This file is indexed.

/usr/include/bullet/BulletSoftBody/btSoftBody.h is in libbullet-dev 2.82-r2704+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btSoftBody implementation by Nathanael Presson

#ifndef _BT_SOFT_BODY_H
#define _BT_SOFT_BODY_H

#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btIDebugDraw.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"

#include "BulletCollision/CollisionShapes/btConcaveShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "btSparseSDF.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"

//#ifdef BT_USE_DOUBLE_PRECISION
//#define btRigidBodyData	btRigidBodyDoubleData
//#define btRigidBodyDataName	"btRigidBodyDoubleData"
//#else
#define btSoftBodyData	btSoftBodyFloatData
#define btSoftBodyDataName	"btSoftBodyFloatData"
//#endif //BT_USE_DOUBLE_PRECISION

class btBroadphaseInterface;
class btDispatcher;
class btSoftBodySolver;

/* btSoftBodyWorldInfo	*/ 
struct	btSoftBodyWorldInfo
{
	btScalar				air_density;
	btScalar				water_density;
	btScalar				water_offset;
	btScalar				m_maxDisplacement;
	btVector3				water_normal;
	btBroadphaseInterface*	m_broadphase;
	btDispatcher*	m_dispatcher;
	btVector3				m_gravity;
	btSparseSdf<3>			m_sparsesdf;

	btSoftBodyWorldInfo()
		:air_density((btScalar)1.2),
		water_density(0),
		water_offset(0),
		m_maxDisplacement(1000.f),//avoid soft body from 'exploding' so use some upper threshold of maximum motion that a node can travel per frame
		water_normal(0,0,0),
		m_broadphase(0),
		m_dispatcher(0),
		m_gravity(0,-10,0)
	{
	}
};	


///The btSoftBody is an class to simulate cloth and volumetric soft bodies. 
///There is two-way interaction between btSoftBody and btRigidBody/btCollisionObject.
class	btSoftBody : public btCollisionObject
{
public:
	btAlignedObjectArray<const class btCollisionObject*> m_collisionDisabledObjects;

	// The solver object that handles this soft body
	btSoftBodySolver *m_softBodySolver;

	//
	// Enumerations
	//

	///eAeroModel 
	struct eAeroModel { enum _ {
		V_Point,			///Vertex normals are oriented toward velocity
		V_TwoSided,			///Vertex normals are flipped to match velocity	
		V_TwoSidedLiftDrag, ///Vertex normals are flipped to match velocity and lift and drag forces are applied
		V_OneSided,			///Vertex normals are taken as it is	
		F_TwoSided,			///Face normals are flipped to match velocity
		F_TwoSidedLiftDrag,	///Face normals are flipped to match velocity and lift and drag forces are applied 
		F_OneSided,			///Face normals are taken as it is		
		END
	};};

	///eVSolver : velocities solvers
	struct	eVSolver { enum _ {
		Linear,		///Linear solver
		END
	};};

	///ePSolver : positions solvers
	struct	ePSolver { enum _ {
		Linear,		///Linear solver
		Anchors,	///Anchor solver
		RContacts,	///Rigid contacts solver
		SContacts,	///Soft contacts solver
		END
	};};

	///eSolverPresets
	struct	eSolverPresets { enum _ {
		Positions,
		Velocities,
		Default	=	Positions,
		END
	};};

	///eFeature
	struct	eFeature { enum _ {
		None,
		Node,
		Link,
		Face,
		Tetra,
		END
	};};

	typedef btAlignedObjectArray<eVSolver::_>	tVSolverArray;
	typedef btAlignedObjectArray<ePSolver::_>	tPSolverArray;

	//
	// Flags
	//

	///fCollision
	struct fCollision { enum _ {
		RVSmask	=	0x000f,	///Rigid versus soft mask
		SDF_RS	=	0x0001,	///SDF based rigid vs soft
		CL_RS	=	0x0002, ///Cluster vs convex rigid vs soft

		SVSmask	=	0x0030,	///Rigid versus soft mask		
		VF_SS	=	0x0010,	///Vertex vs face soft vs soft handling
		CL_SS	=	0x0020, ///Cluster vs cluster soft vs soft handling
		CL_SELF =	0x0040, ///Cluster soft body self collision
		/* presets	*/ 
		Default	=	SDF_RS,
		END
	};};

	///fMaterial
	struct fMaterial { enum _ {
		DebugDraw	=	0x0001,	/// Enable debug draw
		/* presets	*/ 
		Default		=	DebugDraw,
		END
	};};

