/usr/include/Bpp/Phyl/TreeTemplate.h is in libbpp-phyl-dev 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 | //
// File: TreeTemplate.h
// Created by: Julien Dutheil
// Celine Scornavacca
// Created on: Thu Mar 13 12:03:18 2003
//
/*
Copyright or © or Copr. Bio++ Development Team, (November 16, 2004)
This software is a computer program whose purpose is to provide classes
for phylogenetic data analysis.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/
#ifndef _TREETEMPLATE_H_
#define _TREETEMPLATE_H_
#include "TreeExceptions.h"
#include "TreeTemplateTools.h"
#include "Tree.h"
// From the STL:
#include <string>
#include <vector>
#include <map>
namespace bpp
{
/**
* @brief The phylogenetic tree class.
*
* This class is part of the object implementation of phylogenetic trees. Tree are made
* made of nodes, instances of the class Node. It is possible to use a tree with more
* complexe Node classes, but currently all nodes of a tree have to be of the same class.
*
* Trees are oriented (rooted), i.e. each node has one <i>father node</i> and possibly
* many <i>son nodes</i>. Leaves are nodes without descendant and root is defined has the without
* father. Inner nodes will generally contain two descendants (the tree is then called
* <i>bifurcating</i>), but mutlifurcating trees are also allowed with this kind of description.
* In the rooted case, each inner node also defines a <i>subtree</i>.
* This allows to work recursively on trees, which is very convenient in most cases.
* To deal with non-rooted trees, we place an artificial root at a particular node:
* hence the root node appears to be trifurcated. This is the way unrooted trees are
* described in the parenthetic description, the so called Newick format.
*
* To clone a tree from from another tree with a different template,
* consider using the TreeTools::cloneSutree<N>() method:
* @code
* Tree * t = new Tree<Node>(...)
* NodeTemplate<int> * newRoot = TreeTools::cloneSubtree< NodeTemplate<int> >(* (t -> getRootNode()))
* Tree< NodeTemplate<int> > * tt = new Tree< NodeTemplate<int> >(* newRoot);
* @endcode
*
* The getNextId() method sends a id value which is not used in the tree.
* In the current implementation, it uses the TreeTools::getMPNUId() method.
* This avoids to use duplicated ids, but is time consuming.
* In most cases, it is of better efficiency if the user deal with the ids himself, by using the Node::setId() method.
* The TreeTools::getMaxId() method may also prove useful in this respect.
* The resetNodesId() method can also be used to re-initialize all ids.
*
* @see Node
* @see NodeTemplate
* @see TreeTools
*/
template<class N>
class TreeTemplate :
public Tree
{
/**
* Fields:
*/
private:
N* root_;
std::string name_;
public:
// Constructors and destructor:
TreeTemplate() : root_(0),
name_() {}
TreeTemplate(const TreeTemplate<N>& t) :
root_(0),
name_(t.name_)
{
// Perform a hard copy of the nodes:
root_ = TreeTemplateTools::cloneSubtree<N>(*t.getRootNode());
}
TreeTemplate(const Tree& t) :
root_(0),
name_(t.getName())
{
// Create new nodes from an existing tree:
root_ = TreeTemplateTools::cloneSubtree<N>(t, t.getRootId());
}
TreeTemplate(N* root) : root_(root),
name_()
{
root_->removeFather(); // In case this is a subtree from somewhere else...
