This file is indexed.

/usr/include/Bpp/Numeric/Matrix/Matrix.h is in libbpp-core-dev 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
//
// File: Matrix.h
// Authors: Julien Dutheil
//          Sylvain Gaillard
// Created on: Tue Apr 07 11:58 2004
//

/*
   Copyright or © or Copr. Bio++ Development Team, (November 17, 2004)

   This software is a computer program whose purpose is to provide classes
   for numerical calculus.

   This software is governed by the CeCILL  license under French law and
   abiding by the rules of distribution of free software.  You can  use,
   modify and/ or redistribute the software under the terms of the CeCILL
   license as circulated by CEA, CNRS and INRIA at the following URL
   "http://www.cecill.info".

   As a counterpart to the access to the source code and  rights to copy,
   modify and redistribute granted by the license, users are provided only
   with a limited warranty  and the software's author,  the holder of the
   economic rights,  and the successive licensors  have only  limited
   liability.

   In this respect, the user's attention is drawn to the risks associated
   with loading,  using,  modifying and/or developing or reproducing the
   software by the user in light of its specific status of free software,
   that may mean  that it is complicated to manipulate,  and  that  also
   therefore means  that it is reserved for developers  and  experienced
   professionals having in-depth computer knowledge. Users are therefore
   encouraged to load and test the software's suitability as regards their
   requirements in conditions enabling the security of their systems and/or
   data to be ensured and,  more generally, to use and operate it in the
   same conditions as regards security.

   The fact that you are presently reading this means that you have had
   knowledge of the CeCILL license and that you accept its terms.
 */


#ifndef _MATRIX_H_
#define _MATRIX_H_

#include <vector>
#include "../../Clonable.h"
#include "../NumConstants.h"
#include "../NumTools.h"
#include "../VectorExceptions.h"
#include <iostream>

namespace bpp
{
/**
 * @brief The matrix template interface.
 */
template<class Scalar>
class Matrix :
  public Clonable
{
public:
  Matrix() {}
  virtual ~Matrix() {}

public:
  /**
   * @return \f$m_{i,j}\f$.
   * @param i row index.
   * @param j column index.
   */
  virtual const Scalar& operator()(size_t i, size_t j) const = 0;
  /**
   * @return \f$m_{i,j}\f$.
   * @param i row index.
   * @param j column index.
   */
  virtual Scalar& operator()(size_t i, size_t j) = 0;

  virtual bool equals(const Matrix& m, double threshold = NumConstants::TINY())
  {
    if (m.getNumberOfRows() != getNumberOfRows() || m.getNumberOfColumns() != getNumberOfColumns())
      return false;
    for (size_t i = 0; i < getNumberOfRows(); i++)
    {
      for (size_t j = 0; j < getNumberOfColumns(); j++)
      {
        if (NumTools::abs<double>(static_cast<double>(operator()(i, j)) - static_cast<double>(m(i, j))) > threshold) return false;
      }
    }
    return true;
  }
  /**
   * @return The number of rows.
   */
  virtual size_t getNumberOfRows() const = 0;
  /**
   * @return The number of columns.
   */
  virtual size_t getNumberOfColumns() const = 0;
  /**
   * @return the row at position i as a vector.
   * @param i The index of the row.
   */
  virtual std::vector<Scalar> row(size_t i) const = 0;
  /**
   * @return the column at position j as a vector.
   * @param j The index of the column.
   */
  virtual std::vector<Scalar> col(size_t j) const = 0;
  /**
   * @brief Resize the matrix.
   *
   * @param nRows The new number of rows.
   * @param nCols The new number of columns.
   */
  virtual void resize(size_t nRows, size_t nCols) = 0;
};

/**
 * @brief Matrix storage by row.
 *
 * This matrix is a vector of vector of Scalar.
 * Row access is in \f$O(1)\f$ while column access is in \f$O(nRow)\f$.
 */
template<class Scalar>
class RowMatrix :
  public Matrix<Scalar>
{
private:
  std::vector< std::vector<Scalar> > m_;

public:
  RowMatrix() : m_() {}

  RowMatrix(size_t nRow, size_t nCol) : m_(nRow)
  {
    for (size_t i = 0; i < nRow; i++)
    {
      m_[i].resize(nCol);
    }
  }

