This file is indexed.

/usr/include/Bpp/Numeric/Matrix/MatrixTools.h is in libbpp-core-dev 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
//
// File: MatrixTools.h
// Created by: Julien Dutheil
// Created on: Mon Jan 19 16:42:25 2004
//

/*
   Copyright or © or Copr. Bio++ Development Team, (November 17, 2004)

   This software is a computer program whose purpose is to provide classes
   for numerical calculus. This file is part of the Bio++ project.

   This software is governed by the CeCILL  license under French law and
   abiding by the rules of distribution of free software.  You can  use,
   modify and/ or redistribute the software under the terms of the CeCILL
   license as circulated by CEA, CNRS and INRIA at the following URL
   "http://www.cecill.info".

   As a counterpart to the access to the source code and  rights to copy,
   modify and redistribute granted by the license, users are provided only
   with a limited warranty  and the software's author,  the holder of the
   economic rights,  and the successive licensors  have only  limited
   liability.

   In this respect, the user's attention is drawn to the risks associated
   with loading,  using,  modifying and/or developing or reproducing the
   software by the user in light of its specific status of free software,
   that may mean  that it is complicated to manipulate,  and  that  also
   therefore means  that it is reserved for developers  and  experienced
   professionals having in-depth computer knowledge. Users are therefore
   encouraged to load and test the software's suitability as regards their
   requirements in conditions enabling the security of their systems and/or
   data to be ensured and,  more generally, to use and operate it in the
   same conditions as regards security.

   The fact that you are presently reading this means that you have had
   knowledge of the CeCILL license and that you accept its terms.
 */

#ifndef _MATRIXTOOLS_H_
#define _MATRIXTOOLS_H_

#include "../VectorTools.h"
#include "Matrix.h"
#include "LUDecomposition.h"
#include "EigenValue.h"

#include <cstdio>
#include <iostream>

namespace bpp
{
/**
 * @brief Functions dealing with matrices.
 */
class MatrixTools
{
public:
  MatrixTools() {}
  ~MatrixTools() {}

public:
  /**
   * @brief Copy operation. This function supplies the lack of inheritence of the assigment operator :D .
   *
   * @param A [in] Original matrix.
   * @param O [out] A copy of the given matrix.
   */
  template<class MatrixA, class MatrixO>
  static void copy(const MatrixA& A, MatrixO& O)
  {
    O.resize(A.getNumberOfRows(), A.getNumberOfColumns());
    for (size_t i = 0; i < A.getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < A.getNumberOfColumns(); j++)
      {
        O(i, j) = A(i, j);
      }
    }
  }

  /**
   * @brief Get a identity matrix of a given size.
   *
   * @param n the size of the matrix.
   * @param O [out] A identity matrix of size n.
   */
  template<class Matrix>
  static void getId(size_t n, Matrix& O)
  {
    O.resize(n, n);
    for (size_t i = 0; i < n; i++)
    {
      for (size_t j = 0; j < n; j++) {
        O(i, j) = (i == j) ? 1 : 0;
      }
    }
  }

  /**
   * @param D [in] A vector of diagonal elements.
   * @param O [out] A diagonal matrix with diagonal elements taken from a vector.
   */
  template<class Scalar>
  static void diag(const std::vector<Scalar>& D, Matrix<Scalar>& O)
  {
    size_t n = D.size();
    O.resize(n, n);
    for (size_t i = 0; i < n; i++)
    {
      for (size_t j = 0; j < n; j++) { O(i, j) = (i == j) ? D[i] : 0;}
    }
  }

  /**
   * @param x [in] A scalar
   * @param n [in] the dimension of the output matrix
   * @param O [out] A diagonal matrix with diagonal elements equal to x
   */
  template<class Scalar>
  static void diag(const Scalar x, size_t n, Matrix<Scalar>& O)
  {
    O.resize(n, n);
    for (size_t i = 0; i < n; i++)
      {
        for (size_t j = 0; j < n; j++) { O(i, j) = (i == j) ? x : 0;}
      }
  }

  /**
   * @param M [in] The matrix.
   * @param O [out] The diagonal elements of a square matrix as a vector.
   * @throw DimensionException If M is not a square matrix.
   */
  template<class Scalar>
  static void diag(const Matrix<Scalar>& M, std::vector<Scalar>& O) throw (DimensionException)
  {
    size_t nc = M.getNumberOfColumns();
    size_t nr = M.getNumberOfRows();
    if (nc != nr) throw DimensionException("MatrixTools::diag(). M must be a square matrix.", nr, nc);
    O.resize(nc);
    for (size_t i = 0; i < nc; i++) { O[i] = M(i, i);}
  }

  /**
   * @brief Set all elements in M to value x.
   * @param M A matrix.
   * @param x The value to use.
   */
  template<class Matrix, class Scalar>
  static void fill(Matrix& M, Scalar x)
  {
    for (size_t i = 0; i < M.getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < M.getNumberOfColumns(); j++)
      {
        M(i, j) = x;
      }
    }
  }

