/usr/include/integration.h is in libalglib-dev 3.8.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | /*************************************************************************
Copyright (c) Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _integration_pkg_h
#define _integration_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "linalg.h"
#include "specialfunctions.h"
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
ae_int_t terminationtype;
ae_int_t nfev;
ae_int_t nintervals;
} autogkreport;
typedef struct
{
double a;
double b;
double eps;
double xwidth;
double x;
double f;
ae_int_t info;
double r;
ae_matrix heap;
ae_int_t heapsize;
ae_int_t heapwidth;
ae_int_t heapused;
double sumerr;
double sumabs;
ae_vector qn;
ae_vector wg;
ae_vector wk;
ae_vector wr;
ae_int_t n;
rcommstate rstate;
} autogkinternalstate;
typedef struct
{
double a;
double b;
double alpha;
double beta;
double xwidth;
double x;
double xminusa;
double bminusx;
ae_bool needf;
double f;
ae_int_t wrappermode;
autogkinternalstate internalstate;
rcommstate rstate;
double v;
ae_int_t terminationtype;
ae_int_t nfev;
ae_int_t nintervals;
} autogkstate;
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{
/*************************************************************************
Integration report:
* TerminationType = completetion code:
* -5 non-convergence of Gauss-Kronrod nodes
calculation subroutine.
* -1 incorrect parameters were specified
* 1 OK
* Rep.NFEV countains number of function calculations
* Rep.NIntervals contains number of intervals [a,b]
was partitioned into.
*************************************************************************/
class _autogkreport_owner
{
public:
_autogkreport_owner();
_autogkreport_owner(const _autogkreport_owner &rhs);
_autogkreport_owner& operator=(const _autogkreport_owner &rhs);
virtual ~_autogkreport_owner();
alglib_impl::autogkreport* c_ptr();
alglib_impl::autogkreport* c_ptr() const;
protected:
alglib_impl::autogkreport *p_struct;
};
class autogkreport : public _autogkreport_owner
{
public:
autogkreport();
autogkreport(const autogkreport &rhs);
autogkreport& operator=(const autogkreport &rhs);
virtual ~autogkreport();
ae_int_t &terminationtype;
ae_int_t &nfev;
ae_int_t &nintervals;
};
/*************************************************************************
This structure stores state of the integration algorithm.
Although this class has public fields, they are not intended for external
use. You should use ALGLIB functions to work with this class:
* autogksmooth()/AutoGKSmoothW()/... to create objects
* autogkintegrate() to begin integration
* autogkresults() to get results
*************************************************************************/
class _autogkstate_owner
{
public:
_autogkstate_owner();
_autogkstate_owner(const _autogkstate_owner &rhs);
_autogkstate_owner& operator=(const _autogkstate_owner &rhs);
virtual ~_autogkstate_owner();
alglib_impl::autogkstate* c_ptr();
alglib_impl::autogkstate* c_ptr() const;
protected:
alglib_impl::autogkstate *p_struct;
};
class autogkstate : public _autogkstate_owner
{
public:
autogkstate();
autogkstate(const autogkstate &rhs);
autogkstate& operator=(const autogkstate &rhs);
virtual ~autogkstate();
ae_bool &needf;
double &x;
double &xminusa;
double &bminusx;
double &f;
};
/*************************************************************************
Computation of nodes and weights for a Gauss quadrature formula
The algorithm generates the N-point Gauss quadrature formula with weight
function given by coefficients alpha and beta of a recurrence relation
which generates a system of orthogonal polynomials:
P-1(x) = 0
P0(x) = 1
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
and zeroth moment Mu0
Mu0 = integral(W(x)dx,a,b)
INPUT PARAMETERS:
Alpha � array[0..N-1], alpha coefficients
Beta � array[0..N-1], beta coefficients
Zero-indexed element is not used and may be arbitrary.
Beta[I]>0.
Mu0 � zeroth moment of the weight function.