  RowMatrix(const Matrix<Scalar>& m) : m_(m.getNumberOfRows())
  {
    size_t nr = m.getNumberOfRows();
    size_t nc = m.getNumberOfColumns();
    for (size_t i = 0; i < nr; i++)
    {
      m_[i].resize(nc);
      for (size_t j = 0; j < nc; j++)
      {
        m_[i][j] = m(i, j);
      }
    }
  }

  RowMatrix& operator=(const Matrix<Scalar>& m)
  {
    size_t nr = m.getNumberOfRows();
    m_.resize(nr);
    size_t nc = m.getNumberOfColumns();
    for (size_t i = 0; i < nr; i++)
    {
      m_[i].resize(nc);
      for (size_t j = 0; j < nc; j++)
      {
        m_[i][j] = m(i, j);
      }
    }
    return *this;
  }

  virtual ~RowMatrix() {}

public:
  RowMatrix* clone() const { return new RowMatrix(*this); }

  const Scalar& operator()(size_t i, size_t j) const { return m_[i][j]; }

  Scalar& operator()(size_t i, size_t j) { return m_[i][j]; }

  size_t getNumberOfRows() const { return m_.size(); }

  size_t getNumberOfColumns() const { return m_.size() == 0 ? 0 : m_[0].size(); }

  std::vector<Scalar> row(size_t i) const
  {
    std::vector<Scalar> r(getNumberOfColumns());
    for (size_t j = 0; j < getNumberOfColumns(); j++) { r[j] = operator()(i, j); }
    return r;
  }

  std::vector<Scalar> col(size_t j) const
  {
    std::vector<Scalar> c(getNumberOfRows());
    for (size_t i = 0; i < getNumberOfRows(); i++) { c[i] = operator()(i, j); }
    return c;
  }

  void resize(size_t nRows, size_t nCols)
  {
    m_.resize(nRows);
    for (size_t i = 0; i < nRows; i++)
    {
      m_[i].resize(nCols);
    }
  }

  void addRow(const std::vector<Scalar>& newRow) throw (DimensionException)
  {
    if (newRow.size() != getNumberOfColumns()) throw DimensionException("RowMatrix::addRow: invalid row dimension", newRow.size(), getNumberOfColumns());
    m_.push_back(newRow);
  }
};

/**
 * @brief Matrix storage in one vector.
 *
 * This Matrix is a simple vector of Scalar of size n x m.
 * Element access is in \f$O(1)\f$ but resizing the matrix while keeping the
 * old values is in \f$O(nm)\f$.
 *
 * Basic usage:
 * @code
 * LinearMatrix<int> m(3, 2); // Create a 3x2 matrix of int
 * m(1, 2) = 5; // Set the value of element at row = 1, col = 2 to 5
 * int x = m(0, 1); // Get the value of element at row = 0, col = 1;
 * @endcode
 *
 * @author Sylvain Gaillard
 */
template<class Scalar>
class LinearMatrix :
  public Matrix<Scalar>
{
private:
  std::vector<Scalar> m_;
  size_t rows_;
  size_t cols_;

public:
  /**
   * @brief Build a 0 x 0 matrix.
   */
  LinearMatrix() : m_(),
    rows_(0),
    cols_(0) { resize_(0, 0); }

  /**
   * @brief build a nRow x nCol matrix.
   */
  LinearMatrix(size_t nRow, size_t nCol) : m_(),
    rows_(nRow),
    cols_(nCol) { resize_(nRow, nCol); }

  LinearMatrix(const Matrix<Scalar>& m) : m_(m.getNumberOfRows() * m.getNumberOfColumns())
  {
    size_t nr = m.getNumberOfRows();
    size_t nc = m.getNumberOfColumns();
    for (size_t i = 0; i < nr; i++)
    {
      for (size_t j = 0; j < nc; j++)
      {
        m_[i * cols_ + j] = m(i, j);
      }
    }
  }

  LinearMatrix& operator=(const Matrix<Scalar>& m)
  {
    size_t nr = m.getNumberOfRows();
    size_t nc = m.getNumberOfColumns();
    m_.resize(nr * nc);
    for (size_t i = 0; i < nr; i++)
    {
      m_[i].resize(nc);
      for (size_t j = 0; j < nc; j++)
      {
        m_[i * cols_ + j] = m(i, j);
      }
    }
    return *this;
  }