  /**
   * @brief Multiply all elements of a matrix by a given value, and add a constant.
   *
   * Performs \f$\forall i \forall j m_{i,j} = a.m_{i,j}+b\f$.
   *
   * @param A A matrix.
   * @param a Multiplicator.
   * @param b Constant.
   */
  template<class Matrix, class Scalar>
  static void scale(Matrix& A, Scalar a, Scalar b = 0)
  {
    for (size_t i = 0; i < A.getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < A.getNumberOfColumns(); j++)
      {
        A(i, j) = a * A(i, j) + b;
      }
    }
  }

  /**
   * @param A [in] First matrix.
   * @param B [in] Second matrix.
   * @param O [out] The dot product of two matrices.
   */
  template<class Scalar>
  static void mult(const Matrix<Scalar>& A, const Matrix<Scalar>& B, Matrix<Scalar>& O) throw (DimensionException)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    if (ncA != nrB) throw DimensionException("MatrixTools::mult(). nrows B != ncols A.", nrB, ncA);
    O.resize(nrA, ncB);
    for (size_t i = 0; i < nrA; i++)
    {
      for (size_t j = 0; j < ncB; j++)
      {
        O(i, j) = 0;
        for (size_t k = 0; k < ncA; k++)
        {
          O(i, j) += A(i, k) * B(k, j);
        }
      }
    }
  }

  /**
   * @brief Compute A . D . B where D is a diagonal matrix in O(n^3).
   *
   * Since D is a diagonal matrix, this function is more efficient than doing
   * mult(mult(A, diag(D)), B), which involves two 0(n^3) operations.
   *
   * @param A [in] The first matrix.
   * @param D [in] The diagonal matrix (only diagonal elements in a vector)
   * @param B [in] The second matrix.
   * @param O [out] The result matrix.
   * @throw DimensionException If matrices have not the appropriate size.
   */
  template<class Scalar>
  static void mult(const Matrix<Scalar>& A, const std::vector<Scalar>& D, const Matrix<Scalar>& B, Matrix<Scalar>& O) throw (DimensionException)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    if (ncA != nrB) throw DimensionException("MatrixTools::mult(). nrows B != ncols A.", nrB, ncA);
    if (ncA != D.size()) throw DimensionException("MatrixTools::mult(). Vector size is not equal to matrix size.", D.size(), ncA);
    O.resize(nrA, ncB);
    for (size_t i = 0; i < nrA; i++)
    {
      for (size_t j = 0; j < ncB; j++)
      {
        O(i, j) = 0;
        for (size_t k = 0; k < ncA; k++)
        {
          O(i, j) += A(i, k) * B(k, j) * D[k];
        }
      }
    }
  }

  /**
   * @brief Compute A . (U+D+L) . B where D is a diagonal matrix, U
   * (resp. L) is a matrix in which the only non-zero terms are on the
   * diagonal that is over (resp. under) the main diagonal, in O(n^3).
   *
   * Since D is a diagonal matrix, this function is more efficient than doing
   * mult(mult(A, diag(D)), B), which involves two 0(n^3) operations.
   *
   * @param A [in] The first matrix.
   * @param D [in] The diagonal matrix (only diagonal elements in a vector)
   * @param U [in] The upper diagonal matrix (only upper diagonal elements in a vector)
   * @param L [in] The lower diagonal matrix (only lower diagonal elements in a vector)
   * @param B [in] The second matrix.
   * @param O [out] The result matrix.
   * @throw DimensionException If matrices have not the appropriate size.
   */
  template<class Scalar>
  static void mult(const Matrix<Scalar>& A, const std::vector<Scalar>& D, const std::vector<Scalar>& U, const std::vector<Scalar>& L, const Matrix<Scalar>& B, Matrix<Scalar>& O) throw (DimensionException)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    if (ncA != nrB) throw DimensionException("MatrixTools::mult(). nrows B != ncols A.", nrB, ncA);
    if (ncA != D.size()) throw DimensionException("MatrixTools::mult(). Vector size is not equal to matrix size.", D.size(), ncA);
    if (ncA != U.size()+1) throw DimensionException("MatrixTools::mult(). Vector size is not equal to matrix size-1.", U.size(), ncA);
    if (ncA != L.size()+1) throw DimensionException("MatrixTools::mult(). Vector size is not equal to matrix size-1.", L.size(), ncA);
    O.resize(nrA, ncB);
    for (size_t i = 0; i < nrA; i++)
      {
        for (size_t j = 0; j < ncB; j++)
          {
            O(i, j) = A(i, 0) * D[0] * B(0, j);
            if (nrB>1)
              O(i, j) += A(i,0) * U[0] * B(1,j);
            for (size_t k = 1; k < ncA-1; k++)
              {
                O(i, j) += A(i, k) * (L[k-1] * B(k-1, j) + D[k] * B(k, j) + U[k] * B(k+1,j));
              }
            if (ncA>=2)
              O(i, j) += A(i, ncA-1) * L[ncA-2] * B(ncA-2, j);
            O(i,j) += A(i, ncA-1) * D[ncA-1] * B(ncA-1, j);
          }
      }
  }