}
TreeTemplate<N>& operator=(const TreeTemplate<N>& t)
{
// Perform a hard copy of the nodes:
if (root_) { TreeTemplateTools::deleteSubtree(root_); delete root_; }
root_ = TreeTemplateTools::cloneSubtree<N>(*t.getRootNode());
name_ = t.name_;
return *this;
}
TreeTemplate<N>* cloneSubtree(int newRootId) const
{
N* newRoot = TreeTemplateTools::cloneSubtree<N>(*this, newRootId);
return new TreeTemplate<N>(newRoot);
}
virtual ~TreeTemplate()
{
TreeTemplateTools::deleteSubtree(root_);
delete root_;
}
TreeTemplate<N>* clone() const { return new TreeTemplate<N>(*this); }
/**
* Methods:
*/
public:
std::string getName() const { return name_; }
void setName(const std::string& name) { name_ = name; }
int getRootId() const { return root_->getId(); }
size_t getNumberOfLeaves() const { return TreeTemplateTools::getNumberOfLeaves(*root_); }
size_t getNumberOfNodes() const { return TreeTemplateTools::getNumberOfNodes(*root_); }
int getLeafId(const std::string& name) const throw (NodeNotFoundException) { return TreeTemplateTools::getLeafId(*root_, name); }
std::vector<int> getLeavesId() const { return TreeTemplateTools::getLeavesId(*root_); }
std::vector<int> getNodesId() const { return TreeTemplateTools::getNodesId(*root_); }
std::vector<int> getInnerNodesId() const { return TreeTemplateTools::getInnerNodesId(*root_); }
std::vector<int> getBranchesId() const { return TreeTemplateTools::getBranchesId(*root_); }
std::vector<double> getBranchLengths() const { return TreeTemplateTools::getBranchLengths(*root_); }
std::vector<std::string> getLeavesNames() const { return TreeTemplateTools::getLeavesNames(*const_cast<const N*>( root_)); }
std::vector<int> getSonsId(int parentId) const throw (NodeNotFoundException) { return getNode(parentId)->getSonsId(); }
std::vector<int> getAncestorsId(int nodeId) const throw (NodeNotFoundException) { return TreeTemplateTools::getAncestorsId(*getNode(nodeId)); }
int getFatherId(int parentId) const throw (NodeNotFoundException) { return getNode(parentId)->getFatherId(); }
bool hasFather(int nodeId) const throw (NodeNotFoundException) { return getNode(nodeId)->hasFather(); }
std::string getNodeName(int nodeId) const throw (NodeNotFoundException) { return getNode(nodeId)->getName(); }
bool hasNodeName(int nodeId) const throw (NodeNotFoundException) { return getNode(nodeId)->hasName(); }
void setNodeName(int nodeId, const std::string& name) throw (NodeNotFoundException) { getNode(nodeId)->setName(name); }
void deleteNodeName(int nodeId) throw (NodeNotFoundException) { return getNode(nodeId)->deleteName(); }
bool hasNode(int nodeId) const { return TreeTemplateTools::hasNodeWithId(*root_, nodeId); }
bool isLeaf(int nodeId) const throw (NodeNotFoundException) { return getNode(nodeId)->isLeaf(); }
bool isRoot(int nodeId) const throw (NodeNotFoundException) { return TreeTemplateTools::isRoot(*getNode(nodeId)); }
double getDistanceToFather(int nodeId) const { return getNode(nodeId)->getDistanceToFather(); }
void setDistanceToFather(int nodeId, double length) { getNode(nodeId)->setDistanceToFather(length); }
void deleteDistanceToFather(int nodeId) { getNode(nodeId)->deleteDistanceToFather(); }
bool hasDistanceToFather(int nodeId) const { return getNode(nodeId)->hasDistanceToFather(); }
bool hasNodeProperty(int nodeId, const std::string& name) const throw (NodeNotFoundException) { return getNode(nodeId)->hasNodeProperty(name); }
void setNodeProperty(int nodeId, const std::string& name, const Clonable& property) throw (NodeNotFoundException) { getNode(nodeId)->setNodeProperty(name, property); }
Clonable* getNodeProperty(int nodeId, const std::string& name) throw (NodeNotFoundException) { return getNode(nodeId)->getNodeProperty(name); }
