/usr/include/CGAL/Cartesian/Plane_3.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | // Copyright (c) 2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Andreas Fabri
#ifndef CGAL_CARTESIAN_PLANE_3_H
#define CGAL_CARTESIAN_PLANE_3_H
#include <CGAL/array.h>
#include <CGAL/Handle_for.h>
#include <CGAL/Cartesian/solve_3.h>
#include <CGAL/Cartesian/plane_constructions_3.h>
namespace CGAL {
template <class R_>
class PlaneC3
{
typedef typename R_::FT FT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Direction_3 Direction_3;
typedef typename R_::Line_3 Line_3;
typedef typename R_::Ray_3 Ray_3;
typedef typename R_::Segment_3 Segment_3;
typedef typename R_::Plane_3 Plane_3;
typedef typename R_::Circle_3 Circle_3;
typedef typename R_::Construct_point_3 Construct_point_3;
typedef typename R_::Construct_point_2 Construct_point_2;
typedef cpp11::array<FT, 4> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
PlaneC3() {}
PlaneC3(const Point_3 &p, const Point_3 &q, const Point_3 &r)
{ *this = plane_from_points<R>(p, q, r); }
PlaneC3(const Point_3 &p, const Direction_3 &d)
{ *this = plane_from_point_direction<R>(p, d); }
PlaneC3(const Point_3 &p, const Vector_3 &v)
{ *this = plane_from_point_direction<R>(p, v.direction()); }
PlaneC3(const FT &a, const FT &b, const FT &c, const FT &d)
: base(CGAL::make_array(a, b, c, d)) {}
PlaneC3(const Line_3 &l, const Point_3 &p)
{ *this = plane_from_points<R>(l.point(),
l.point()+l.direction().to_vector(),
p); }
PlaneC3(const Segment_3 &s, const Point_3 &p)
{ *this = plane_from_points<R>(s.start(), s.end(), p); }
PlaneC3(const Ray_3 &r, const Point_3 &p)
{ *this = plane_from_points<R>(r.start(), r.second_point(), p); }
typename R::Boolean operator==(const PlaneC3 &p) const;
typename R::Boolean operator!=(const PlaneC3 &p) const;
const FT & a() const
{
return get(base)[0];
}
const FT & b() const
{
return get(base)[1];
}
const FT & c() const
{
return get(base)[2];
}
const FT & d() const
{
return get(base)[3];
}
Line_3 perpendicular_line(const Point_3 &p) const;
Plane_3 opposite() const;
Point_3 point() const;
Point_3 projection(const Point_3 &p) const;
Vector_3 orthogonal_vector() const;
Direction_3 orthogonal_direction() const;
Vector_3 base1() const;
Vector_3 base2() const;
Point_3 to_plane_basis(const Point_3 &p) const;
Point_2 to_2d(const Point_3 &p) const;
Point_3 to_3d(const Point_2 &p) const;
typename R::Oriented_side oriented_side(const Point_3 &p) const;
typename R::Boolean has_on_positive_side(const Point_3 &l) const;
typename R::Boolean has_on_negative_side(const Point_3 &l) const;
typename R::Boolean has_on(const Point_3 &p) const
{
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
}
typename R::Boolean has_on(const Line_3 &l) const
{
return has_on(l.point())
&& has_on(l.point() + l.direction().to_vector());
}
typename R::Boolean has_on(const Circle_3 &circle) const
{
if(circle.squared_radius() != FT(0)) {
const Plane_3& p = circle.supporting_plane();
if(is_zero(a())) {
if(!is_zero(p.a())) return false;
if(is_zero(b())) {
if(!is_zero(p.b())) return false;
return c() * p.d() == d() * p.c();
}
return (p.c() * b() == c() * p.b()) &&
(p.d() * b() == d() * p.b());
}
return (p.b() * a() == b() * p.a()) &&