  /**
   * @brief Add matrix B to matrix A.
   *
   * @param A [in] Matrix A
   * @param B [in] Matrix B
   * @throw DimensionException If A and B have note the same size.
   */
  template<class MatrixA, class MatrixB>
  static void add(MatrixA& A, const MatrixB& B) throw (DimensionException)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    if (ncA != ncB) throw DimensionException("MatrixTools::operator+(). A and B must have the same number of colums.", ncB, ncA);
    if (nrA != nrB) throw DimensionException("MatrixTools::operator+(). A and B must have the same number of rows.", nrB, nrA);
    for (size_t i = 0; i < A.getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < A.getNumberOfColumns(); j++)
      {
        A(i, j) += B(i, j);
      }
    }
  }

  /**
   * @brief Add matrix x.B to matrix A.
   *
   * @param A [in,out] Matrix A
   * @param x [in] Scalar x
   * @param B [in] Matrix B
   * @throw DimensionException If A and B have note the same size.
   */
  template<class MatrixA, class MatrixB, class Scalar>
  static void add(MatrixA& A, Scalar& x, const MatrixB& B) throw (DimensionException)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    if (ncA != ncB) throw DimensionException("MatrixTools::operator+(). A and B must have the same number of colums.", ncB, ncA);
    if (nrA != nrB) throw DimensionException("MatrixTools::operator+(). A and B must have the same number of rows.", nrB, nrA);
    for (size_t i = 0; i < A.getNumberOfRows(); i++)
      {
        for (size_t j = 0; j < A.getNumberOfColumns(); j++)
          {
            A(i, j) += x*B(i, j);
          }
      }
  }

  /**
   * @brief Compute the power of a given matrix.
   *
   * @param A [in] The matrix.
   * @param p The number of multiplications.
   * @param O [out]\f$  A^p \f$ computed recursively:
   *               \f$ A^{2n} = (A^n)^2 \f$
   *               \f$ A^{2n+1} = A*(A^n)^2 \f$   
   * If p = 0, sends the identity matrix.
   * @throw DimensionException If m is not a square matrix.
   */
  template<class Matrix>
  static void pow(const Matrix& A, size_t p, Matrix& O) throw (DimensionException)
  {
    size_t n = A.getNumberOfRows();
    if (n != A.getNumberOfColumns()) throw DimensionException("MatrixTools::pow(). nrows != ncols.", A.getNumberOfColumns(), A.getNumberOfRows());
    switch(p){
    case 0:
      getId<Matrix>(n, O);
      break;
    case 1:
      copy(A,O);
      break;
    case 2:
      mult(A,A,O);
      break;
    default:
      Matrix tmp;
      if (p%2){
        pow(A,p/2,tmp);
        pow(tmp,2,O);
      }
      else{
        pow(A,(p-1)/2,tmp);
        pow(tmp,2,O);
        mult(A,O,tmp);
        copy(tmp,O);
      }
    }
  }

  /**
   * @brief Compute the power of a given matrix, using eigen value decomposition.
   *
   * @param A [in] The matrix.
   * @param p The power of the matrix.
   * @param O [out]\f$\prod_{i=1}^p m\f$.
   * If p = 0, sends the identity matrix.
   * @throw DimensionException If m is not a square matrix.
   */
  template<class Scalar>
  static void pow(const Matrix<Scalar>& A, double p, Matrix<Scalar>& O) throw (DimensionException)
  {
    size_t n = A.getNumberOfRows();
    if (n != A.getNumberOfColumns()) throw DimensionException("MatrixTools::pow(). nrows != ncols.", A.getNumberOfColumns(), A.getNumberOfRows());
    EigenValue<Scalar> eigen(A);
    RowMatrix<Scalar> rightEV, leftEV;
    rightEV = eigen.getV();
    inv(rightEV, leftEV);
    mult(rightEV, VectorTools::pow(eigen.getRealEigenValues(), p), leftEV, O);
  }

  /**
   * @brief Perform matrix exponentiation using diagonalization.
   *
   * @warning This method currently relies only on diagonalization, so it won't work if your matrix is not diagonalizable.
   * The function may be extended later to deal with other cases.
   *
   * @param A [in] The matrix.
   * @param O [out]\f$\prod_{i=1}^p m\f$.
   * @throw DimensionException If m is not a square matrix.
   */
  template<class Scalar>
  static void exp(const Matrix<Scalar>& A, Matrix<Scalar>& O) throw (DimensionException)
  {
    size_t n = A.getNumberOfRows();
    if (n != A.getNumberOfColumns()) throw DimensionException("MatrixTools::exp(). nrows != ncols.", A.getNumberOfColumns(), A.getNumberOfRows());
    EigenValue<Scalar> eigen(A);
    RowMatrix<Scalar> rightEV, leftEV;
    rightEV = eigen.getV();
    inv(rightEV, leftEV);
    mult(rightEV, VectorTools::exp(eigen.getRealEigenValues()), leftEV, O);
  }

  /**
   * @brief Compute a vector of the first powers of a given matrix.
   *
   * @param A [in] The matrix.
   * @param p The number of powers.
   * @param vO [out] the vector of the powers (from 0 to p)
   *
   * @throw DimensionException If m is not a square matrix.
   */
  
  template<class Matrix, class Scalar>
  static void Taylor(const Matrix& A, size_t p, std::vector< RowMatrix<Scalar> > & vO) throw (DimensionException)
  {
    size_t n = A.getNumberOfRows();
    if (n != A.getNumberOfColumns())
      throw DimensionException("MatrixTools::pow(). nrows != ncols.", A.getNumberOfColumns(), A.getNumberOfRows());
    vO.resize(p+1);
    getId<Matrix>(n, vO[0]);
    copy(A,vO[1]);
    
    for (size_t i = 1; i < p; i++)
      {
        mult(vO[i], A, vO[i+1]);
      }
  }

