s,i);
    else
      return Base::index_of_vertex_in_opposite_simplex(s,i+1) - 1; 
  }  

  Simplex_handle simplex(Vertex_handle v) const;
  /*{\Mop returns a simplex of the nearest site triangulation incident 
  to $v$.}*/

  int index(Vertex_handle v) const;
  /*{\Mop returns the index of $v$ in |\Mvar.simplex(v)|.}*/

  bool  contains(Simplex_handle s, const Point_d& x) const;
  /*{\Mop returns true if |x| is contained in the closure of simplex |s|.}*/

  bool empty() const
  /*{\Mop  decides whether |\Mvar| is empty.}*/
  { return (current_dimension() == -1); }

  void clear()
  /*{\Mop reinitializes |\Mvar| to the empty Delaunay triangulation.}*/
  { int d = dimension(); Base::clear(d + 1);
    ts = unknown;
  }


  Vertex_handle insert(const Point_d& x)
  /*{\Mop inserts point $x$ into |\Mvar| and returns the corresponding
  |Vertex_handle|.  More precisely, if there is already a vertex |v| in
  |\Mvar| positioned at $x$ (i.e., |associated_point(v)| is equal to
  |x|) then |associated_point(v)| is changed to |x| (i.e.,
  |associated_point(v)| is made identical to |x|) and if there is no
  such vertex then a new vertex $v$ with |associated_point(v) = x| is
  added to |\Mvar|.  In either case, $v$ is returned.}*/
  { ts = unknown;
    typename Lifted_R::Lift_to_paraboloid_d lift =
      lifted_kernel().lift_to_paraboloid_d_object();
    return Base::insert(lift(x));
  }


  Simplex_handle locate(const Point_d& x) const;
  /*{\Mop returns a simplex of the nearest site triangulation
  containing |x| in its closure (returns |Simplex_handle()| if |x| lies 
  outside the convex hull of $S$).}*/


  Vertex_handle lookup(const Point_d& x) const
  /*{\Mop if |\Mvar| contains a vertex $v$ with |associated_point(v) = x| 
  the result is $v$ otherwise the result is |Vertex_handle()|. }*/
  { 
    Simplex_handle s = locate(x);
    if ( s == Simplex_handle() ) return Vertex_handle();
    for (int i = 0; i <= current_dimension(); i++) {
      Vertex_handle v = vertex_of_simplex(s,i);
      if (v!=this->anti_origin_ && x == associated_point(v) ) return v;
    }
    return Vertex_handle();
  }


  Vertex_handle nearest_neighbor(const Point_d& x) const;
  /*{\Mop computes a vertex $v$ of |\Mvar| that is closest to $x$,
  i.e.,\\ $|dist(x,associated_point(v))| = \min \{ 
  |dist(x, associated_point(u))| \mid u \in S\ \}$.}*/

  /*{\Mtext \setopdims{5cm}{1cm}}*/
  std::list<Vertex_handle> 
  range_search(const Sphere_d& C) const;
  /*{\Mop returns the list of all vertices contained in the closure of 
  sphere $C$.}*/

  std::list<Vertex_handle>
  range_search(const std::vector<Point_d>& A) const;
  /*{\Mop returns the list of all vertices contained in the closure of
  the simplex whose corners are given by |A|.
  \precond |A| must consist of $d+1$ affinely independent points
  in base space.}*/


  void all_vertices_below(const Lifted_hyperplane_d& h, 
                          Simplex_handle s, 
                          std::list<Vertex_handle>& result,
                          Unique_hash_map<Vertex_handle,bool>& is_new,
                          bool is_cocircular) const;


  std::list<Simplex_handle> 
  all_simplices(Delaunay_voronoi_kind k = NEAREST) const;
  /*{\Mop returns a list of all simplices of either the nearest or the
          furthest site Delaunay triangulation of |S|.}*/


  std::list<Vertex_handle> 
  all_vertices(Delaunay_voronoi_kind k = NEAREST) const;
  /*{\Mop returns a list of all vertices of either the nearest or the
  furthest site Delaunay triangulation of |S|.}*/

  std::list<Point_d> all_points() const;
  /*{\Mop returns $S$. }*/

  Point_const_iterator points_begin() const
  /*{\Mop returns the start iterator for points in |\Mvar|.}*/
  { return Point_const_iterator(Base::points_begin()); }