  /**
   * @brief Destructor.
   */
  virtual ~LinearMatrix() {}

public:
  LinearMatrix* clone() const { return new LinearMatrix(*this); }

  const Scalar& operator()(size_t i, size_t j) const { return m_[i * cols_ + j]; }

  Scalar& operator()(size_t i, size_t j) { return m_[i * cols_ + j]; }

  size_t getNumberOfRows() const { return rows_; }

  size_t getNumberOfColumns() const { return cols_; }

  std::vector<Scalar> row(size_t i) const
  {
    std::vector<Scalar> r(getNumberOfColumns());
    for (size_t j = 0; j < getNumberOfColumns(); j++)
    {
      r[j] = operator()(i, j);
    }
    return r;
  }

  std::vector<Scalar> col(size_t j) const
  {
    std::vector<Scalar> c(getNumberOfRows());
    for (size_t i = 0; i < getNumberOfRows(); i++)
    {
      c[i] = operator()(i, j);
    }
    return c;
  }

  /**
   * @copydoc Matrix::resize
   *
   * This method resize the matrix keeping old data in place.
   * @see LinearMatrix::resize(size_t nRow, size_t nCol, bool keepValues)
   */
  void resize(size_t nRows, size_t nCols)
  {
    resize(nRows, nCols, true);
  }

  /**
   * @brief Resize the matrix.
   *
   * This task may be memory consumming if keepValues is true because it use
   * a copy of the input matrix to keep trace of the values.
   *
   * @param nRows the new number of rows
   * @param nCols the new number of columns
   * @param keepValues if old values must be kept in the resized matrix.
   * If keepValues = false, old values are still in the matrix but not at
   * the same positions. For instance:
   * @code
   * LinearMatrix<int> m(3, 2);
   * for (size_t i = 0 ; i < m.getNumberOfRows() ; i++) {
   *   for (size_t j = 0 ; j < m.getNumberOfColumns() ; j++) {
   *     m(i, j) = i * m.nCols() + j + 1;
   *   }
   * }
   * MatrixTools::print(m);
   * // 3x2
   * // [
   * // [1, 2]
   * // [3, 4]
   * // [5, 6]
   * // ]
   * LinearMatrix<int> m2 = m;
   * m2.resize(2, 4, false); // resize the matrix with keepValues = false
   * MatrixTools::print(m2);
   * // 2x4
   * // [
   * // [1, 2, 3, 4]
   * // [5, 6, 0, 0]
   * // ]
   * LinearMatrix<int> m3 = m;
   * m3.resize(2, 4, true); // resize the matrix with keepValues = true
   * MatrixTools::print(m3);
   * // 2x4
   * // [
   * // [1, 2, 0, 0]
   * // [3, 4, 0, 0]
   * // ]
   * @endcode
   */
  void resize(size_t nRows, size_t nCols, bool keepValues)
  {
    LinearMatrix<Scalar> tmpM;
    if (keepValues)
      tmpM = *this;
    resize_(nRows, nCols);
    if (keepValues)
    {
      for (size_t i = 0; i < nRows; i++)
      {
        for (size_t j = 0; j < nCols; j++)
        {
          if (i < tmpM.getNumberOfRows() && j < tmpM.getNumberOfColumns())
          {
            operator()(i, j) = tmpM(i, j);
          }
          else
          {
            operator()(i, j) = 0;
          }
        }
      }
    }
  }

private:
  /**
   * @brief Internal basic resize fonctionnalities.
   */
  void resize_(size_t nRows, size_t nCols)
  {
    m_.resize(nRows * nCols);
    rows_ = nRows;
    cols_ = nCols;
  }
};

template<class Scalar>
bool operator==(const Matrix<Scalar>& m1, const Matrix<Scalar>& m2)
{
  if (m1.getNumberOfRows() != m2.getNumberOfRows() || m1.getNumberOfColumns() != m2.getNumberOfColumns())
    return false;
  for (size_t i = 0; i < m1.getNumberOfRows(); i++)
  {
    for (size_t j = 0; j < m1.getNumberOfColumns(); j++)
    {
      if (m1(i, j) != m2(i, j))
        return false;
    }
  }
  return true;
}
} // end of namespace bpp.

#endif // _MATRIX_H_