  /**
   * @return The position of the maximum value in the matrix.
   * @param m The matrix.
   */
  template<class Matrix>
  static std::vector<size_t> whichMax(const Matrix& m)
  {
    size_t nrows = m.getNumberOfRows();
    size_t ncols = m.getNumberOfColumns();
    std::vector<size_t> pos(2);
    size_t imax = 0;
    size_t jmax = 0;
    double currentMax = log(0.);
    for (size_t i = 0; i < nrows; i++)
    {
      for (size_t j = 0; j < ncols; j++)
      {
        double currentValue = m(i, j);
        // cout << currentValue << "\t" << (currentValue > currentMax) << endl;
        if (currentValue > currentMax)
        {
          imax = i;
          jmax = j;
          currentMax = currentValue;
        }
      }
    }
    pos[0] = imax;
    pos[1] = jmax;
    return pos;
  }

  /**
   * @return The position of the minimum value in the matrix.
   * @param m The matrix.
   */
  template<class Matrix>
  static std::vector<size_t> whichMin(const Matrix& m)
  {
    size_t nrows = m.getNumberOfRows();
    size_t ncols = m.getNumberOfColumns();
    std::vector<size_t> pos(2);
    size_t imin = 0;
    size_t jmin = 0;
    double currentMin = -log(0.);
    for (size_t i = 0; i < nrows; i++)
    {
      for (size_t j = 0; j < ncols; j++)
      {
        double currentValue = m(i, j);
        if (currentValue < currentMin)
        {
          imin = i;
          jmin = j;
          currentMin = currentValue;
        }
      }
    }
    pos[0] = imin;
    pos[1] = jmin;
    return pos;
  }

  /**
   * @return The maximum value in the matrix.
   * @param m The matrix.
   */
  template<class Real>
  static Real max(const Matrix<Real>& m)
  {
    size_t nrows = m.getNumberOfRows();
    size_t ncols = m.getNumberOfColumns();
    Real currentMax = log(0.);
    for (size_t i = 0; i < nrows; i++)
    {
      for (size_t j = 0; j < ncols; j++)
      {
        Real currentValue = m(i, j);
        // cout << currentValue << "\t" << (currentValue > currentMax) << endl;
        if (currentValue > currentMax)
        {
          currentMax = currentValue;
        }
      }
    }
    return currentMax;
  }


  /**
   * @return The minimum value in the matrix.
   * @param m The matrix.
   */
  template<class Real>
  static Real min(const Matrix<Real>& m)
  {
    size_t nrows = m.getNumberOfRows();
    size_t ncols = m.getNumberOfColumns();
    Real currentMin = -log(0.);
    for (size_t i = 0; i < nrows; i++)
    {
      for (size_t j = 0; j < ncols; j++)
      {
        Real currentValue = m(i, j);
        if (currentValue < currentMin)
        {
          currentMin = currentValue;
        }
      }
    }
    return currentMin;
  }

  /**
   * @brief Print a matrix to a stream.
   *
   * @param m The matrix to print.
   * @param out The stream to use.
   */
  template<class Matrix>
  static void print(const Matrix& m, std::ostream& out = std::cout)
  {
    out << m.getNumberOfRows() << "x" << m.getNumberOfColumns() << std::endl;
    out << "[" << std::endl;
    for (size_t i = 0; i < m.getNumberOfRows(); i++)
    {
      out << "[";
      for (size_t j = 0; j < m.getNumberOfColumns() - 1; j++)
      {
        out << m(i, j) << ", ";
      }
      if (m.getNumberOfColumns() > 0) out << m(i, m.getNumberOfColumns() - 1) << "]" << std::endl;
    }
    out << "]" << std::endl;
  }

  /**
   * @brief Print a matrix to a stream, so that it is read by R.
   *
   * @param m The matrix to print.
   * @param variableName The name of the R variable handeling the matrix
   * @param out The stream to use.
   */
  template<class Matrix>
  static void printForR(const Matrix& m, const std::string& variableName = "x", std::ostream& out = std::cout)
  {
    out.precision(12);
    out << variableName << "<-matrix(c(";
    for (size_t i = 0; i < m.getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < m.getNumberOfColumns(); j++)
      {
        if (i > 0 || j > 0)
          out << ", ";
        out << m(i, j);
      }
    }
    out << "), nrow=" << m.getNumberOfRows() << ", byrow=TRUE)" << std::endl;
  }


  /**
   * @brief Print a vector to a stream.
   *
   * @param v The vector to print.
   * @param out The stream to use.
   */
  template<class Real>
  static void print(const std::vector<Real>& v, std::ostream& out = std::cout)
  {
    out << v.size() << std::endl;
    out << "[";
    for (size_t i = 0; i < v.size() - 1; i++)
    {
      out << v[i] << ", ";
    }
    if (v.size() > 0) out << v[v.size() - 1];
    out << "]" << std::endl;
  }