	//
	// API Types
	//

	/* sRayCast		*/ 
	struct sRayCast
	{
		btSoftBody*	body;		/// soft body
		eFeature::_	feature;	/// feature type
		int			index;		/// feature index
		btScalar	fraction;		/// time of impact fraction (rayorg+(rayto-rayfrom)*fraction)
	};

	/* ImplicitFn	*/ 
	struct	ImplicitFn
	{
		virtual btScalar	Eval(const btVector3& x)=0;
	};

	//
	// Internal types
	//

	typedef btAlignedObjectArray<btScalar>	tScalarArray;
	typedef btAlignedObjectArray<btVector3>	tVector3Array;

	/* sCti is Softbody contact info	*/ 
	struct	sCti
	{
		const btCollisionObject*	m_colObj;		/* Rigid body			*/ 
		btVector3		m_normal;	/* Outward normal		*/ 
		btScalar		m_offset;	/* Offset from origin	*/ 
	};	

	/* sMedium		*/ 
	struct	sMedium
	{
		btVector3		m_velocity;	/* Velocity				*/ 
		btScalar		m_pressure;	/* Pressure				*/ 
		btScalar		m_density;	/* Density				*/ 
	};

	/* Base type	*/ 
	struct	Element
	{
		void*			m_tag;			// User data
		Element() : m_tag(0) {}
	};
	/* Material		*/ 
	struct	Material : Element
	{
		btScalar				m_kLST;			// Linear stiffness coefficient [0,1]
		btScalar				m_kAST;			// Area/Angular stiffness coefficient [0,1]
		btScalar				m_kVST;			// Volume stiffness coefficient [0,1]
		int						m_flags;		// Flags
	};