  Point_const_iterator points_end() const
  /*{\Mop returns the past the end iterator for points in |\Mvar|.}*/
  { return Point_const_iterator(Base::points_end()); }

  Simplex_iterator simplices_begin(Delaunay_voronoi_kind k = NEAREST)
  /*{\Mop returns the start iterator for simplices of |\Mvar|.}*/
  { return Simplex_iterator(this,Base::simplices_begin(),k); }


  Simplex_iterator simplices_end()
  /*{\Mop returns the past the end iterator for simplices of |\Mvar|.}*/
  { return Simplex_iterator(Base::simplices_end()); }


  Simplex_const_iterator 
  simplices_begin(Delaunay_voronoi_kind k = NEAREST) const
  { return Simplex_const_iterator(this,Base::simplices_begin(),k); }

  Simplex_const_iterator simplices_end() const
  { return Simplex_const_iterator(Base::simplices_end()); }


  /*{\Mimplementation The data type is derived from |Convex_hull_d| via
  the lifting map. For a point $x$ in $d$-dimensional space let
  |lift(x)| be its lifting to the unit paraboloid of revolution. There
  is an intimate relationship between the Delaunay triangulation of a
  point set $S$ and the convex hull of |lift(S)|: The nearest site
  Delaunay triangulation is the projection of the lower hull and the
  furthest site Delaunay triangulation is the upper hull.  For
  implementation details we refer the reader to the implementation
  report available from the CGAL server.

  The space requirement is the same as for convex hulls. The time
  requirement for an insert is the time to insert the lifted point
  into the convex hull of the lifted points.}*/

  /*{\Mexample 

  The abstract data type |Delaunay_d| has a default instantiation by
  means of the $d$-dimensional geometric kernel.

  \begin{Mverb}
  #include <CGAL/Homogeneous_d.h>
  #include <CGAL/leda_integer.h>
  #include <CGAL/Delaunay_d.h>

  typedef leda_integer RT;
  typedef CGAL::Homogeneous_d<RT> Kernel;
  typedef CGAL::Delaunay_d<Kernel> Delaunay_d;
  typedef Delaunay_d::Point_d Point;
  typedef Delaunay_d::Simplex_handle Simplex_handle;
  typedef Delaunay_d::Vertex_handle Vertex_handle;

  int main()
  {
    Delaunay_d T(2);
    Vertex_handle v1 = T.insert(Point_d(2,11));
    ...
  }
  \end{Mverb}
  }*/

  /*{\Mtext\headerline{Traits requirements}

  |\Mname| requires the following types from the kernel traits |Lifted_R|:
  \begin{Mverb}
    RT Point_d Vector_d Ray_d Hyperplane_d 
  \end{Mverb}
  and uses the following function objects from the kernel traits:
  \begin{Mverb}
    Construct_hyperplane_d
    Construct_vector_d
    Vector_to_point_d / Point_to_vector_d
    Orientation_d
    Orthogonal_vector_d
    Oriented_side_d / Has_on_positive_side_d
    Affinely_independent_d
    Contained_in_simplex_d
    Contained_in_affine_hull_d
    Intersect_d
    Lift_to_paraboloid_d / Project_along_d_axis_d
    Component_accessor_d
  \end{Mverb}
  |\Mname| requires the following types from the kernel traits |R|:
  \begin{Mverb}
    FT Point_d Sphere_d 
  \end{Mverb}
  and uses the following function objects from the kernel traits |R|:
  \begin{Mverb}
    Construct_sphere_d
    Squared_distance_d
    Point_of_sphere_d
    Affinely_independent_d
    Contained_in_simplex_d
  \end{Mverb}
  }*/