const Clonable* getNodeProperty(int nodeId, const std::string& name) const throw (NodeNotFoundException) { return getNode(nodeId)->getNodeProperty(name); }
Clonable* removeNodeProperty(int nodeId, const std::string& name) throw (NodeNotFoundException) { return getNode(nodeId)->removeNodeProperty(name); }
std::vector<std::string> getNodePropertyNames(int nodeId) const throw (NodeNotFoundException) { return getNode(nodeId)->getNodePropertyNames(); }
bool hasBranchProperty(int nodeId, const std::string& name) const throw (NodeNotFoundException) { return getNode(nodeId)->hasBranchProperty(name); }
void setBranchProperty(int nodeId, const std::string& name, const Clonable& property) throw (NodeNotFoundException) { getNode(nodeId)->setBranchProperty(name, property); }
Clonable* getBranchProperty(int nodeId, const std::string& name) throw (NodeNotFoundException) { return getNode(nodeId)->getBranchProperty(name); }
const Clonable* getBranchProperty(int nodeId, const std::string& name) const throw (NodeNotFoundException) { return getNode(nodeId)->getBranchProperty(name); }
Clonable* removeBranchProperty(int nodeId, const std::string& name) throw (NodeNotFoundException) { return getNode(nodeId)->removeBranchProperty(name); }
std::vector<std::string> getBranchPropertyNames(int nodeId) const throw (NodeNotFoundException) { return getNode(nodeId)->getBranchPropertyNames(); }
void rootAt(int nodeId) throw (NodeNotFoundException) { rootAt(getNode(nodeId)); }
void newOutGroup(int nodeId) throw (NodeNotFoundException) { newOutGroup(getNode(nodeId)); }
bool isRooted() const { return root_->getNumberOfSons() == 2; }
bool unroot() throw (UnrootedTreeException)
{
if (!isRooted()) throw UnrootedTreeException("Tree::unroot", this);
else
{
N* son1 = root_->getSon(0);
N* son2 = root_->getSon(1);
if (son1->isLeaf() && son2->isLeaf()) return false; // We can't unroot a single branch!
// We manage to have a subtree in position 0:
if (son1->isLeaf())
{
root_->swap(0, 1);
son1 = root_->getSon(0);
son2 = root_->getSon(1);
}
// Take care of branch lengths:
if (son1->hasDistanceToFather())
{
if (son2->hasDistanceToFather())
{
// Both nodes have lengths, we sum them:
son2->setDistanceToFather(son1->getDistanceToFather() + son2->getDistanceToFather());
}
else
{
// Only node 1 has length, we set it to node 2:
son2->setDistanceToFather(son1->getDistanceToFather());
}
son1->deleteDistanceToFather();
} // Else node 2 may or may not have a branch length, we do not care!
// Remove the root:
root_->removeSons();
son1->addSon(son2);
delete root_;
setRootNode(son1);
return true;
}
}
void resetNodesId()
{
std::vector<N*> nodes = getNodes();
for (size_t i = 0; i < nodes.size(); i++)
{
nodes[i]->setId(static_cast<int>(i));
}
}
bool isMultifurcating() const
{
if (root_->getNumberOfSons() > 3) return true;
for (size_t i = 0; i < root_->getNumberOfSons(); i++)
if (TreeTemplateTools::isMultifurcating(*root_->getSon(i)))
return true;
return false;
}
/**
* @brief Tells if this tree has the same topology as the one given for comparison.
*
* This method compares recursively all subtrees. The comparison is performed only on the nodes names and the parental relationships.
* Nodes ids are ignored, and so are branch lengths and any branch/node properties. The default is to ignore the ordering of the descendants,
* that is (A,B),C) will be considered as having the same topology as (B,A),C). Multifurcations are permited.
* If ordering is ignored, a copy of the two trees to be compared is performed and are ordered before comparison, making the whole comparison
* slower and more memory greedy.
*
* @param tree The tree to be compared with.
* @param ordered Should the ordering of the branching be taken into account?
* @return True if the input tree has the same topology as this one.