	/* Feature		*/ 
	struct	Feature : Element
	{
		Material*				m_material;		// Material
	};
	/* Node			*/ 
	struct	Node : Feature
	{
		btVector3				m_x;			// Position
		btVector3				m_q;			// Previous step position
		btVector3				m_v;			// Velocity
		btVector3				m_f;			// Force accumulator
		btVector3				m_n;			// Normal
		btScalar				m_im;			// 1/mass
		btScalar				m_area;			// Area
		btDbvtNode*				m_leaf;			// Leaf data
		int						m_battach:1;	// Attached
	};
	/* Link			*/ 
	struct	Link : Feature
	{
		Node*					m_n[2];			// Node pointers
		btScalar				m_rl;			// Rest length		
		int						m_bbending:1;	// Bending link
		btScalar				m_c0;			// (ima+imb)*kLST
		btScalar				m_c1;			// rl^2
		btScalar				m_c2;			// |gradient|^2/c0
		btVector3				m_c3;			// gradient
	};
	/* Face			*/ 
	struct	Face : Feature
	{
		Node*					m_n[3];			// Node pointers
		btVector3				m_normal;		// Normal
		btScalar				m_ra;			// Rest area
		btDbvtNode*				m_leaf;			// Leaf data
	};
	/* Tetra		*/ 
	struct	Tetra : Feature
	{
		Node*					m_n[4];			// Node pointers		
		btScalar				m_rv;			// Rest volume
		btDbvtNode*				m_leaf;			// Leaf data
		btVector3				m_c0[4];		// gradients
		btScalar				m_c1;			// (4*kVST)/(im0+im1+im2+im3)
		btScalar				m_c2;			// m_c1/sum(|g0..3|^2)
	};
	/* RContact		*/ 
	struct	RContact
	{
		sCti		m_cti;			// Contact infos
		Node*					m_node;			// Owner node
		btMatrix3x3				m_c0;			// Impulse matrix
		btVector3				m_c1;			// Relative anchor
		btScalar				m_c2;			// ima*dt
		btScalar				m_c3;			// Friction
		btScalar				m_c4;			// Hardness
	};
	/* SContact		*/ 
	struct	SContact
	{
		Node*					m_node;			// Node
		Face*					m_face;			// Face
		btVector3				m_weights;		// Weigths
		btVector3				m_normal;		// Normal
		btScalar				m_margin;		// Margin
		btScalar				m_friction;		// Friction
		btScalar				m_cfm[2];		// Constraint force mixing
	};
	/* Anchor		*/ 
	struct	Anchor
	{
		Node*					m_node;			// Node pointer
		btVector3				m_local;		// Anchor position in body space
		btRigidBody*			m_body;			// Body
		btScalar				m_influence;
		btMatrix3x3				m_c0;			// Impulse matrix
		btVector3				m_c1;			// Relative anchor
		btScalar				m_c2;			// ima*dt
	};
	/* Note			*/ 
	struct	Note : Element
	{
		const char*				m_text;			// Text
		btVector3				m_offset;		// Offset
		int						m_rank;			// Rank
		Node*					m_nodes[4];		// Nodes
		btScalar				m_coords[4];	// Coordinates
	};	
	/* Pose			*/ 
	struct	Pose
	{
		bool					m_bvolume;		// Is valid
		bool					m_bframe;		// Is frame
		btScalar				m_volume;		// Rest volume
		tVector3Array			m_pos;			// Reference positions
		tScalarArray			m_wgh;			// Weights
		btVector3				m_com;			// COM
		btMatrix3x3				m_rot;			// Rotation
		btMatrix3x3				m_scl;			// Scale
		btMatrix3x3				m_aqq;			// Base scaling
	};
	/* Cluster		*/ 
	struct	Cluster
	{
		tScalarArray				m_masses;
		btAlignedObjectArray<Node*>	m_nodes;		
		tVector3Array				m_framerefs;
		btTransform					m_framexform;
		btScalar					m_idmass;
		btScalar					m_imass;
		btMatrix3x3					m_locii;
		btMatrix3x3					m_invwi;
		btVector3					m_com;
		btVector3					m_vimpulses[2];
		btVector3					m_dimpulses[2];
		int							m_nvimpulses;
		int							m_ndimpulses;
		btVector3					m_lv;
		btVector3					m_av;
		btDbvtNode*					m_leaf;
		btScalar					m_ndamping;	/* Node damping		*/ 
		btScalar					m_ldamping;	/* Linear damping	*/ 
		btScalar					m_adamping;	/* Angular damping	*/ 
		btScalar					m_matching;
		btScalar					m_maxSelfCollisionImpulse;
		btScalar					m_selfCollisionImpulseFactor;
		bool						m_containsAnchor;
		bool						m_collide;
		int							m_clusterIndex;
		Cluster() : m_leaf(0),m_ndamping(0),m_ldamping(0),m_adamping(0),m_matching(0) 
		,m_maxSelfCollisionImpulse(100.f),
		m_selfCollisionImpulseFactor(0.01f),
		m_containsAnchor(false)
		{}
	};
	/* Impulse		*/ 
	struct	Impulse
	{
		btVector3					m_velocity;
		btVector3					m_drift;
		int							m_asVelocity:1;
		int							m_asDrift:1;
		Impulse() : m_velocity(0,0,0),m_drift(0,0,0),m_asVelocity(0),m_asDrift(0)	{}
		Impulse						operator -() const
		{
			Impulse i=*this;
			i.m_velocity=-i.m_velocity;
			i.m_drift=-i.m_drift;
			return(i);
		}
		Impulse						operator*(btScalar x) const
		{
			Impulse i=*this;
			i.m_velocity*=x;
			i.m_drift*=x;
			return(i);
		}
	};
	/* Body			*/ 
	struct	Body
	{
		Cluster*			m_soft;
		btRigidBody*		m_rigid;
		const btCollisionObject*	m_collisionObject;

		Body() : m_soft(0),m_rigid(0),m_collisionObject(0)				{}
		Body(Cluster* p) : m_soft(p),m_rigid(0),m_collisionObject(0)	{}
		Body(const btCollisionObject* colObj) : m_soft(0),m_collisionObject(colObj)
		{
			m_rigid = (btRigidBody*)btRigidBody::upcast(m_collisionObject);
		}

		void						activate() const
		{
			if(m_rigid) 
				m_rigid->activate();
			if (m_collisionObject)
				m_collisionObject->activate();