}; // Delaunay_d<R,Lifted_R>

template <typename R, typename Lifted_R>
void Delaunay_d<R,Lifted_R>::project(Regular_complex_d<R>& RC, int which) const
{
  RC.clear(dimension());
  Delaunay_voronoi_kind k = (which == -1 ? NEAREST : FURTHEST);
  Unique_hash_map<Simplex_const_handle, Simplex_handle > project_simps;
  Unique_hash_map<Vertex_const_handle,  Vertex_handle >  project_verts;
  int dc = current_dimension();
  RC.set_current_dimension(dc);

  Simplex_const_iterator f;
  for(f =  simplices_begin(k); f != simplices_end(); ++f) {
    Simplex_handle s = project_simps[f] = RC.new_simplex();
    for (int i = 0; i <= dc; i++) {
      Vertex_const_handle v = vertex_of_simplex(f,i);
      Vertex_handle pv = project_verts[v];
      if ( pv == Vertex_handle() ) {
        Point_d x = associated_point(v);
        pv = project_verts[v] = RC.new_vertex(x);
      }
      RC.associate_vertex_with_simplex(s,i,pv);
    }
  }

  /* in a second pass we set up neighbor connections */
  Simplex_iterator s,t;
  for(f =  simplices_begin(k); f != simplices_end(); ++f) {
    s = project_simps[f];
    if ( s != Simplex_handle() ) {
      for (int i = 0; i <= dc; i++) {
        t = project_simps[opposite_simplex(f,i)];
        if ( dc > 0 && t != Simplex_handle() ) {
          RC.set_neighbor(s,i,t,
                          index_of_vertex_in_opposite_simplex(f,i)); 
        }
      }
    }
  }
}


template <typename R, typename Lifted_R>
bool Delaunay_d<R,Lifted_R>::is_S_cocircular() 
{ 
  if (ts == unknown) {
    int d = Base::current_dimension();
    std::vector<Lifted_point_d> A(d + 1);
    typename Lifted_R::Project_along_d_axis_d project =
      lifted_kernel().project_along_d_axis_d_object();
    for (int i = 0; i <= d; i++)
      A[i] = project( Base::point_of_simplex(origin_simplex_,i));

    typename Lifted_R::Affinely_independent_d affinely_independent =
      lifted_kernel().affinely_independent_d_object();
    ts = ( affinely_independent(A.begin(),A.end()) ? 
           cocircular : non_cocircular );
    if ( d == -1 && ts != cocircular )
      CGAL_error_msg(        "affinely independent works incorrectly for empty set");
  }
  return (ts == cocircular);
}


template <typename R, typename Lifted_R> 
bool Delaunay_d<R,Lifted_R>::
incident_simplex_search(Vertex_handle v, Simplex_handle s) const
{ 
  visited_mark(s) = true;
  if ( const_cast<Self*>(this)->is_S_cocircular() == 
       is_bounded_simplex(s) ) {
    // we have found a simplex of the desired kind 
    int low = ( is_unbounded_simplex(s) ? 1 : 0 );
    for ( int i = low; i <= Base::current_dimension(); i++) {
      if ( v == Base::vertex_of_simplex(s,i) ) {
        const_cast<Self*>(this)->associate_vertex_with_simplex(s,i,v); 
        return true;
      }
    }
    CGAL_error_msg(      "Delaunay_d::incident_simplex_search: unreachable point.");
  }