N � number of nodes of the quadrature formula, N>=1
OUTPUT PARAMETERS:
Info - error code:
* -3 internal eigenproblem solver hasn't converged
* -2 Beta[i]<=0
* -1 incorrect N was passed
* 1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 2005-2009 by Bochkanov Sergey
*************************************************************************/
void gqgeneraterec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Computation of nodes and weights for a Gauss-Lobatto quadrature formula
The algorithm generates the N-point Gauss-Lobatto quadrature formula with
weight function given by coefficients alpha and beta of a recurrence which
generates a system of orthogonal polynomials.
P-1(x) = 0
P0(x) = 1
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
and zeroth moment Mu0
Mu0 = integral(W(x)dx,a,b)
INPUT PARAMETERS:
Alpha � array[0..N-2], alpha coefficients
Beta � array[0..N-2], beta coefficients.
Zero-indexed element is not used, may be arbitrary.
Beta[I]>0
Mu0 � zeroth moment of the weighting function.
A � left boundary of the integration interval.
B � right boundary of the integration interval.
N � number of nodes of the quadrature formula, N>=3
(including the left and right boundary nodes).
OUTPUT PARAMETERS:
Info - error code:
* -3 internal eigenproblem solver hasn't converged
* -2 Beta[i]<=0
* -1 incorrect N was passed
* 1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 2005-2009 by Bochkanov Sergey
*************************************************************************/
void gqgenerategausslobattorec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const double a, const double b, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Computation of nodes and weights for a Gauss-Radau quadrature formula
The algorithm generates the N-point Gauss-Radau quadrature formula with
weight function given by the coefficients alpha and beta of a recurrence
which generates a system of orthogonal polynomials.
P-1(x) = 0
P0(x) = 1
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
and zeroth moment Mu0
Mu0 = integral(W(x)dx,a,b)
INPUT PARAMETERS:
Alpha � array[0..N-2], alpha coefficients.
Beta � array[0..N-1], beta coefficients
Zero-indexed element is not used.
Beta[I]>0
Mu0 � zeroth moment of the weighting function.
A � left boundary of the integration interval.
N � number of nodes of the quadrature formula, N>=2
(including the left boundary node).
OUTPUT PARAMETERS:
Info - error code:
* -3 internal eigenproblem solver hasn't converged
* -2 Beta[i]<=0
* -1 incorrect N was passed
* 1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 2005-2009 by Bochkanov Sergey
*************************************************************************/
void gqgenerategaussradaurec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const double a, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Returns nodes/weights for Gauss-Legendre quadrature on [-1,1] with N
nodes.
INPUT PARAMETERS:
N - number of nodes, >=1
OUTPUT PARAMETERS:
Info - error code:
* -4 an error was detected when calculating
weights/nodes. N is too large to obtain
weights/nodes with high enough accuracy.
Try to use multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gqgenerategausslegendre(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Returns nodes/weights for Gauss-Jacobi quadrature on [-1,1] with weight
function W(x)=Power(1-x,Alpha)*Power(1+x,Beta).
INPUT PARAMETERS:
N - number of nodes, >=1
Alpha - power-law coefficient, Alpha>-1
Beta - power-law coefficient, Beta>-1
OUTPUT PARAMETERS:
Info - error code:
* -4 an error was detected when calculating
weights/nodes. Alpha or Beta are too close
to -1 to obtain weights/nodes with high enough
accuracy, or, may be, N is too large. Try to
use multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N/Alpha/Beta was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gqgenerategaussjacobi(const ae_int_t n, const double alpha, const double beta, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Returns nodes/weights for Gauss-Laguerre quadrature on [0,+inf) with
weight function W(x)=Power(x,Alpha)*Exp(-x)
INPUT PARAMETERS:
N - number of nodes, >=1
Alpha - power-law coefficient, Alpha>-1
OUTPUT PARAMETERS:
Info - error code:
* -4 an error was detected when calculating
weights/nodes. Alpha is too close to -1 to
obtain weights/nodes with high enough accuracy
or, may be, N is too large. Try to use
multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N/Alpha was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gqgenerategausslaguerre(const ae_int_t n, const double alpha, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Returns nodes/weights for Gauss-Hermite quadrature on (-inf,+inf) with
weight function W(x)=Exp(-x*x)
INPUT PARAMETERS:
N - number of nodes, >=1
OUTPUT PARAMETERS:
Info - error code:
* -4 an error was detected when calculating
weights/nodes. May be, N is too large. Try to
use multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N/Alpha was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
W - array[0..N-1] - array of quadrature weights.