*/
template<class N2>
bool hasSameTopologyAs(const TreeTemplate<N2>& tree, bool ordered = false) const
{
const TreeTemplate<N>* t1 = 0;
const TreeTemplate<N2>* t2 = 0;
if (ordered)
{
t1 = this;
t2 = &tree;
}
else
{
TreeTemplate<N>* t1tmp = this->clone();
TreeTemplate<N2>* t2tmp = tree.clone();
TreeTemplateTools::orderTree(*t1tmp->getRootNode(), true, true);
TreeTemplateTools::orderTree(*t2tmp->getRootNode(), true, true);
t1 = t1tmp;
t2 = t2tmp;
}
bool test = TreeTemplateTools::haveSameOrderedTopology(*t1->getRootNode(), *t2->getRootNode());
if (!ordered)
{
delete t1;
delete t2;
}
return test;
}
std::vector<double> getBranchLengths() throw (NodeException)
{
Vdouble brLen(1);
for (size_t i = 0; i < root_->getNumberOfSons(); i++)
{
Vdouble sonBrLen = TreeTemplateTools::getBranchLengths(*root_->getSon(i));
for (size_t j = 0; j < sonBrLen.size(); j++) { brLen.push_back(sonBrLen[j]); }
}
return brLen;
}
double getTotalLength() throw (NodeException)
{
return TreeTemplateTools::getTotalLength(*root_, false);
}
void setBranchLengths(double brLen)
{
for (size_t i = 0; i < root_->getNumberOfSons(); i++)
{
TreeTemplateTools::setBranchLengths(*root_->getSon(i), brLen);
}
}
void setVoidBranchLengths(double brLen)
{
for (size_t i = 0; i < root_->getNumberOfSons(); i++)
{
TreeTemplateTools::setVoidBranchLengths(*root_->getSon(i), brLen);
}
}
void scaleTree(double factor) throw (NodeException)
{
for (size_t i = 0; i < root_->getNumberOfSons(); i++)
{
TreeTemplateTools::scaleTree(*root_->getSon(i), factor);
}
}
int getNextId()
{
return TreeTools::getMPNUId(*this, root_->getId());
}
void swapNodes(int parentId, size_t i1, size_t i2) throw (NodeNotFoundException, IndexOutOfBoundsException)
{
std::vector<N*> nodes = TreeTemplateTools::searchNodeWithId<N>(*root_, parentId);
if (nodes.size() == 0) throw NodeNotFoundException("TreeTemplate:swapNodes(): Node with id not found.", "" + parentId);
for (size_t i = 0; i < nodes.size(); i++) { nodes[i]->swap(i1, i2); }
}
/**
* @name Specific methods
*
* @{
*/
virtual void setRootNode(N* root) { root_ = root; }
virtual N* getRootNode() { return root_; }
virtual const N* getRootNode() const { return root_; }
virtual std::vector<const N*> getLeaves() const { return TreeTemplateTools::getLeaves(*const_cast<const N*>(root_)); }
virtual std::vector<N*> getLeaves() { return TreeTemplateTools::getLeaves(*root_); }
virtual std::vector<const N*> getNodes() const { return TreeTemplateTools::getNodes(*const_cast<const N*>(root_)); }
virtual std::vector<N*> getNodes() { return TreeTemplateTools::getNodes(*root_); }
virtual std::vector<const N*> getInnerNodes() const { return TreeTemplateTools::getInnerNodes(*const_cast<const N*>(root_)); }
virtual std::vector<N*> getInnerNodes() { return TreeTemplateTools::getInnerNodes(*root_); }
virtual N* getNode(int id, bool checkId = false) throw (NodeNotFoundException, Exception)
{
if (checkId) {
std::vector<N*> nodes;
TreeTemplateTools::searchNodeWithId<N>(*root_, id, nodes);
if (nodes.size() > 1) throw Exception("TreeTemplate::getNode(): Non-unique id! (" + TextTools::toString(id) + ").");
if (nodes.size() == 0) throw NodeNotFoundException("TreeTemplate::getNode(): Node with id not found.", TextTools::toString(id));
return nodes[0];
} else {
N* node = dynamic_cast<N*>(TreeTemplateTools::searchFirstNodeWithId(*root_, id));
if (node)
return node;
else
throw NodeNotFoundException("TreeTemplate::getNode(): Node with id not found.", TextTools::toString(id));
}
}