		}
		const btMatrix3x3&			invWorldInertia() const
		{
			static const btMatrix3x3	iwi(0,0,0,0,0,0,0,0,0);
			if(m_rigid) return(m_rigid->getInvInertiaTensorWorld());
			if(m_soft)	return(m_soft->m_invwi);
			return(iwi);
		}
		btScalar					invMass() const
		{
			if(m_rigid) return(m_rigid->getInvMass());
			if(m_soft)	return(m_soft->m_imass);
			return(0);
		}
		const btTransform&			xform() const
		{
			static const btTransform	identity=btTransform::getIdentity();		
			if(m_collisionObject) return(m_collisionObject->getWorldTransform());
			if(m_soft)	return(m_soft->m_framexform);
			return(identity);
		}
		btVector3					linearVelocity() const
		{
			if(m_rigid) return(m_rigid->getLinearVelocity());
			if(m_soft)	return(m_soft->m_lv);
			return(btVector3(0,0,0));
		}
		btVector3					angularVelocity(const btVector3& rpos) const
		{			
			if(m_rigid) return(btCross(m_rigid->getAngularVelocity(),rpos));
			if(m_soft)	return(btCross(m_soft->m_av,rpos));
			return(btVector3(0,0,0));
		}
		btVector3					angularVelocity() const
		{			
			if(m_rigid) return(m_rigid->getAngularVelocity());
			if(m_soft)	return(m_soft->m_av);
			return(btVector3(0,0,0));
		}
		btVector3					velocity(const btVector3& rpos) const
		{
			return(linearVelocity()+angularVelocity(rpos));
		}
		void						applyVImpulse(const btVector3& impulse,const btVector3& rpos) const
		{
			if(m_rigid)	m_rigid->applyImpulse(impulse,rpos);
			if(m_soft)	btSoftBody::clusterVImpulse(m_soft,rpos,impulse);
		}
		void						applyDImpulse(const btVector3& impulse,const btVector3& rpos) const
		{
			if(m_rigid)	m_rigid->applyImpulse(impulse,rpos);
			if(m_soft)	btSoftBody::clusterDImpulse(m_soft,rpos,impulse);
		}		
		void						applyImpulse(const Impulse& impulse,const btVector3& rpos) const
		{
			if(impulse.m_asVelocity)	
			{
//				printf("impulse.m_velocity = %f,%f,%f\n",impulse.m_velocity.getX(),impulse.m_velocity.getY(),impulse.m_velocity.getZ());
				applyVImpulse(impulse.m_velocity,rpos);
			}
			if(impulse.m_asDrift)		
			{
//				printf("impulse.m_drift = %f,%f,%f\n",impulse.m_drift.getX(),impulse.m_drift.getY(),impulse.m_drift.getZ());
				applyDImpulse(impulse.m_drift,rpos);
			}
		}
		void						applyVAImpulse(const btVector3& impulse) const
		{
			if(m_rigid)	m_rigid->applyTorqueImpulse(impulse);
			if(m_soft)	btSoftBody::clusterVAImpulse(m_soft,impulse);
		}
		void						applyDAImpulse(const btVector3& impulse) const
		{
			if(m_rigid)	m_rigid->applyTorqueImpulse(impulse);
			if(m_soft)	btSoftBody::clusterDAImpulse(m_soft,impulse);
		}
		void						applyAImpulse(const Impulse& impulse) const
		{
			if(impulse.m_asVelocity)	applyVAImpulse(impulse.m_velocity);
			if(impulse.m_asDrift)		applyDAImpulse(impulse.m_drift);
		}
		void						applyDCImpulse(const btVector3& impulse) const
		{
			if(m_rigid)	m_rigid->applyCentralImpulse(impulse);
			if(m_soft)	btSoftBody::clusterDCImpulse(m_soft,impulse);
		}
	};
	/* Joint		*/ 
	struct	Joint
	{
		struct eType { enum _ {
			Linear=0,
			Angular,
			Contact
		};};
		struct Specs
		{
			Specs() : erp(1),cfm(1),split(1) {}
			btScalar	erp;
			btScalar	cfm;
			btScalar	split;
		};
		Body						m_bodies[2];
		btVector3					m_refs[2];
		btScalar					m_cfm;
		btScalar					m_erp;
		btScalar					m_split;
		btVector3					m_drift;
		btVector3					m_sdrift;
		btMatrix3x3					m_massmatrix;
		bool						m_delete;
		virtual						~Joint() {}
		Joint() : m_delete(false) {}
		virtual void				Prepare(btScalar dt,int iterations);
		virtual void				Solve(btScalar dt,btScalar sor)=0;
		virtual void				Terminate(btScalar dt)=0;
		virtual eType::_			Type() const=0;
	};
	/* LJoint		*/ 
	struct	LJoint : Joint
	{
		struct Specs : Joint::Specs
		{
			btVector3	position;
		};		
		btVector3					m_rpos[2];
		void						Prepare(btScalar dt,int iterations);
		void						Solve(btScalar dt,btScalar sor);
		void						Terminate(btScalar dt);
		eType::_					Type() const { return(eType::Linear); }
	};
	/* AJoint		*/ 
	struct	AJoint : Joint
	{
		struct IControl
		{
			virtual void			Prepare(AJoint*)				{}
			virtual btScalar		Speed(AJoint*,btScalar current) { return(current); }
			static IControl*		Default()						{ static IControl def;return(&def); }
		};
		struct Specs : Joint::Specs
		{
			Specs() : icontrol(IControl::Default()) {}
			btVector3	axis;
			IControl*	icontrol;
		};		
		btVector3					m_axis[2];
		IControl*					m_icontrol;
		void						Prepare(btScalar dt,int iterations);
		void						Solve(btScalar dt,btScalar sor);
		void						Terminate(btScalar dt);
		eType::_					Type() const { return(eType::Angular); }
	};
	/* CJoint		*/ 
	struct	CJoint : Joint
	{		
		int							m_life;
		int							m_maxlife;
		btVector3					m_rpos[2];
		btVector3					m_normal;
		btScalar					m_friction;
		void						Prepare(btScalar dt,int iterations);
		void						Solve(btScalar dt,btScalar sor);
		void						Terminate(btScalar dt);
		eType::_					Type() const { return(eType::Contact); }
	};
	/* Config		*/ 
	struct	Config
	{
		eAeroModel::_			aeromodel;		// Aerodynamic model (default: V_Point)
		btScalar				kVCF;			// Velocities correction factor (Baumgarte)
		btScalar				kDP;			// Damping coefficient [0,1]
		btScalar				kDG;			// Drag coefficient [0,+inf]
		btScalar				kLF;			// Lift coefficient [0,+inf]
		btScalar				kPR;			// Pressure coefficient [-inf,+inf]
		btScalar				kVC;			// Volume conversation coefficient [0,+inf]
		btScalar				kDF;			// Dynamic friction coefficient [0,1]
		btScalar				kMT;			// Pose matching coefficient [0,1]		
		btScalar				kCHR;			// Rigid contacts hardness [0,1]
		btScalar				kKHR;			// Kinetic contacts hardness [0,1]
		btScalar				kSHR;			// Soft contacts hardness [0,1]
		btScalar				kAHR;			// Anchors hardness [0,1]
		btScalar				kSRHR_CL;		// Soft vs rigid hardness [0,1] (cluster only)
		btScalar				kSKHR_CL;		// Soft vs kinetic hardness [0,1] (cluster only)
		btScalar				kSSHR_CL;		// Soft vs soft hardness [0,1] (cluster only)
		btScalar				kSR_SPLT_CL;	// Soft vs rigid impulse split [0,1] (cluster only)
		btScalar				kSK_SPLT_CL;	// Soft vs rigid impulse split [0,1] (cluster only)
		btScalar				kSS_SPLT_CL;	// Soft vs rigid impulse split [0,1] (cluster only)
		btScalar				maxvolume;		// Maximum volume ratio for pose
		btScalar				timescale;		// Time scale
		int						viterations;	// Velocities solver iterations
		int						piterations;	// Positions solver iterations
		int						diterations;	// Drift solver iterations
		int						citerations;	// Cluster solver iterations
		int						collisions;		// Collisions flags
		tVSolverArray			m_vsequence;	// Velocity solvers sequence
		tPSolverArray			m_psequence;	// Position solvers sequence
		tPSolverArray			m_dsequence;	// Drift solvers sequence
	};
	/* SolverState	*/ 
	struct	SolverState
	{
		btScalar				sdt;			// dt*timescale
		btScalar				isdt;			// 1/sdt
		btScalar				velmrg;			// velocity margin
		btScalar				radmrg;			// radial margin
		btScalar				updmrg;			// Update margin
	};	
	/// RayFromToCaster takes a ray from, ray to (instead of direction!)
	struct	RayFromToCaster : btDbvt::ICollide
	{
		btVector3			m_rayFrom;
		btVector3			m_rayTo;
		btVector3			m_rayNormalizedDirection;
		btScalar			m_mint;
		Face*				m_face;
		int					m_tests;
		RayFromToCaster(const btVector3& rayFrom,const btVector3& rayTo,btScalar mxt);
		void					Process(const btDbvtNode* leaf);

