/usr/share/pyshared/adios/skel_source.py is in libadios-dev 1.7.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | #!/usr/bin/env python
from __future__ import absolute_import, division, print_function, unicode_literals
import sys
import os
import argparse
import adios
import skelconf
import skel_bpy
import skel_settings
def generate_c (outfile, config, params, test):
if test.get_type() == 'write':
generate_c_write (outfile, config, params, test)
elif test.get_type() == 'read_all':
generate_c_read_all (outfile, config, params, test)
def generate_fortran (outfile, config, params, test):
if test.get_type() == 'write':
generate_fortran_write (outfile, config, params, test)
elif test.get_type() == 'read_all':
generate_c_read_all (outfile, config, params, test)
def generate_c_write (outfile, config, params, test):
outfile = outfile.replace ('.c', '_write.c')
measure = test.get_measure()
#print 'opening ' + outfile
c_file = open (outfile, 'w')
# Look at all of the groups, Generate the code when we find the requested group
# The loop is left over from a previous iteration, it could very well be removed.
for g in config.get_groups():
# if a group was specified, and this is not it, go to the next group
if g.get_name() != test.get_group_name():
continue
c_file.write ('//\n// Automatically generated by skel. Modify at your own risk.\n')
# Generate includes
c_file.write ('\n#include "adios.h"')
c_file.write ('\n#include "mpi.h"')
c_file.write ('\n#include "skel/skel_xml_output.h"')
c_file.write ('\n#include <stdlib.h>')
c_file.write ('\n#include <stdio.h>')
c_file.write ('\n\nint main (int argc, char ** argv)')
c_file.write ('\n{')
c_file.write ('\n\nMPI_Init (&argc, &argv);')
# Declare timers
c_file.write ('\n\ndouble skel_init_timer = 0;')
c_file.write ('\ndouble skel_open_timer = 0;')
c_file.write ('\ndouble skel_access_timer = 0;')
c_file.write ('\ndouble skel_close_timer = 0;')
c_file.write ('\ndouble skel_total_timer = 0;')
c_file.write ('\n\n// Time the init')
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_init_timer -= MPI_Wtime();')
c_file.write ('\n\nadios_init ("' + config.get_filename() + '", MPI_COMM_WORLD);')
c_file.write ('\nskel_init_timer += MPI_Wtime();')
c_file.write ('\n\nint skel_mpi_size, skel_mpi_rank, skel_i;')
c_file.write ('\nuint64_t adios_groupsize;')
c_file.write ('\nMPI_Comm_rank (MPI_COMM_WORLD, &skel_mpi_rank);')
c_file.write ('\nMPI_Comm_size (MPI_COMM_WORLD, &skel_mpi_size);')
c_file.write ('\n\nint64_t adios_handle;')
c_file.write ('\nuint64_t skel_total_size;')