  /**
   * @return True if the matrix is a square matrix.
   * @param A A matrix.
   */
  template<class Matrix>
  static bool isSquare(const Matrix& A) { return A.getNumberOfRows() == A.getNumberOfColumns(); }

  /**
   * @param A [in] The matrix to inverse.
   * @param O [out] The inverse matrix of A.
   * @return x the minimum absolute value of the diagonal of the LU decomposition
   * @throw DimensionException If A is not a square matrix.
   */
  template<class Scalar>
  static Scalar inv(const Matrix<Scalar>& A, Matrix<Scalar>& O) throw (DimensionException, ZeroDivisionException)
  {
    if (!isSquare(A)) throw DimensionException("MatrixTools::inv(). Matrix A is not a square matrix.", A.getNumberOfRows(), A.getNumberOfColumns());
    LUDecomposition<Scalar> lu(A);
    RowMatrix<Scalar> I;
    getId(A.getNumberOfRows(), I);
    return lu.solve(I, O);
  }

  /**
   * @brief Get determinant of a square matrix.
   *
   * This implementation is in @f$o(n^3)@f$ and uses the LU decomposition method.
   *
   * @param A [in] The input matrix.
   * @return The determinant of A.
   * @throw DimensionException If A is not a square matrix.
   */
  template<class Scalar>
  static double det(const Matrix<Scalar>& A) throw (DimensionException)
  {
    if (!isSquare(A)) throw DimensionException("MatrixTools::det(). Matrix A is not a square matrix.", A.getNumberOfRows(), A.getNumberOfColumns());
    LUDecomposition<Scalar> lu(A);
    return lu.det();
  }

  /**
   * @param A [in] The matrix to transpose.
   * @param O [out] The transposition of A.
   */
  template<class MatrixA, class MatrixO>
  static void transpose(const MatrixA& A, MatrixO& O)
  {
    O.resize(A.getNumberOfColumns(), A.getNumberOfRows());
    for (size_t i = 0; i < A.getNumberOfColumns(); i++)
    {
      for (size_t j = 0; j < A.getNumberOfRows(); j++)
      {
        O(i, j) = A(j, i);
      }
    }
  }

  /**
   * @brief Compute the variance-covariance matrix of an input matrix.
   *
   * The input matrix represent a n-sample of a random vector of dimension r.
   * It is assumed to have r rows and n columns.
   * The variance matrix is then computed as @f[ V = A\cdot A^T - \mu\cdot\mu^T@f],
   * where @f$\mu@f$ is the mean vector of the sample.
   * the output matrix is a square matrix of size r.
   *
   * @param A [in] The intput matrix.
   * @param O [out] The resulting variance covariance matrix.
   */
  template<class Scalar>
  static void covar(const Matrix<Scalar>& A, Matrix<Scalar>& O)
  {
    size_t r = A.getNumberOfRows();
    size_t n = A.getNumberOfColumns();
    O.resize(r, r);
    RowMatrix<Scalar> tA;
    transpose(A, tA);
    mult(A, tA, O);
    scale(O, 1. / static_cast<double>(n));
    RowMatrix<Scalar> mean(r, 1);
    for (size_t i = 0; i < r; i++)
    {
      for (size_t j = 0; j < n; j++)
      {
        mean(i, 0) += A(i, j);
      }
      mean(i, 0) /= static_cast<double>(n);
    }
    RowMatrix<Scalar> tMean;
    transpose(mean, tMean);
    RowMatrix<Scalar> meanMat;
    mult(mean, tMean, meanMat);
    scale(meanMat, -1.);
    add(O, meanMat);
  }

  /**
   * @brief Compute the Kronecker product of two row matrices.
   *
   * @param A [in] The first row matrix.
   * @param B [in] The second row matrix.
   * @param O [out] The product \f$A \otimes B\f$.
   */
  template<class Scalar>
  static void kroneckerMult(const Matrix<Scalar>& A, const Matrix<Scalar>& B, Matrix<Scalar>& O)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    O.resize(nrA * nrB, ncA * ncB);
    for (size_t ia = 0; ia < nrA; ia++)
    {
      for (size_t ja = 0; ja < ncA; ja++)
      {
        Scalar aij = A(ia, ja);
        for (size_t ib = 0; ib < nrB; ib++)
        {
          for (size_t jb = 0; jb < ncB; jb++)
          {
            O(ia * nrB + ib, ja * ncB + jb) = aij * B(ib, jb);
          }
        }
      }
    }
  }

  /**
   * @brief Compute the Hadamard product of two row matrices with same dimensions.
   *
   * @param A [in] The first row matrix.
   * @param B [in] The second row matrix.
   * @param O [out] The Hadamard product.
   */
  template<class Scalar>
  static void hadamardMult(const Matrix<Scalar>& A, const Matrix<Scalar>& B, Matrix<Scalar>& O)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    if (nrA != nrB) throw DimensionException("MatrixTools::hadamardMult(). nrows A != nrows B.", nrA, nrB);
    if (ncA != ncB) throw DimensionException("MatrixTools::hadamardMult(). ncols A != ncols B.", ncA, ncB);
    O.resize(nrA, ncA);
    for (size_t i = 0; i < nrA; i++)
    {
      for (size_t j = 0; j < ncA; j++)
      {
        O(i, j) = A(i, j) * B(i, j);
      }
    }
  }