		static inline btScalar	rayFromToTriangle(const btVector3& rayFrom,
			const btVector3& rayTo,
			const btVector3& rayNormalizedDirection,
			const btVector3& a,
			const btVector3& b,
			const btVector3& c,
			btScalar maxt=SIMD_INFINITY);
	};

	//
	// Typedefs
	//

	typedef void								(*psolver_t)(btSoftBody*,btScalar,btScalar);
	typedef void								(*vsolver_t)(btSoftBody*,btScalar);
	typedef btAlignedObjectArray<Cluster*>		tClusterArray;
	typedef btAlignedObjectArray<Note>			tNoteArray;
	typedef btAlignedObjectArray<Node>			tNodeArray;
	typedef btAlignedObjectArray<btDbvtNode*>	tLeafArray;
	typedef btAlignedObjectArray<Link>			tLinkArray;
	typedef btAlignedObjectArray<Face>			tFaceArray;
	typedef btAlignedObjectArray<Tetra>			tTetraArray;
	typedef btAlignedObjectArray<Anchor>		tAnchorArray;
	typedef btAlignedObjectArray<RContact>		tRContactArray;
	typedef btAlignedObjectArray<SContact>		tSContactArray;
	typedef btAlignedObjectArray<Material*>		tMaterialArray;
	typedef btAlignedObjectArray<Joint*>		tJointArray;
	typedef btAlignedObjectArray<btSoftBody*>	tSoftBodyArray;	

