This file is indexed.

/usr/include/Bpp/Numeric/Function/AbstractNumericalDerivative.h is in libbpp-core-dev 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//
// File: AbstractNumericalDerivative.h
// Created by: Julien Dutheil
// Created on: Thu Aug 17 15:00 2006
//

/*
Copyright or © or Copr. Bio++ Development Team, (November 17, 2004)

This software is a computer program whose purpose is to provide classes
for numerical calculus.

This software is governed by the CeCILL  license under French law and
abiding by the rules of distribution of free software.  You can  use, 
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info". 

As a counterpart to the access to the source code and  rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's author,  the holder of the
economic rights,  and the successive licensors  have only  limited
liability. 

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or 
data to be ensured and,  more generally, to use and operate it in the 
same conditions as regards security. 

The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/

#ifndef _ABSTRACTNUMERICALDERIVATIVE_H_
#define _ABSTRACTNUMERICALDERIVATIVE_H_

#include "Functions.h"
#include "../Matrix/Matrix.h"

//From the STL:
#include <map>
#include <vector>
#include <string>

namespace bpp
{

/**
 * @brief Numerical derivative function wrapper, partial implementation.
 *
 * This class provides a wrapper for Function object, implementing the DerivableSecondOrder interface
 * (Although no cross derivative is implemented for now).
 * Derivations of this class can be used as full DerivableSecondOrder objects, with derivative functions.
 * 
 * Three kinds of constructors are provided: one with a Function object, another with a DerivableFirstOrder object, and one with a DerivableSecondOrder object.
 * In the first case, all derivatives will be computed numerically.
 * In the second case, first order derivative will be computed numerically only if no appropriate analytical derivative is available, second order derivative will always be computed numerically.
 * In the last case, first and second order derivative will be computed numerically only if no appropriate analytical derivative is available.
 */
class AbstractNumericalDerivative:
  public DerivableSecondOrder,
  public FunctionWrapper
{
  protected:
    DerivableFirstOrder *function1_;
    DerivableSecondOrder *function2_;
    double h_;
    std::vector<std::string> variables_;
    mutable std::map<std::string, size_t> index_; //Store positions in array corresponding to variable names.
    std::vector<double> der1_;
    std::vector<double> der2_;
    RowMatrix<double> crossDer2_;
    bool computeD1_, computeD2_, computeCrossD2_;
    
  public:
    AbstractNumericalDerivative(Function* function):
      FunctionWrapper(function), function1_(0), function2_(0),
      h_(0.0001), variables_(), index_(), der1_(), der2_(), crossDer2_(),
      computeD1_(true), computeD2_(true), computeCrossD2_(false) {}

    AbstractNumericalDerivative(DerivableFirstOrder* function):
      FunctionWrapper(function), function1_(function), function2_(0),
      h_(0.0001), variables_(), index_(), der1_(), der2_(), crossDer2_(),
      computeD1_(true), computeD2_(true), computeCrossD2_(false) {}

    AbstractNumericalDerivative(DerivableSecondOrder* function):
      FunctionWrapper(function), function1_(function), function2_(function),
      h_(0.0001), variables_(), index_(), der1_(), der2_(), crossDer2_(),
      computeD1_(true), computeD2_(true), computeCrossD2_(false) {}

    AbstractNumericalDerivative(const AbstractNumericalDerivative& ad):
      FunctionWrapper(ad), function1_(ad.function1_), function2_(ad.function2_),
      h_(ad.h_), variables_(ad.variables_), index_(ad.index_), der1_(ad.der1_), der2_(ad.der2_), crossDer2_(ad.crossDer2_),
      computeD1_(ad.computeD1_), computeD2_(ad.computeD2_), computeCrossD2_(ad.computeCrossD2_) {}

    AbstractNumericalDerivative& operator=(const AbstractNumericalDerivative& ad)
    {
      FunctionWrapper::operator=(ad);
      function1_ = ad.function1_;
      function2_ = ad.function2_;
      h_ = ad.h_;
      variables_ = ad.variables_;
      index_ = ad.index_;
      der1_ = ad.der1_;
      der2_ = ad.der2_;
      crossDer2_ = ad.crossDer2_;
      computeD1_ = ad.computeD1_;
      computeD2_ = ad.computeD2_;
      computeCrossD2_ = ad.computeCrossD2_;
      return *this;
    }

    virtual ~AbstractNumericalDerivative() {}

    AbstractNumericalDerivative* clone() const = 0;

  public:
    /**
     * @brief Set the interval value used in numerical approximation.
     *
     * Default value is 0.0001.
     *
     * @param h Interval value.
     */
    void setInterval(double h) { h_ = h; }
    