  /**
   * @brief Compute the "Hadamard" product of a row matrix and a vector containing weights, according to rows or columns.
   *
   * @param A [in] The row matrix.
   * @param B [in] The vector of row or column weights.
   * @param O [out] The 'Hadamard' product.
   * @param row Boolean. If row is set to 'true', the vector contains weights for rows. Otherwise the vector contains weights for columns.
   */
  template<class Scalar>
  static void hadamardMult(const Matrix<Scalar>& A, const std::vector<Scalar>& B, Matrix<Scalar>& O, bool row = true)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t sB = B.size();
    if (row == true && nrA != sB) throw DimensionException("MatrixTools::hadamardMult(). nrows A != size of B.", nrA, sB);
    if (row == false && ncA != sB) throw DimensionException("MatrixTools::hadamardMult(). ncols A != size of B.", ncA, sB);
    O.resize(nrA, ncA);
    if (row)
    {
      for (size_t i = 0; i < nrA; i++)
      {
        for (size_t j = 0; j < ncA; j++)
        {
          O(i, j) = A(i, j) * B[i];
        }
      }
    }
    else
    {
      for (size_t i = 0; i < nrA; i++)
      {
        for (size_t j = 0; j < ncA; j++)
        {
          O(i, j) = A(i, j) * B[j];
        }
      }
    }
  }

  /**
   * @brief Compute the Kronecker sum of two row matrices.
   *
   * @param A [in] The first row matrix.
   * @param B [in] The second row matrix.
   * @param O [out] The product \f$A \oplus B\f$.
   */
  template<class Scalar>
  static void kroneckerSum(const Matrix<Scalar>& A, const Matrix<Scalar>& B, Matrix<Scalar>& O)
  {
    size_t ncA = A.getNumberOfColumns();
    size_t nrA = A.getNumberOfRows();
    size_t nrB = B.getNumberOfRows();
    size_t ncB = B.getNumberOfColumns();
    O.resize(nrA + nrB, ncA + ncB);
    for (size_t ia = 0; ia < nrA; ia++)
    {
      for (size_t ja = 0; ja < ncA; ja++)
      {
        O(ia, ja) = A(ia, ja);
      }
    }
    for (size_t ib = 0; ib < nrB; ib++)
    {
      for (size_t jb = 0; jb < nrB; jb++)
      {
        O(nrA + ib, ncA + jb) = B(ib, jb);
      }
    }
  }

  /**
   * @brief Compute the Kronecker sum of n row matrices.
   *
   * @param vA [in] A vector of row matrices of any size.
   * @param O [out] The product \f$\bigoplus_i A_i\f$.
   */
  template<class Scalar>
  static void kroneckerSum(const std::vector< Matrix<Scalar>*>& vA, Matrix<Scalar>& O)
  {
    size_t nr = 0;
    size_t nc = 0;
    for (size_t k = 0; k < vA.size(); k++)
    {
      nr += vA[k]->getNumberOfRows();
      nc += vA[k]->getNumberOfColumns();
    }
    O.resize(nr, nc);
    size_t rk = 0; // Row counter
    size_t ck = 0; // Col counter
    for (size_t k = 0; k < vA.size(); k++)
    {
      const Matrix<Scalar>* Ak = vA[k];
      for (size_t i = 0; i < Ak->getNumberOfRows(); i++)
      {
        for (size_t j = 0; j < Ak->getNumberOfColumns(); j++)
        {
          O(rk + i, ck + j) = (*Ak)(i, j);
        }
      }
      rk += Ak->getNumberOfRows();
      ck += Ak->getNumberOfColumns();
    }
  }

  /**
   * @brief Convert to a vector of vector.
   *
   * @param M [in] A matrix object.
   * @param vO [out] The output vector of vector (will be resized accordingly).
   */
  template<class Scalar>
  static void toVVdouble(const Matrix<Scalar>& M, std::vector< std::vector<Scalar> >& vO)
  {
    size_t n = M.getNumberOfRows();
    size_t m = M.getNumberOfColumns();
    vO.resize(n);
    for (size_t i = 0; i < n; i++)
    {
      vO[i].resize(m);
      for (size_t j = 0; j < m; j++)
      {
        vO[i][j] = M(i, j);
      }
    }
  }

  /**
   * @brief Sum all elements in M.
   * @param M A matrix.
   * @return The sum of all elements.
   */
  template<class Scalar>
  static Scalar sumElements(const Matrix<Scalar>& M)
  {
    Scalar sum = 0;
    for (size_t i = 0; i < M.getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < M.getNumberOfColumns(); j++)
      {
        sum += M(i, j);
      }
    }
    return sum;
  }