  /* s does not have the desired kind; we visit all neighbors except
     the one opposite v */

  bool incident = false;
  register int j;
  for (j = 0; j <= dcur; j++)
    if ( Base::vertex_of_simplex(s,j) == v ) incident = true;
  if ( !incident ) 
    CGAL_error_msg("reached a simplex that is not incident to v");

  for (j = 0; j <= Base::current_dimension(); j++) {
    Simplex_handle t = Base::opposite_simplex(s,j);
    if ( Base::vertex_of_simplex(s,j) != v && !visited_mark(t)  &&
         incident_simplex_search(v,t) ) 
      return true;    
  }
  return false;
}

template <typename R, typename Lifted_R> 
typename Delaunay_d<R,Lifted_R>::Simplex_handle 
Delaunay_d<R,Lifted_R>::simplex(Vertex_handle v) const
{ 
  Simplex_handle s = Base::simplex(v);
  if ( Base::vertex_of_simplex(s,Base::index(v)) != v )
    CGAL_error_msg("Delaunay_d::simplex: s is not incident to v.");
  incident_simplex_search(v,s);
  clear_visited_marks(s);
  return Base::simplex(v);
}

template <typename R, typename Lifted_R>
int Delaunay_d<R,Lifted_R>::index(Vertex_handle v) const
{ simplex(v);
  int i = Base::index(v);
  return ( const_cast<Self*>(this)->is_S_cocircular() ?  i : i-1);
}

template <typename R, typename Lifted_R>
bool Delaunay_d<R,Lifted_R>::
contains(Simplex_handle s, const Point_d& x) const
{ int d = current_dimension();
  if (d < 0) return false;
  std::vector<Point_d> A;
  A.reserve(d + 1);
  for (int i = 0; i <= d; i++){ 
    Vertex_handle vh = vertex_of_simplex(s,i);
    if (vh!=this->anti_origin_)
      A.push_back( associated_point(vh) );
  }
  typename R::Contained_in_simplex_d contained_in_simplex =
    kernel().contained_in_simplex_d_object();
  return contained_in_simplex(A.begin(),A.end(),x);
}


template <typename R, typename Lifted_R>
typename Delaunay_d<R,Lifted_R>::Simplex_handle
Delaunay_d<R,Lifted_R>::
locate(const Point_d& x) const
{ 
  int d = current_dimension();
  if (d < 0) return Simplex_handle();
  if ( d == 0 ) {
    if ( x == point_of_simplex(origin_simplex_,0) )
      return origin_simplex_;
    else
      return Simplex_handle();
  }
  typename Lifted_R::Lift_to_paraboloid_d lift =
    lifted_kernel().lift_to_paraboloid_d_object();;
  Lifted_point_d lp = lift(x);
  if ( is_dimension_jump(lp) ) {
    Simplex_iterator s;
    for (s = const_cast<Self*>(this)->simplices_begin(NEAREST); 
         s != const_cast<Self*>(this)->simplices_end(); ++s) 
      if ( contains(s,x) ) return s;
    return Simplex_handle();
  }
  // lift(p) is not a dimension jump
  std::list<Simplex_handle> candidates;
  std::size_t dummy1 = 0; 
  int loc = -1; // intialization is important
  Simplex_handle f;
  this -> visibility_search(origin_simplex_,lp,candidates,dummy1,loc,f);
  this -> clear_visited_marks(origin_simplex_);
  //f and simplices in candidates are unbounded simplices only
  if ( f != Simplex_handle() ){
    return f;
  }
  typename std::list<Simplex_handle>::iterator it;
  for(it = candidates.begin(); it != candidates.end(); ++it)
    if ( contains(*it,x) ) return *it;

  return Simplex_handle();
}



template <typename R, typename Lifted_R>
typename Delaunay_d<R,Lifted_R>::Vertex_handle 
Delaunay_d<R,Lifted_R>::
nearest_neighbor(const Point_d& x) const
{ 
  int d = current_dimension();
  if (d < 0) return Vertex_handle();
  if (d == 0) 
    return Base::vertex_of_simplex(origin_simplex_,0);
  
  typename Lifted_R::Lift_to_paraboloid_d lift =
    lifted_kernel().lift_to_paraboloid_d_object();;
  Lifted_point_d lp = lift(x);
  std::list<Simplex_handle> candidates;
 