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gqgenerategausshermite(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &w);
/*************************************************************************
Computation of nodes and weights of a Gauss-Kronrod quadrature formula
The algorithm generates the N-point Gauss-Kronrod quadrature formula with
weight function given by coefficients alpha and beta of a recurrence
relation which generates a system of orthogonal polynomials:
P-1(x) = 0
P0(x) = 1
Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
and zero moment Mu0
Mu0 = integral(W(x)dx,a,b)
INPUT PARAMETERS:
Alpha � alpha coefficients, array[0..floor(3*K/2)].
Beta � beta coefficients, array[0..ceil(3*K/2)].
Beta[0] is not used and may be arbitrary.
Beta[I]>0.
Mu0 � zeroth moment of the weight function.
N � number of nodes of the Gauss-Kronrod quadrature formula,
N >= 3,
N = 2*K+1.
OUTPUT PARAMETERS:
Info - error code:
* -5 no real and positive Gauss-Kronrod formula can
be created for such a weight function with a
given number of nodes.
* -4 N is too large, task may be ill conditioned -
x[i]=x[i+1] found.
* -3 internal eigenproblem solver hasn't converged
* -2 Beta[i]<=0
* -1 incorrect N was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes,
in ascending order.
WKronrod - array[0..N-1] - Kronrod weights
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
corresponding to extended Kronrod nodes).
-- ALGLIB --
Copyright 08.05.2009 by Bochkanov Sergey
*************************************************************************/
void gkqgeneraterec(const real_1d_array &alpha, const real_1d_array &beta, const double mu0, const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss);
/*************************************************************************
Returns Gauss and Gauss-Kronrod nodes/weights for Gauss-Legendre
quadrature with N points.
GKQLegendreCalc (calculation) or GKQLegendreTbl (precomputed table) is
used depending on machine precision and number of nodes.
INPUT PARAMETERS:
N - number of Kronrod nodes, must be odd number, >=3.
OUTPUT PARAMETERS:
Info - error code:
* -4 an error was detected when calculating
weights/nodes. N is too large to obtain
weights/nodes with high enough accuracy.
Try to use multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes, ordered in
ascending order.
WKronrod - array[0..N-1] - Kronrod weights
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
corresponding to extended Kronrod nodes).
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gkqgenerategausslegendre(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss);
/*************************************************************************
Returns Gauss and Gauss-Kronrod nodes/weights for Gauss-Jacobi
quadrature on [-1,1] with weight function
W(x)=Power(1-x,Alpha)*Power(1+x,Beta).
INPUT PARAMETERS:
N - number of Kronrod nodes, must be odd number, >=3.
Alpha - power-law coefficient, Alpha>-1
Beta - power-law coefficient, Beta>-1
OUTPUT PARAMETERS:
Info - error code:
* -5 no real and positive Gauss-Kronrod formula can
be created for such a weight function with a
given number of nodes.
* -4 an error was detected when calculating
weights/nodes. Alpha or Beta are too close
to -1 to obtain weights/nodes with high enough
accuracy, or, may be, N is too large. Try to
use multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N was passed
* +1 OK
* +2 OK, but quadrature rule have exterior nodes,
x[0]<-1 or x[n-1]>+1
X - array[0..N-1] - array of quadrature nodes, ordered in
ascending order.
WKronrod - array[0..N-1] - Kronrod weights
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
corresponding to extended Kronrod nodes).
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gkqgenerategaussjacobi(const ae_int_t n, const double alpha, const double beta, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss);
/*************************************************************************
Returns Gauss and Gauss-Kronrod nodes for quadrature with N points.
Reduction to tridiagonal eigenproblem is used.
INPUT PARAMETERS:
N - number of Kronrod nodes, must be odd number, >=3.
OUTPUT PARAMETERS:
Info - error code:
* -4 an error was detected when calculating
weights/nodes. N is too large to obtain
weights/nodes with high enough accuracy.
Try to use multiple precision version.