    /**
     * @return The interval value used in numerical approximation.
     */
    double getInterval() const { return h_; }
    
    /**
     * @brief Set the list of parameters to derivate.
     *
     * @param variables A list of all parameter names.
     */
    void setParametersToDerivate(const std::vector<std::string>& variables)
    {
      variables_ = variables;
      index_.clear();
      for(size_t i = 0; i < variables_.size(); i++)
        index_[variables_[i]] = i;
      der1_.resize(variables_.size());
      der2_.resize(variables_.size());
      crossDer2_.resize(variables_.size(), variables_.size());
    }
    
    /**
     * @name The DerivableFirstOrder interface
     *
     * @{
     */
    void enableFirstOrderDerivatives(bool yn) { computeD1_ = yn; }
    bool enableFirstOrderDerivatives() const { return computeD1_; }
    
    double getFirstOrderDerivative(const std::string& variable) const
      throw (Exception)
    {
      if (function1_)
      {
        try
        {
          return function1_->getFirstOrderDerivative(variable);
        }
        catch (Exception& e) {}
      }    
      std::map<std::string, size_t>::iterator it = index_.find(variable);
      if (computeD1_ && it != index_.end()) return der1_[it->second];
      else throw Exception("First order derivative not computed for variable " + variable + "."); 
    }
    /** @} */
    
    /**
     * @name The DerivableSecondOrder interface
     *
     * @{
     */

    void enableSecondOrderDerivatives(bool yn) { computeD2_ = yn; }
    bool enableSecondOrderDerivatives() const { return computeD2_; }

    double getSecondOrderDerivative(const std::string& variable) const
      throw (Exception)
    {
      if (function2_)
      {
        try
        {
          return function2_->getSecondOrderDerivative(variable);
        }
        catch(Exception & e) {}
      }    
      std::map<std::string, size_t>::iterator it = index_.find(variable);
      if(computeD2_ && it != index_.end()) return der2_[it->second];
      else throw Exception("Second order derivative not computed for variable " + variable + "."); 
    }

    double getSecondOrderDerivative(const std::string& variable1, const std::string& variable2) const
      throw (Exception)
    {
      if (function2_)
      {
        try
        {
          return function2_->getSecondOrderDerivative(variable1, variable2);
        }
        catch(Exception & e) {}
      }    
      std::map<std::string, size_t>::iterator it1 = index_.find(variable1);
      std::map<std::string, size_t>::iterator it2 = index_.find(variable2);
      if(computeCrossD2_ && it1 != index_.end() && it2 != index_.end()) return crossDer2_(it1->second, it2->second);
      else throw Exception("Cross second order derivative not computed for variables " + variable1 + " and " + variable2 + "."); 
    }
    /** @} */
     
    /**
     * @name The Parametrizable interface.
     *
     * @{
     */
    double f(const ParameterList& parameters) throw (Exception)
    {
      setParameters(parameters);
      return getValue();
    }
    void setParameters(const ParameterList& parameters)
      throw (ParameterNotFoundException, ConstraintException)
    {
      function_->setParameters(parameters);
      updateDerivatives(parameters);
    }
    void setAllParametersValues(const ParameterList& parameters)
      throw (ParameterNotFoundException, ConstraintException)
    {
      function_->setAllParametersValues(parameters);
      updateDerivatives(parameters);
    }
    
    void setParameterValue(const std::string& name, double value)
      throw (ParameterNotFoundException, ConstraintException)
    {
      function_->setParameterValue(name, value);
      updateDerivatives(function_->getParameters().subList(name));
    }
    
    void setParametersValues(const ParameterList& parameters)
      throw (ParameterNotFoundException, ConstraintException)
    {
      function_->setParametersValues(parameters);
      updateDerivatives(parameters);
    }
    
    bool matchParametersValues(const ParameterList& parameters)
      throw (ConstraintException)
    {
      bool test = function_->matchParametersValues(parameters);
      updateDerivatives(parameters);
      return test;
    }
    /** @} */

    void enableSecondOrderCrossDerivatives(bool yn) { computeCrossD2_ = yn; }
    bool enableSecondOrderCrossDerivatives() const { return computeCrossD2_; }

  protected:
    /**
     * @brief Compute derivatives.
     *
     * @param parameters The point where to compute derivatives. It is NOT passed as references,
     * as the inner parameters of the function will be changed when computing the numerical derivatives.
     */
    virtual void updateDerivatives(const ParameterList parameters) = 0;
    
};

} //end of namespace bpp.

#endif //_ABSTRACTNUMERICALDERIVATIVE_H_