  if ( is_dimension_jump(lp) )
    candidates = all_simplices(NEAREST);
  else {
    // lift(x) is not a dimension jump
    std::size_t dummy1 = 0; 
    int location = -1;
    typename Base::Facet_handle f;
    this -> visibility_search(origin_simplex_,lp,candidates,dummy1,location,f);
    this -> clear_visited_marks(origin_simplex_);
    CGAL_assertion_msg( location != -1,
      "Delaunay_d::nearest_neighbor: location cannot be -1");
    if (location == 0) {
      // x must be one of the corners of f
      for (int i = 0; i < Base::current_dimension(); i++) {
        if ( point_of_facet(f,i) == lp )  
          return vertex_of_facet(f,i);
      }
      CGAL_error_msg("Delaunay_d::nearest_neighbor: \
      if loc = 1 then lp must be corner of f");
    }
  }

  /* search through the vertices of the candidate simplices */
  if ( candidates.empty() ) 
    CGAL_error_msg("Delaunay_d::nearest_neighbor: candidates is empty");
  Vertex_handle nearest_v = 
    vertex_of_simplex(*candidates.begin(),0);
  typename R::Squared_distance_d sqr_dist =
    kernel().squared_distance_d_object();
  FT min_dist = sqr_dist(x,associated_point(nearest_v));

  typename std::list<Simplex_handle>::iterator it;
  for(it=candidates.begin(); it!=candidates.end(); ++it) {
    for (int i = 0; i <= d ; i++) {
      typename R::Squared_distance_d sqr_dist =
        kernel().squared_distance_d_object();
      FT sidist = sqr_dist(x,point_of_simplex(*it,i));
      if ( sidist < min_dist ) {
        min_dist = sidist ;
        nearest_v = vertex_of_simplex(*it,i);
      }
    }
  }
  return nearest_v;
}

template <typename R, typename Lifted_R>
void Delaunay_d<R,Lifted_R>::
all_vertices_below(const Lifted_hyperplane_d& h, 
                   Simplex_handle s, 
                   std::list< Vertex_handle >& result,
                   Unique_hash_map<Vertex_handle,bool>& is_new,
                   bool is_cocircular) const
{ 
  visited_mark(s) = true;
  bool some_vertex_on_or_below_h = false;
  register int i;
  int low = (is_cocircular ? 0 : 1);
  for (i = low; i <= Base::current_dimension(); i++) {
    Vertex_handle v = Base::vertex_of_simplex(s,i);
    typename Lifted_R::Oriented_side_d side =
      lifted_kernel().oriented_side_d_object();
    if ( !(side(h, Base::associated_point(v)) == ON_POSITIVE_SIDE) ) {
      some_vertex_on_or_below_h = true;
      if ( is_new[v] ) {
        result.push_back(v);
        is_new[v] = false;
      }
    }
  }
        
  if ( !some_vertex_on_or_below_h ) return;
  for (i = low; i <= Base::current_dimension(); i++) {
    Simplex_handle t = Base::opposite_simplex(s,i);
    if ( !visited_mark(t) && 
         (!is_cocircular || is_bounded_simplex(t)) )
      all_vertices_below(h,t,result,is_new,is_cocircular);
  }
}

template <typename R, typename Lifted_R>
std::list< typename Delaunay_d<R,Lifted_R>::Vertex_handle > 
Delaunay_d<R,Lifted_R>::
range_search(const Sphere_d& C) const
{ 
  std::list<Vertex_handle> result;
  int dc = current_dimension();
  if ( dc < 0 ) 
    return result;
  Point_d c = C.center();
  Vertex_handle v = nearest_neighbor(c);
  if ( dc == 0 ) {
    if ( C.has_on_bounded_side(associated_point(v)) ) 
      result.push_back(v); return result;
  }
  Simplex_handle s = simplex(v);
  bool is_cocircular = const_cast<Self*>(this)->is_S_cocircular();
  Unique_hash_map<Vertex_handle,bool> is_new(true);
  int d = dimension();
  std::vector<Lifted_point_d> P(d + 1);
  typename Lifted_R::Lift_to_paraboloid_d lift =
    lifted_kernel().lift_to_paraboloid_d_object();
  typename R::Point_of_sphere_d point_of_sphere =
    kernel().point_of_sphere_d_object();
  for (int i = 0; i <= d; i++)  
    P[i] = lift(point_of_sphere(C,i));
  typedef typename Lifted_vector_d::Base_vector Base_vector;
  Lifted_point_d o = P[0] - 
    Lifted_vector_d(d+1,Base_vector(),d);
  typename Lifted_R::Construct_hyperplane_d hyperplane_trough =
    lifted_kernel().construct_hyperplane_d_object();
  Lifted_hyperplane_d h = 
    hyperplane_trough(P.begin(),P.end(),o,ON_NEGATIVE_SIDE);  
  // below is negative
  all_vertices_below(h,s,result,is_new,is_cocircular);
  clear_visited_marks(s);
  return result;
}
  