* -3 internal eigenproblem solver hasn't converged
* -1 incorrect N was passed
* +1 OK
X - array[0..N-1] - array of quadrature nodes, ordered in
ascending order.
WKronrod - array[0..N-1] - Kronrod weights
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
corresponding to extended Kronrod nodes).
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gkqlegendrecalc(const ae_int_t n, ae_int_t &info, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss);
/*************************************************************************
Returns Gauss and Gauss-Kronrod nodes for quadrature with N points using
pre-calculated table. Nodes/weights were computed with accuracy up to
1.0E-32 (if MPFR version of ALGLIB is used). In standard double precision
accuracy reduces to something about 2.0E-16 (depending on your compiler's
handling of long floating point constants).
INPUT PARAMETERS:
N - number of Kronrod nodes.
N can be 15, 21, 31, 41, 51, 61.
OUTPUT PARAMETERS:
X - array[0..N-1] - array of quadrature nodes, ordered in
ascending order.
WKronrod - array[0..N-1] - Kronrod weights
WGauss - array[0..N-1] - Gauss weights (interleaved with zeros
corresponding to extended Kronrod nodes).
-- ALGLIB --
Copyright 12.05.2009 by Bochkanov Sergey
*************************************************************************/
void gkqlegendretbl(const ae_int_t n, real_1d_array &x, real_1d_array &wkronrod, real_1d_array &wgauss, double &eps);
/*************************************************************************
Integration of a smooth function F(x) on a finite interval [a,b].
Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result
is calculated with accuracy close to the machine precision.
Algorithm works well only with smooth integrands. It may be used with
continuous non-smooth integrands, but with less performance.
It should never be used with integrands which have integrable singularities
at lower or upper limits - algorithm may crash. Use AutoGKSingular in such
cases.
INPUT PARAMETERS:
A, B - interval boundaries (A<B, A=B or A>B)
OUTPUT PARAMETERS
State - structure which stores algorithm state
SEE ALSO
AutoGKSmoothW, AutoGKSingular, AutoGKResults.
-- ALGLIB --
Copyright 06.05.2009 by Bochkanov Sergey
*************************************************************************/
void autogksmooth(const double a, const double b, autogkstate &state);
/*************************************************************************
Integration of a smooth function F(x) on a finite interval [a,b].
This subroutine is same as AutoGKSmooth(), but it guarantees that interval
[a,b] is partitioned into subintervals which have width at most XWidth.
Subroutine can be used when integrating nearly-constant function with
narrow "bumps" (about XWidth wide). If "bumps" are too narrow, AutoGKSmooth
subroutine can overlook them.
INPUT PARAMETERS:
A, B - interval boundaries (A<B, A=B or A>B)
OUTPUT PARAMETERS
State - structure which stores algorithm state
SEE ALSO
AutoGKSmooth, AutoGKSingular, AutoGKResults.
-- ALGLIB --
Copyright 06.05.2009 by Bochkanov Sergey
*************************************************************************/
void autogksmoothw(const double a, const double b, const double xwidth, autogkstate &state);
/*************************************************************************
Integration on a finite interval [A,B].
Integrand have integrable singularities at A/B.
F(X) must diverge as "(x-A)^alpha" at A, as "(B-x)^beta" at B, with known
alpha/beta (alpha>-1, beta>-1). If alpha/beta are not known, estimates
from below can be used (but these estimates should be greater than -1 too).
One of alpha/beta variables (or even both alpha/beta) may be equal to 0,
which means than function F(x) is non-singular at A/B. Anyway (singular at
bounds or not), function F(x) is supposed to be continuous on (A,B).
Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result
is calculated with accuracy close to the machine precision.
INPUT PARAMETERS:
A, B - interval boundaries (A<B, A=B or A>B)
Alpha - power-law coefficient of the F(x) at A,
Alpha>-1
Beta - power-law coefficient of the F(x) at B,
Beta>-1
OUTPUT PARAMETERS
State - structure which stores algorithm state
SEE ALSO
AutoGKSmooth, AutoGKSmoothW, AutoGKResults.