	//
	// Fields
	//

	Config					m_cfg;			// Configuration
	SolverState				m_sst;			// Solver state
	Pose					m_pose;			// Pose
	void*					m_tag;			// User data
	btSoftBodyWorldInfo*	m_worldInfo;	// World info
	tNoteArray				m_notes;		// Notes
	tNodeArray				m_nodes;		// Nodes
	tLinkArray				m_links;		// Links
	tFaceArray				m_faces;		// Faces
	tTetraArray				m_tetras;		// Tetras
	tAnchorArray			m_anchors;		// Anchors
	tRContactArray			m_rcontacts;	// Rigid contacts
	tSContactArray			m_scontacts;	// Soft contacts
	tJointArray				m_joints;		// Joints
	tMaterialArray			m_materials;	// Materials
	btScalar				m_timeacc;		// Time accumulator
	btVector3				m_bounds[2];	// Spatial bounds	
	bool					m_bUpdateRtCst;	// Update runtime constants
	btDbvt					m_ndbvt;		// Nodes tree
	btDbvt					m_fdbvt;		// Faces tree
	btDbvt					m_cdbvt;		// Clusters tree
	tClusterArray			m_clusters;		// Clusters

	btAlignedObjectArray<bool>m_clusterConnectivity;//cluster connectivity, for self-collision

	btTransform			m_initialWorldTransform;

	btVector3			m_windVelocity;
	
	btScalar        m_restLengthScale;
	
	//
	// Api
	//

	/* ctor																	*/ 
	btSoftBody(	btSoftBodyWorldInfo* worldInfo,int node_count,		const btVector3* x,		const btScalar* m);

	/* ctor																	*/ 
	btSoftBody(	btSoftBodyWorldInfo* worldInfo);

	void	initDefaults();

	/* dtor																	*/ 
	virtual ~btSoftBody();
	/* Check for existing link												*/ 

	btAlignedObjectArray<int>	m_userIndexMapping;

	btSoftBodyWorldInfo*	getWorldInfo()
	{
		return m_worldInfo;
	}

	///@todo: avoid internal softbody shape hack and move collision code to collision library
	virtual void	setCollisionShape(btCollisionShape* collisionShape)
	{
		
	}

	bool				checkLink(	int node0,
		int node1) const;
	bool				checkLink(	const Node* node0,
		const Node* node1) const;
	/* Check for existring face												*/ 
	bool				checkFace(	int node0,
		int node1,
		int node2) const;
	/* Append material														*/ 
	Material*			appendMaterial();
	/* Append note															*/ 
	void				appendNote(	const char* text,
		const btVector3& o,
		const btVector4& c=btVector4(1,0,0,0),
		Node* n0=0,
		Node* n1=0,
		Node* n2=0,
		Node* n3=0);
	void				appendNote(	const char* text,
		const btVector3& o,
		Node* feature);
	void				appendNote(	const char* text,
		const btVector3& o,
		Link* feature);
	void				appendNote(	const char* text,
		const btVector3& o,
		Face* feature);
	/* Append node															*/ 
	void				appendNode(	const btVector3& x,btScalar m);
	/* Append link															*/ 
	void				appendLink(int model=-1,Material* mat=0);
	void				appendLink(	int node0,
		int node1,
		Material* mat=0,
		bool bcheckexist=false);
	void				appendLink(	Node* node0,
		Node* node1,
		Material* mat=0,
		bool bcheckexist=false);
	/* Append face															*/ 
	void				appendFace(int model=-1,Material* mat=0);
	void				appendFace(	int node0,
		int node1,
		int node2,
		Material* mat=0);
	void			appendTetra(int model,Material* mat);
	//
	void			appendTetra(int node0,
										int node1,
										int node2,
										int node3,
										Material* mat=0);