template <typename R, typename Lifted_R>
std::list< typename Delaunay_d<R,Lifted_R>::Vertex_handle > 
Delaunay_d<R,Lifted_R>::
range_search(const std::vector<Point_d>& A) const
{ 
  typename R::Affinely_independent_d affinely_independent =
    kernel().affinely_independent_d_object();
  CGAL_assertion_msg( affinely_independent(A.begin(),A.end()),
    "Delaunay_d::range_search: simplex must be affinely independent.");
  typename R::Construct_sphere_d sphere_through =
    kernel().construct_sphere_d_object();
  Sphere_d C = sphere_through(dimension(),A.begin(),A.end());
  std::list<Vertex_handle> result;
  std::list<Vertex_handle> candidates = range_search(C);
  typename R::Contained_in_simplex_d contained_in_simplex =
    kernel().contained_in_simplex_d_object();
  typename std::list<Vertex_handle>::iterator it;
  for(it = candidates.begin(); it != candidates.end(); ++it) {
    if ( contained_in_simplex(A.begin(),A.end(),associated_point(*it)) )
      result.push_back(*it);
  }
  return result;
}



template <typename R, typename Lifted_R>
std::list< typename Delaunay_d<R,Lifted_R>::Simplex_handle > 
Delaunay_d<R,Lifted_R>::
all_simplices(Delaunay_voronoi_kind k) const
{ 
  std::list<Simplex_handle> result;
  if ( dcur < 0 ) return result;
  Simplex_iterator s;
  for (s = const_cast<Self*>(this)->simplices_begin(k); 
       s != const_cast<Self*>(this)->simplices_end(); ++s) {
    result.push_back(s); 
  }
  return result;
}

template <typename R, typename Lifted_R>
std::list< typename Delaunay_d<R,Lifted_R>::Vertex_handle > 
Delaunay_d<R,Lifted_R>::
all_vertices(Delaunay_voronoi_kind k) const
{ 
  Unique_hash_map<Vertex_handle,bool> is_new_vertex(true);
  std::list<Vertex_handle> result;
  std::list<Simplex_handle> hull_simplices = all_simplices(k);
  typename std::list<Simplex_handle>::iterator it;
  for (it = hull_simplices.begin(); it != hull_simplices.end(); ++it) {
    for (int i = 0; i <= current_dimension(); i++) {
      Vertex_handle v = vertex_of_simplex(*it,i);
      if ( is_new_vertex[v] ) {
        is_new_vertex[v] = false;
        result.push_back(v);
      }
    }
  }
  return result;
}


template <typename R, typename Lifted_R>
std::list< typename Delaunay_d<R,Lifted_R>::Point_d > 
Delaunay_d<R,Lifted_R>::
all_points() const
{ 
  std::list<Point_d> result;
  std::list<Vertex_handle> all_nearest_verts = all_vertices(NEAREST);
  typename std::list<Vertex_handle>::iterator it;
  for(it = all_nearest_verts.begin(); 
      it != all_nearest_verts.end();
      ++it) 
    result.push_back(associated_point(*it));
  return result;
}


} //namespace CGAL
#endif // CGAL_DELAUNAY_D_H