  
  /**
   * @brief Linear Assignment Problem
   *
   * The algorithm coded here is described in 
   * * A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems, Computing 38, 325-340, 1987
   * by R. Jonker and A. Volgenant, University of Amsterdam.
   *
   * @param assignCost [input/output] Cost matrix
   * @param rowSol     [output] Column assigned to row in solution
   * @param colSol     [output] Row assigned to column in solution
   * @param u          [output] Dual variables, row reduction numbers
   * @param v          [output] Dual variables, column reduction numbers
   * @return The optimal cost.
   */
  template<class Scalar>
  static Scalar lap(Matrix<Scalar>& assignCost,
      std::vector<int> &rowSol, 
      std::vector<int> &colSol, 
      std::vector<Scalar> &u, 
      std::vector<Scalar> &v) throw (Exception)
  {
    size_t dim = assignCost.getNumberOfRows();
    if (assignCost.getNumberOfColumns() != dim)
      throw Exception("MatrixTools::lap. Cost matrix should be scare.");
  
    bool unassignedFound;
    size_t i, iMin;
    size_t numFree = 0, previousNumFree, f, i0, k, freeRow;
    std::vector<size_t> free(dim); // list of unassigned rows.
    std::vector<size_t> pred(dim); // row-predecessor of column in augmenting/alternating path.
    size_t j, j1, j2, endOfPath, last, low, up;
    std::vector<size_t> colList(dim); // list of columns to be scanned in various ways.
    std::vector<short int> matches(dim, 0); // counts how many times a row could be assigned.
    Scalar min;
    Scalar h;
    size_t uMin, uSubMin;
    Scalar v2;
    std::vector<Scalar> d(dim); // 'cost-distance' in augmenting path calculation.

    // Column reduction
    for (j = dim; j > 0; j--)    // reverse order gives better results.
    {
      // find minimum cost over rows.
      min = assignCost(0, j - 1); 
      iMin = 0;
      for (i = 1; i < dim; ++i) { 
        if (assignCost(i, j - 1) < min) 
        { 
          min = assignCost(i, j - 1); 
          iMin = i;
        }
      }
      v[j - 1] = min; 

      if (++matches[iMin] == 1) 
      { 
        // init assignment if minimum row assigned for first time.
        rowSol[iMin] = j - 1; 
        colSol[j - 1] = iMin; 
      }
      else
        colSol[j - 1] = -1;        // row already assigned, column not assigned.
    }

    // Reduction tranfer
    for (i = 0; i < dim; i++) { 
      if (matches[i] == 0)     // fill list of unassigned 'free' rows.
        free[numFree++] = i;
      else {
        if (matches[i] == 1)   // transfer reduction from rows that are assigned once.
        {
          j1 = rowSol[i]; 
          min = -log(0);
          for (j = 0; j < dim; j++)  
            if (j != j1)
              if (assignCost(i, j - 1) - v[j] < min) 
                min = assignCost(i, j - 1) - v[j - 1];
          v[j1] = v[j1] - min;
        }
      }
    }

    // Augmenting row reduction 
    short loopcnt = 0;           // do-loop to be done twice.
    do
    {
      loopcnt++;

      // scan all free rows.
      // in some cases, a free row may be replaced with another one to be scanned next.
      k = 0; 
      previousNumFree = numFree; 
      numFree = 0;             // start list of rows still free after augmenting row reduction.
      while (k < previousNumFree)
      {
        i = free[k]; 
        k++;

        // find minimum and second minimum reduced cost over columns.
        uMin = assignCost(i, 0) - v[0]; 
        j1 = 0; 
        uSubMin = -log(0);
        for (j = 1; j < dim; j++) 
        {
          h = assignCost(i, j) - v[j];
          if (h < uSubMin) {
            if (h >= uMin) 
            { 
              uSubMin = h; 
              j2 = j;
            }
            else 
            { 
              uSubMin = uMin; 
              uMin = h; 
              j2 = j1; 
              j1 = j;
            }
          }
        }

        i0 = colSol[j1];
        if (uMin < uSubMin) {
          // change the reduction of the minimum column to increase the minimum
          // reduced cost in the row to the subminimum.
          v[j1] = v[j1] - (uSubMin - uMin);
        } else {                  // minimum and subminimum equal.
          if (i0 >= 0)         // minimum column j1 is assigned.
          { 
            // swap columns j1 and j2, as j2 may be unassigned.
            j1 = j2; 
            i0 = colSol[j2];
          }
        }

        // (re-)assign i to j1, possibly de-assigning an i0.
        rowSol[i] = j1; 
        colSol[j1] = i;

        if (i0 >= 0) {          // minimum column j1 assigned earlier.
          if (uMin < uSubMin) {
            // put in current k, and go back to that k.
            // continue augmenting path i - j1 with i0.
            free[--k] = i0; 
          } else { 
            // no further augmenting reduction possible.
            // store i0 in list of free rows for next phase.
            free[numFree++] = i0; 
          }
        }
      }
    }
    while (loopcnt < 2);       // repeat once.

    // Augment solution for each free row.
    for (f = 0; f < numFree; f++) 
    {
      freeRow = free[f];       // start row of augmenting path.