# Declare all of the program variables
# We split the scalars and the arrays, since the arrays will likely depend on some of
# the scalars having already been declared.
# The sets are used to eliminate duplicates when multiple file vars are written from the
# same program var (as is done by genarray)
c_file.write ('\n\n// Scalar declarations')
declarations = set()
for v in [x for x in g.get_vars() if x.is_scalar()]:
declarations.add (adios.cFormatter.get_declaration (v, params.get_group (g.get_name() ) ) )
for d in declarations:
c_file.write (d)
# Now the initializations
for v in [x for x in g.get_vars() if x.is_scalar()]:
c_file.write (adios.cFormatter.get_initialization (v, params.get_group (g.get_name() ) ) )
c_file.write ('\n\n// Array declarations')
declarations = set()
for v in [x for x in g.get_vars() if not x.is_scalar()]:
declarations.add (adios.cFormatter.get_declaration (v, params.get_group (g.get_name() ) ) )
for d in declarations:
c_file.write ('\n' + d)
for v in [x for x in g.get_vars() if not x.is_scalar()]:
c_file.write (adios.cFormatter.get_initialization (v, params.get_group (g.get_name() ) ) )
if measure.use_sleep_before_open():
c_file.write ('\n\nsleep(30);')
#Loop <steps> times
c_file.write ('\n\nfor (skel_i = 0; skel_i < ' + test.get_steps() + '; skel_i++)' )
c_file.write ('{')
#start timing
c_file.write ('\n\n// Time the opens')
if measure.use_barrier_before_open():
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_open_timer -= MPI_Wtime();')
c_file.write ('\nskel_total_timer -= MPI_Wtime();')
c_file.write ('\nMPI_Comm comm = MPI_COMM_WORLD;')
c_file.write ('\nadios_open(&adios_handle, "' + g.get_name() + '", "out_' + test.get_group_name() + '_' + test.get_type() + '.bp", "w", comm);')
#end timing
c_file.write ('\nskel_open_timer += MPI_Wtime();')
# Generate the write statements
c_file.write ('\n\n// Time the writes')
if measure.use_barrier_before_access():
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_access_timer -= MPI_Wtime();')
# Set the adios group size
c_file.write (adios.cFormatter.get_groupsize_code (g) )
c_file.write ('\n\n// Write each variable')
for v in g.get_vars():
c_file.write (adios.cFormatter.get_write_line (v) )
c_file.write ('\n\n// Stop timing the writes')
c_file.write ('\nskel_access_timer += MPI_Wtime();')
# close the file
c_file.write ('\n\n// Time the closes')
if measure.use_barrier_before_close():
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_close_timer -= MPI_Wtime();')
c_file.write ('\nadios_close (adios_handle);')
if measure.use_barrier_after_close():
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_close_timer += MPI_Wtime();')
#<steps> loop ends here
c_file.write('}')
if measure.use_barrier_before_final_time():
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_total_timer += MPI_Wtime();')
# Output timing info
# For now, do a reduce to output a single value for the total time
# In future we can gather and output all of the times to see variability
c_file.write ('\n\n// Output results')
if measure.use_adios_timing():
c_file.write ('\n\n adios_timing_write_xml (adios_handle, "' + params.get_application() + '_skel_time.xml");')
else:
c_file.write ('\n\n skel_write_coarse_xml_data (skel_open_timer, skel_access_timer, skel_close_timer, skel_total_timer);')
c_file.write ('\ndouble skel_total_init, skel_total_open, skel_total_access, skel_total_close, skel_total_total;')
if measure.use_reduce():
c_file.write ('\nMPI_Reduce (&skel_init_timer, &skel_total_init, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nMPI_Reduce (&skel_open_timer, &skel_total_open, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nMPI_Reduce (&skel_access_timer, &skel_total_access, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nMPI_Reduce (&skel_close_timer, &skel_total_close, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nMPI_Reduce (&skel_total_timer, &skel_total_total, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