-- ALGLIB --
Copyright 06.05.2009 by Bochkanov Sergey
*************************************************************************/
void autogksingular(const double a, const double b, const double alpha, const double beta, autogkstate &state);
/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool autogkiteration(const autogkstate &state);
/*************************************************************************
This function is used to launcn iterations of the 1-dimensional integrator
It accepts following parameters:
func - callback which calculates f(x) for given x
ptr - optional pointer which is passed to func; can be NULL
-- ALGLIB --
Copyright 07.05.2009 by Bochkanov Sergey
*************************************************************************/
void autogkintegrate(autogkstate &state,
void (*func)(double x, double xminusa, double bminusx, double &y, void *ptr),
void *ptr = NULL);
/*************************************************************************
Adaptive integration results
Called after AutoGKIteration returned False.
Input parameters:
State - algorithm state (used by AutoGKIteration).
Output parameters:
V - integral(f(x)dx,a,b)
Rep - optimization report (see AutoGKReport description)
-- ALGLIB --
Copyright 14.11.2007 by Bochkanov Sergey
*************************************************************************/
void autogkresults(const autogkstate &state, double &v, autogkreport &rep);
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void gqgeneraterec(/* Real */ ae_vector* alpha,
/* Real */ ae_vector* beta,
double mu0,
ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gqgenerategausslobattorec(/* Real */ ae_vector* alpha,
/* Real */ ae_vector* beta,
double mu0,
double a,
double b,
ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gqgenerategaussradaurec(/* Real */ ae_vector* alpha,
/* Real */ ae_vector* beta,
double mu0,
double a,
ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gqgenerategausslegendre(ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gqgenerategaussjacobi(ae_int_t n,
double alpha,
double beta,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gqgenerategausslaguerre(ae_int_t n,
double alpha,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gqgenerategausshermite(ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* w,
ae_state *_state);
void gkqgeneraterec(/* Real */ ae_vector* alpha,
/* Real */ ae_vector* beta,
double mu0,
ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* wkronrod,
/* Real */ ae_vector* wgauss,
ae_state *_state);
void gkqgenerategausslegendre(ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* wkronrod,
/* Real */ ae_vector* wgauss,
ae_state *_state);
void gkqgenerategaussjacobi(ae_int_t n,
double alpha,
double beta,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* wkronrod,
/* Real */ ae_vector* wgauss,
ae_state *_state);
void gkqlegendrecalc(ae_int_t n,
ae_int_t* info,
/* Real */ ae_vector* x,
/* Real */ ae_vector* wkronrod,
/* Real */ ae_vector* wgauss,
ae_state *_state);
void gkqlegendretbl(ae_int_t n,
/* Real */ ae_vector* x,
/* Real */ ae_vector* wkronrod,
/* Real */ ae_vector* wgauss,
double* eps,
ae_state *_state);
void autogksmooth(double a,
double b,
autogkstate* state,
ae_state *_state);
void autogksmoothw(double a,
double b,
double xwidth,
autogkstate* state,
ae_state *_state);
void autogksingular(double a,
double b,
double alpha,
double beta,
autogkstate* state,
ae_state *_state);
ae_bool autogkiteration(autogkstate* state, ae_state *_state);
void autogkresults(autogkstate* state,
double* v,
autogkreport* rep,
ae_state *_state);
ae_bool _autogkreport_init(void* _p, ae_state *_state, ae_bool make_automatic);
ae_bool _autogkreport_init_copy(void* _dst, void* _src, ae_state *_state, ae_bool make_automatic);
void _autogkreport_clear(void* _p);
void _autogkreport_destroy(void* _p);
ae_bool _autogkinternalstate_init(void* _p, ae_state *_state, ae_bool make_automatic);
ae_bool _autogkinternalstate_init_copy(void* _dst, void* _src, ae_state *_state, ae_bool make_automatic);
void _autogkinternalstate_clear(void* _p);
void _autogkinternalstate_destroy(void* _p);
ae_bool _autogkstate_init(void* _p, ae_state *_state, ae_bool make_automatic);
ae_bool _autogkstate_init_copy(void* _dst, void* _src, ae_state *_state, ae_bool make_automatic);
void _autogkstate_clear(void* _p);
void _autogkstate_destroy(void* _p);
}
#endif
|