virtual const N* getNode(int id, bool checkId = false) const throw (NodeNotFoundException, Exception)
{
if (checkId) {
std::vector<const N*> nodes;
TreeTemplateTools::searchNodeWithId<const N>(*root_, id, nodes);
if (nodes.size() > 1) throw Exception("TreeTemplate::getNode(): Non-unique id! (" + TextTools::toString(id) + ").");
if (nodes.size() == 0) throw NodeNotFoundException("TreeTemplate::getNode(): Node with id not found.", TextTools::toString(id));
return nodes[0];
} else {
const N* node = dynamic_cast<const N*>(TreeTemplateTools::searchFirstNodeWithId(*root_, id));
if (node)
return node;
else
throw NodeNotFoundException("TreeTemplate::getNode(): Node with id not found.", TextTools::toString(id));
}
}
virtual N* getNode(const std::string& name) throw (NodeNotFoundException, Exception)
{
std::vector<N*> nodes;
TreeTemplateTools::searchNodeWithName(*root_, name, nodes);
if (nodes.size() > 1) throw NodeNotFoundException("TreeTemplate::getNode(): Non-unique name.", "" + name);
if (nodes.size() == 0) throw NodeNotFoundException("TreeTemplate::getNode(): Node with name not found.", "" + name);
return nodes[0];
}
virtual const N* getNode(const std::string& name) const throw (NodeNotFoundException, Exception)
{
std::vector<const N*> nodes;
TreeTemplateTools::searchNodeWithName<const N>(*root_, name, nodes);
if (nodes.size() > 1) throw NodeNotFoundException("TreeTemplate::getNode(): Non-unique name.", "" + name);
if (nodes.size() == 0) throw NodeNotFoundException("TreeTemplate::getNode(): Node with name not found.", "" + name);
return nodes[0];
}
void rootAt(N* newRoot)
{
if (root_ == newRoot) return;
if (isRooted()) unroot();
std::vector<Node*> path = TreeTemplateTools::getPathBetweenAnyTwoNodes(*root_, *newRoot);
for (size_t i = 0; i < path.size() - 1; i++)
{
// pathMatrix[i] -> _father = pathMatrix[i + 1];
// pathMatrix[i] -> setDistanceToFather(pathMatrix[i + 1] -> getDistanceToFather());
// typename vector<Node *>::iterator vec_iter;
// vec_iter = remove(pathMatrix[i] -> _sons.begin(), pathMatrix[i] -> _sons.end(), pathMatrix[i + 1]);
// pathMatrix[i] -> _sons.erase(vec_iter, pathMatrix[i] -> _sons.end()); // pg 1170, primer.
// pathMatrix[i+1] -> _sons.push_back(pathMatrix[i + 1] -> getFather());
// pathMatrix[i+1] -> _father = 0;
path[i]->removeSon(path[i + 1]);
if (path[i + 1]->hasDistanceToFather()) path[i]->setDistanceToFather(path[i + 1]->getDistanceToFather());
else path[i]->deleteDistanceToFather();
path[i + 1]->addSon(path[i]);
std::vector<std::string> names = path[i + 1]->getBranchPropertyNames();
for (size_t j = 0; j < names.size(); j++)
{
path[i]->setBranchProperty(names[j], *path[i + 1]->getBranchProperty(names[j]));
}
path[i + 1]->deleteBranchProperties();
}
newRoot->deleteDistanceToFather();
newRoot->deleteBranchProperties();
root_ = newRoot;
}
void newOutGroup(N* outGroup)
{
if (root_ == outGroup) return;
int rootId;
if (isRooted())
{
for (size_t i = 0; i < root_->getNumberOfSons(); i++)
{
if (root_->getSon(i) == outGroup) return; // This tree is already rooted appropriately.
}
rootId = getRootId();
unroot();
}
else
{
rootId = getNextId();
}
rootAt(outGroup->getFather());
N* oldRoot = root_;
oldRoot->removeSon(outGroup);
root_ = new N();
root_->setId(rootId);
root_->addSon(oldRoot);
root_->addSon(outGroup);
// Check lengths:
if (outGroup->hasDistanceToFather())
{
double l = outGroup->getDistanceToFather() / 2.;
outGroup->setDistanceToFather(l);
oldRoot->setDistanceToFather(l);
}
}
/** @} */
};
} // end of namespace bpp.
#endif // _TREETEMPLATE_H_
|