(p.c() * a() == c() * p.a()) &&
(p.d() * a() == d() * p.a());
} else return has_on(circle.center());
}
typename R::Boolean is_degenerate() const;
};
template < class R >
CGAL_KERNEL_INLINE
typename R::Boolean
PlaneC3<R>::operator==(const PlaneC3<R> &p) const
{
if (CGAL::identical(base, p.base))
return true;
return equal_plane(*this, p);
}
template < class R >
inline
typename R::Boolean
PlaneC3<R>::operator!=(const PlaneC3<R> &p) const
{
return !(*this == p);
}
template < class R >
inline
typename PlaneC3<R>::Point_3
PlaneC3<R>::point() const
{
return point_on_plane(*this);
}
template < class R >
inline
typename PlaneC3<R>::Point_3
PlaneC3<R>::
projection(const typename PlaneC3<R>::Point_3 &p) const
{
return projection_plane(p, *this);
}
template < class R >
inline
typename PlaneC3<R>::Vector_3
PlaneC3<R>::orthogonal_vector() const
{
return R().construct_orthogonal_vector_3_object()(*this);
}
template < class R >
inline
typename PlaneC3<R>::Direction_3
PlaneC3<R>::orthogonal_direction() const
{
return Direction_3(a(), b(), c());
}
template < class R >
typename PlaneC3<R>::Vector_3
PlaneC3<R>::base1() const
{
return R().construct_base_vector_3_object()(*this, 1);
}
template < class R >
typename PlaneC3<R>::Vector_3
PlaneC3<R>::base2() const
{
return R().construct_base_vector_3_object()(*this, 2);
}
template < class R >
typename PlaneC3<R>::Point_3
PlaneC3<R>::
to_plane_basis(const typename PlaneC3<R>::Point_3 &p) const
{
FT alpha, beta, gamma;
Construct_point_3 construct_point_3;
Cartesian_internal::solve(base1(), base2(), orthogonal_vector(), p - point(),
alpha, beta, gamma);
return construct_point_3(alpha, beta, gamma);
}
template < class R >
typename PlaneC3<R>::Point_2
PlaneC3<R>::
to_2d(const typename PlaneC3<R>::Point_3 &p) const
{
FT alpha, beta, gamma;
Construct_point_2 construct_point_2;
Cartesian_internal::solve(base1(), base2(), orthogonal_vector(), p - point(),
alpha, beta, gamma);
return construct_point_2(alpha, beta);
}
template < class R >
inline
typename PlaneC3<R>::Point_3
PlaneC3<R>::
to_3d(const typename PlaneC3<R>::Point_2 &p) const
{
return R().construct_lifted_point_3_object()(*this, p);
}
template < class R >
inline
typename PlaneC3<R>::Line_3
PlaneC3<R>::
perpendicular_line(const typename PlaneC3<R>::Point_3 &p) const
{
return Line_3(p, orthogonal_direction());
}
template < class R >
inline
typename PlaneC3<R>::Plane_3
PlaneC3<R>::opposite() const
{
return PlaneC3<R>(-a(), -b(), -c(), -d());
}
template < class R >
inline
typename R::Oriented_side
PlaneC3<R>::
oriented_side(const typename PlaneC3<R>::Point_3 &p) const
{
return side_of_oriented_plane(*this, p);
}
template < class R >
inline
typename R::Boolean
PlaneC3<R>::
has_on_positive_side(const typename PlaneC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
template < class R >
inline
typename R::Boolean
PlaneC3<R>::
has_on_negative_side(const typename PlaneC3<R>::Point_3 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
template < class R >
inline
typename R::Boolean
PlaneC3<R>::
is_degenerate() const
{ // FIXME : predicate
return CGAL_NTS is_zero(a()) && CGAL_NTS is_zero(b()) &&
CGAL_NTS is_zero(c());
}
} //namespace CGAL
#endif // CGAL_CARTESIAN_PLANE_3_H
|