# else:
# c_file.write ('\nskel_total_init = skel_init_timer;')
# c_file.write ('\nskel_total_open = skel_open_timer;')
# c_file.write ('\nskel_total_access = skel_access_timer;')
# c_file.write ('\nskel_total_close = skel_close_timer;')
# c_file.write ('\nskel_total_total = skel_total_timer;')
# Detailed reporting disabled, use adios timing instead.
#c_file.write ('\n fprintf (stdout, "rank, %i, open: %f, access %f, close %f, total %f\\n", skel_mpi_rank, skel_open_timer, skel_access_timer, skel_close_timer, skel_total_timer);')
#c_file.write ('\n fprintf (stdout, "effective bandwidth %f, adios_groupsize %lli\\n", adios_groupsize * skel_mpi_size / (skel_total_total * (1024 * 1024 * 1024) ), adios_groupsize);')
c_file.write ('\nif (skel_mpi_rank == 0) {')
#c_file.write ('\n fprintf (stdout, "RRR rank, %i, open: %f, access %f, close %f, total %f\\n", skel_mpi_rank, skel_total_open, skel_total_access, skel_total_close, skel_total_total);')
#c_file.write ('\n fprintf (stdout, "RRR effective bandwidth %f, adios_groupsize %lli\\n", adios_groupsize * skel_mpi_size / (skel_total_total * (1024 * 1024 * 1024) ), adios_groupsize);')
c_file.write ('\n fprintf (stdout, "\\n");')
c_file.write ('\n fprintf (stdout, "\\n*************************");')
c_file.write ('\n fprintf (stdout, "\\n Groupsize: %lli", adios_groupsize);')
c_file.write ('\n fprintf (stdout, "\\n Open Time: %f", skel_total_open);')
c_file.write ('\n fprintf (stdout, "\\nAccess Time: %f", skel_total_access);')
c_file.write ('\n fprintf (stdout, "\\n Close Time: %f", skel_total_close);')
c_file.write ('\n fprintf (stdout, "\\n Total Time: %f", skel_total_total);')
c_file.write ('\n fprintf (stdout, "\\n*************************");')
c_file.write ('\n fprintf (stdout, "\\n");')
c_file.write ('\n}')
# free the array memory
c_file.write ('\n\n// Free the arrays')
frees = set()
for v in [x for x in g.get_vars() if not x.is_scalar()]:
frees.add ('\nfree (' + v.get_gwrite() + ');')
for f in frees:
c_file.write (f)
c_file.write ('\n\n// Clean up')
c_file.write ('\nadios_finalize(0);')
c_file.write ('\nMPI_Finalize();')
c_file.write ('\n}\n')
# Just write one group, so if we get here, we are finished
break
c_file.close()
# end: generate_c_write
def generate_fortran_write (outfile, config, params, test):
outfile = outfile.replace ('.f90', '_write.f90')
measure = test.get_measure()
f_file = open (outfile, 'w')
# Look at all of the groups, Generate the code when we find the requested group
# The loop is left over from a previous iteration, it could very well be removed.
for g in config.get_groups():
# if a group was specified, and this is not it, go to the next group
if g.get_name() != test.get_group_name():
continue
f_file.write ('!!\n!! Automatically generated by skel. Modify at your own risk.\n')
f_file.write ('\n\nprogram skel')
f_file.write ('\n')
# Generate includes
f_file.write ('\n\n use mpi')
f_file.write ('\n IMPLICIT NONE')
# Declare timers
f_file.write ('\n\n real*8 :: skel_init_timer = 0, &')
f_file.write ('\n skel_open_timer = 0, &')
f_file.write ('\n skel_access_timer = 0, &')
f_file.write ('\n skel_close_timer = 0, &')
f_file.write ('\n skel_total_timer = 0')
f_file.write ('\n\n CHARACTER(LEN=128) :: skel_filename')
f_file.write ('\n\n integer*4 :: skel_mpi_size, skel_mpi_rank, skel_i')
f_file.write ('\n integer*4 :: error')
f_file.write ('\n integer*8 :: adios_error')
f_file.write ('\n integer*8 :: adios_groupsize')
f_file.write ('\n\n integer :: comm')
f_file.write ('\n\n integer*8 :: adios_handle, &')
f_file.write ('\n skel_total_size')
f_file.write ('\n real*8 :: skel_total_init, skel_total_open, skel_total_access, skel_total_close, skel_total_total')