      // Dijkstra shortest path algorithm.
      // runs until unassigned column added to shortest path tree.
      for (j = 0; j < dim; j++)  
      { 
        d[j] = assignCost(freeRow, j) - v[j]; 
        pred[j] = freeRow;
        colList[j] = j;        // init column list.
      }

      low = 0; // columns in 0..low-1 are ready, now none.
      up = 0;  // columns in low..up-1 are to be scanned for current minimum, now none.
               // columns in up..dim-1 are to be considered later to find new minimum, 
               // at this stage the list simply contains all columns 
      unassignedFound = false;
      do
      {
        if (up == low)         // no more columns to be scanned for current minimum.
        {
          last = low - 1; 

          // scan columns for up..dim-1 to find all indices for which new minimum occurs.
          // store these indices between low..up-1 (increasing up). 
          min = d[colList[up++]]; 
          for (k = up; k < dim; k++) 
          {
            j = colList[k]; 
            h = d[j];
            if (h <= min)
            {
              if (h < min)     // new minimum.
              { 
                up = low;      // restart list at index low.
                min = h;
              }
              // new index with same minimum, put on undex up, and extend list.
              colList[k] = colList[up]; 
              colList[up++] = j; 
            }
          }

          // check if any of the minimum columns happens to be unassigned.
          // if so, we have an augmenting path right away.
          for (k = low; k < up; k++) { 
            if (colSol[colList[k]] < 0) 
            {
              endOfPath = colList[k];
              unassignedFound = true;
              break;
            }
          }
        }

        if (!unassignedFound) 
        {
          // update 'distances' between freerow and all unscanned columns, via next scanned column.
          j1 = colList[low]; 
          low++; 
          i = colSol[j1]; 
          h = assignCost(i, j1) - v[j1] - min;

          for (k = up; k < dim; k++) 
          {
            j = colList[k]; 
            v2 = assignCost(i, j) - v[j] - h;
            if (v2 < d[j])
            {
              pred[j] = i;
              if (v2 == min) {  // new column found at same minimum value
                if (colSol[j] < 0) 
                {
                  // if unassigned, shortest augmenting path is complete.
                  endOfPath = j;
                  unassignedFound = true;
                  break;
                }
                // else add to list to be scanned right away.
                else 
                { 
                  colList[k] = colList[up]; 
                  colList[up++] = j; 
                }
              }
              d[j] = v2;
            }
          }
        } 
      }
      while (!unassignedFound);

      // update column prices.
      for (k = 0; k <= last; k++)  
      { 
        j1 = colList[k]; 
        v[j1] = v[j1] + d[j1] - min;
      }

      // reset row and column assignments along the alternating path.
      do
      {
        i = pred[endOfPath]; 
        colSol[endOfPath] = i; 
        j1 = endOfPath; 
        endOfPath = rowSol[i]; 
        rowSol[i] = j1;
      }
      while (i != freeRow);
    }

    // calculate optimal cost.
    Scalar lapCost = 0;
    for (i = 0; i < dim; i++)  
    {
      j = rowSol[i];
      u[i] = assignCost(i, j) - v[j];
      lapCost = lapCost + assignCost(i, j); 
    }

    return lapCost;
  }

};

/* DEPRECATED
   namespace MatrixOperators {

   MatrixB operator*(const MatrixA & A, const MatrixB & B) throw (DimensionException)
   {
   return MatrixTools::mult<MatrixA, MatrixB>(A, B);
   }

   template<class MatrixA, class MatrixB>
   MatrixA operator+(const MatrixA & A, const MatrixB & B) throw (DimensionException)
   {
   MatrixA C = A;
   MatrixTools::add<MatrixA, MatrixB>(C, B);
   return C;
   }

   template<class MatrixA, class MatrixB>
   MatrixA operator+=(MatrixA & A, const MatrixB & B) throw (DimensionException)
   {
   MatrixTools::add<MatrixA, MatrixB>(A, B);
   return A;
   }

   template<class Matrix>
   Matrix operator-(const Matrix A)
   {
   Matrix B(A.getNumberOfRows(), A.getNumberOfColumns());
   for(size_t i = 0; i < B.getNumberOfRows(); i++) {
   for(size_t j = 0; j < B.getNumberOfColumns(); j++) {
   B(i, j) = -A(i, j);
   }
   }
   return B;
   }

   template<class MatrixA, class MatrixB>
   MatrixA operator-(const MatrixA & A, const MatrixB & B) throw (DimensionException)
   {
   //    size_t ncA = A.getNumberOfColumns();
   //    size_t nrA = A.getNumberOfRows();
   //    size_t nrB = B.getNumberOfRows();
   //    size_t ncB = B.getNumberOfColumns();
   //    if(ncA != ncB) throw DimensionException("MatrixTools::operator-(). A and B must have the same number of colums.", ncB, ncA);
   //    if(nrA != nrB) throw DimensionException("MatrixTools::operator-(). A and B must have the same number of rows.", nrB, nrA);
   //    MatrixB C(A.getNumberOfRows(), A.getNumberOfColumns());
   //    for(size_t i = 0; i < A.getNumberOfRows(); i++) {
   //      for(size_t j = 0; j < A.getNumberOfColumns(); j++) {
   //        C(i, j) = A(i, j) - B(i, j);
   //      }
   //    }
   //    return C;
   MatrixA C = A;
   MatrixTools::add<MatrixA, MatrixB>(C, -B);
   return C;
   }

   template<class MatrixA, class MatrixB>
   MatrixA operator-=(MatrixA & A, const MatrixB & B) throw (DimensionException)
   {
   MatrixTools::add<MatrixA, MatrixB>(A, -B);
   return A;
   }

   };
 */
} // end of namespace bpp.

#endif  // _MATRIXTOOLS_H_