	/* Append anchor														*/ 
	void				appendAnchor(	int node,
		btRigidBody* body, bool disableCollisionBetweenLinkedBodies=false,btScalar influence = 1);
	void			appendAnchor(int node,btRigidBody* body, const btVector3& localPivot,bool disableCollisionBetweenLinkedBodies=false,btScalar influence = 1);
	/* Append linear joint													*/ 
	void				appendLinearJoint(const LJoint::Specs& specs,Cluster* body0,Body body1);
	void				appendLinearJoint(const LJoint::Specs& specs,Body body=Body());
	void				appendLinearJoint(const LJoint::Specs& specs,btSoftBody* body);
	/* Append linear joint													*/ 
	void				appendAngularJoint(const AJoint::Specs& specs,Cluster* body0,Body body1);
	void				appendAngularJoint(const AJoint::Specs& specs,Body body=Body());
	void				appendAngularJoint(const AJoint::Specs& specs,btSoftBody* body);
	/* Add force (or gravity) to the entire body							*/ 
	void				addForce(		const btVector3& force);
	/* Add force (or gravity) to a node of the body							*/ 
	void				addForce(		const btVector3& force,
		int node);
	/* Add aero force to a node of the body */
	void			    addAeroForceToNode(const btVector3& windVelocity,int nodeIndex);

	/* Add aero force to a face of the body */
	void			    addAeroForceToFace(const btVector3& windVelocity,int faceIndex);

	/* Add velocity to the entire body										*/ 
	void				addVelocity(	const btVector3& velocity);

	/* Set velocity for the entire body										*/ 
	void				setVelocity(	const btVector3& velocity);

	/* Add velocity to a node of the body									*/ 
	void				addVelocity(	const btVector3& velocity,
		int node);
	/* Set mass																*/ 
	void				setMass(		int node,
		btScalar mass);
	/* Get mass																*/ 
	btScalar			getMass(		int node) const;
	/* Get total mass														*/ 
	btScalar			getTotalMass() const;
	/* Set total mass (weighted by previous masses)							*/ 
	void				setTotalMass(	btScalar mass,
		bool fromfaces=false);
	/* Set total density													*/ 
	void				setTotalDensity(btScalar density);
	/* Set volume mass (using tetrahedrons)									*/
	void				setVolumeMass(		btScalar mass);
	/* Set volume density (using tetrahedrons)								*/
	void				setVolumeDensity(	btScalar density);
	/* Transform															*/ 
	void				transform(		const btTransform& trs);
	/* Translate															*/ 
	void				translate(		const btVector3& trs);
	/* Rotate															*/ 
	void				rotate(	const btQuaternion& rot);
	/* Scale																*/ 
	void				scale(	const btVector3& scl);
	/* Get link resting lengths scale										*/
	btScalar			getRestLengthScale();
	/* Scale resting length of all springs									*/
	void				setRestLengthScale(btScalar restLength);
	/* Set current state as pose											*/ 
	void				setPose(		bool bvolume,
		bool bframe);
	/* Set current link lengths as resting lengths							*/ 
	void				resetLinkRestLengths();
	/* Return the volume													*/ 
	btScalar			getVolume() const;
	/* Cluster count														*/ 
	int					clusterCount() const;
	/* Cluster center of mass												*/ 
	static btVector3	clusterCom(const Cluster* cluster);
	btVector3			clusterCom(int cluster) const;
	/* Cluster velocity at rpos												*/ 
	static btVector3	clusterVelocity(const Cluster* cluster,const btVector3& rpos);
	/* Cluster impulse														*/ 
	static void			clusterVImpulse(Cluster* cluster,const btVector3& rpos,const btVector3& impulse);
	static void			clusterDImpulse(Cluster* cluster,const btVector3& rpos,const btVector3& impulse);
	static void			clusterImpulse(Cluster* cluster,const btVector3& rpos,const Impulse& impulse);
	static void			clusterVAImpulse(Cluster* cluster,const btVector3& impulse);
	static void			clusterDAImpulse(Cluster* cluster,const btVector3& impulse);
	static void			clusterAImpulse(Cluster* cluster,const Impulse& impulse);
	static void			clusterDCImpulse(Cluster* cluster,const btVector3& impulse);
	/* Generate bending constraints based on distance in the adjency graph	*/ 
	int					generateBendingConstraints(	int distance,
		Material* mat=0);
	/* Randomize constraints to reduce solver bias							*/ 
	void				randomizeConstraints();
	/* Release clusters														*/ 
	void				releaseCluster(int index);
	void				releaseClusters();
	/* Generate clusters (K-mean)											*/ 
	///generateClusters with k=0 will create a convex cluster for each tetrahedron or triangle
	///otherwise an approximation will be used (better performance)
	int					generateClusters(int k,int maxiterations=8192);
	/* Refine																*/ 
	void				refine(ImplicitFn* ifn,btScalar accurary,bool cut);
	/* CutLink																*/ 
	bool				cutLink(int node0,int node1,btScalar position);
	bool				cutLink(const Node* node0,const Node* node1,btScalar position);

	///Ray casting using rayFrom and rayTo in worldspace, (not direction!)
	bool				rayTest(const btVector3& rayFrom,
		const btVector3& rayTo,
		sRayCast& results);
	/* Solver presets														*/ 
	void				setSolver(eSolverPresets::_ preset);
	/* predictMotion														*/ 
	void				predictMotion(btScalar dt);
	/* solveConstraints														*/ 
	void				solveConstraints();
	/* staticSolve															*/ 
	void				staticSolve(int iterations);
	/* solveCommonConstraints												*/ 
	static void			solveCommonConstraints(btSoftBody** bodies,int count,int iterations);
	/* solveClusters														*/ 
	static void			solveClusters(const btAlignedObjectArray<btSoftBody*>& bodies);
	/* integrateMotion														*/ 
	void				integrateMotion();
	/* defaultCollisionHandlers												*/ 
	void				defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap);
	void				defaultCollisionHandler(btSoftBody* psb);



	//
	// Functionality to deal with new accelerated solvers.
	//

	/**
	 * Set a wind velocity for interaction with the air.
	 */
	void setWindVelocity( const btVector3 &velocity );


	/**
	 * Return the wind velocity for interaction with the air.
	 */
	const btVector3& getWindVelocity();

	//
	// Set the solver that handles this soft body
	// Should not be allowed to get out of sync with reality
	// Currently called internally on addition to the world
	void setSoftBodySolver( btSoftBodySolver *softBodySolver )
	{
		m_softBodySolver = softBodySolver;
	}

	//
	// Return the solver that handles this soft body
	// 
	btSoftBodySolver *getSoftBodySolver()
	{
		return m_softBodySolver;
	}

	//
	// Return the solver that handles this soft body
	// 
	btSoftBodySolver *getSoftBodySolver() const
	{
		return m_softBodySolver;
	}


	//
	// Cast
	//

	static const btSoftBody*	upcast(const btCollisionObject* colObj)
	{
		if (colObj->getInternalType()==CO_SOFT_BODY)
			return (const btSoftBody*)colObj;
		return 0;
	}
	static btSoftBody*			upcast(btCollisionObject* colObj)
	{
		if (colObj->getInternalType()==CO_SOFT_BODY)
			return (btSoftBody*)colObj;
		return 0;
	}

	//
	// ::btCollisionObject
	//

	virtual void getAabb(btVector3& aabbMin,btVector3& aabbMax) const
	{
		aabbMin = m_bounds[0];
		aabbMax = m_bounds[1];
	}
	//
	// Private
	//
	void				pointersToIndices();
	void				indicesToPointers(const int* map=0);

	int					rayTest(const btVector3& rayFrom,const btVector3& rayTo,
		btScalar& mint,eFeature::_& feature,int& index,bool bcountonly) const;
	void				initializeFaceTree();
	btVector3			evaluateCom() const;
	bool				checkContact(const btCollisionObjectWrapper* colObjWrap,const btVector3& x,btScalar margin,btSoftBody::sCti& cti) const;
	void				updateNormals();
	void				updateBounds();
	void				updatePose();
	void				updateConstants();
	void				updateLinkConstants();
	void				updateArea(bool averageArea = true);
	void				initializeClusters();
	void				updateClusters();
	void				cleanupClusters();
	void				prepareClusters(int iterations);
	void				solveClusters(btScalar sor);
	void				applyClusters(bool drift);
	void				dampClusters();
	void				applyForces();	
	static void			PSolve_Anchors(btSoftBody* psb,btScalar kst,btScalar ti);
	static void			PSolve_RContacts(btSoftBody* psb,btScalar kst,btScalar ti);
	static void			PSolve_SContacts(btSoftBody* psb,btScalar,btScalar ti);
	static void			PSolve_Links(btSoftBody* psb,btScalar kst,btScalar ti);
	static void			VSolve_Links(btSoftBody* psb,btScalar kst);
	static psolver_t	getSolver(ePSolver::_ solver);
	static vsolver_t	getSolver(eVSolver::_ solver);


	virtual	int	calculateSerializeBufferSize()	const;

	///fills the dataBuffer and returns the struct name (and 0 on failure)
	virtual	const char*	serialize(void* dataBuffer,  class btSerializer* serializer) const;

	//virtual void serializeSingleObject(class btSerializer* serializer) const;


};




#endif //_BT_SOFT_BODY_H