# Declare all of the program variables
# We split the scalars and the arrays, since the arrays will likely depend on some of
# the scalars having already been declared.
# The sets are used to eliminate duplicates when multiple file vars are written from the
# same program var (as is done by genarray)
f_file.write ('\n\n! Scalar declarations')
declarations = set()
for v in [x for x in g.get_vars() if x.is_scalar()]:
declarations.add (adios.fortranFormatter.get_declaration (v, params.get_group (g.get_name() ) ) )
for d in declarations:
f_file.write (d)
f_file.write ('\n\n! Array declarations')
declarations = set()
for v in [x for x in g.get_vars() if not x.is_scalar()]:
declarations.add (adios.fortranFormatter.get_declaration (v, params.get_group (g.get_name() ) ) )
for d in declarations:
f_file.write (d)
f_file.write ('\n\n call MPI_INIT (error)')
f_file.write ('\n\n! Time the init')
f_file.write ('\n call MPI_BARRIER (MPI_COMM_WORLD, error)')
f_file.write ('\n skel_init_timer = skel_init_timer - MPI_Wtime();')
f_file.write ('\n\n call adios_init ("' + config.get_filename() + '", MPI_COMM_WORLD, adios_error)')
f_file.write ('\n skel_init_timer = skel_init_timer + MPI_WTIME();')
f_file.write ('\n call MPI_Comm_rank (MPI_COMM_WORLD, skel_mpi_rank, error)')
f_file.write ('\n call MPI_Comm_size (MPI_COMM_WORLD, skel_mpi_size, error)')
f_file.write ('\n\n! Initialize the scalars')
# Now the scalar initializations
# Need to worry about the order of these since some will be used by others
# For now, just do the numerical values first, then come back and do the more
# complicated ones. This won't cover something like a depends on b, b depends on c,
# but it will work for the moment
for v in [x for x in g.get_vars() if x.is_scalar()]:
#split at the spaces, just print the ones where the third element is a number
init_str = adios.fortranFormatter.get_initialization (v, params.get_group (g.get_name() ) )
if init_str.split (None, 2)[2].isdigit():
f_file.write (init_str)
for v in [x for x in g.get_vars() if x.is_scalar()]:
#split at the spaces, just print the ones where the third element is a number
init_str = adios.fortranFormatter.get_initialization (v, params.get_group (g.get_name() ) )
if not init_str.split (None, 2)[2].isdigit():
f_file.write (init_str)
f_file.write ('\n\n! Initialize the arrays')
# And the vector initializations
for v in [x for x in g.get_vars() if not x.is_scalar()]:
f_file.write (adios.fortranFormatter.get_initialization (v, params.get_group (g.get_name() ) ) )
if measure.use_sleep_before_open():
f_file.write ('\n\n call sleep (30)')
#start timing
f_file.write ('\n skel_total_timer = skel_total_timer - MPI_Wtime()')
f_file.write ('\n\n skel_i = 0')
#Loop <steps> times
f_file.write ('\n\n DO')
f_file.write ('\n skel_i = skel_i + 1')
f_file.write ('\n IF (skel_i .GT. ' + test.get_steps() + ') EXIT')
f_file.write ('\n\n! Time the opens')
if measure.use_barrier_before_open():
f_file.write ('\n call MPI_Barrier (MPI_COMM_WORLD, error)')
f_file.write ('\n skel_open_timer = skel_open_timer - MPI_Wtime()')
#f_file.write ('\n MPI_Comm comm = MPI_COMM_WORLD;')
f_file.write ('\n\n write (skel_filename, \'(I0)\') skel_i')
f_file.write ('\n skel_filename = "out_' + test.get_group_name() + '_' + test.get_type() + '_"//skel_filename//".bp"')
f_file.write ('\n call MPI_Comm_dup (MPI_COMM_WORLD, comm, error)')
f_file.write ('\n call adios_open(adios_handle, "' + g.get_name() + '", skel_filename, "w", comm, adios_error);')
#end timing
f_file.write ('\n skel_open_timer = skel_open_timer + MPI_Wtime()')
# Generate the write statements
f_file.write ('\n\n! Time the writes')
if measure.use_barrier_before_access():
f_file.write ('\n call MPI_Barrier (MPI_COMM_WORLD, error)')
f_file.write ('\n skel_access_timer = skel_access_timer - MPI_Wtime()')
# Set the adios group size
f_file.write (adios.fortranFormatter.get_groupsize_code (g) )
f_file.write ('\n\n! Write each variable')
for v in g.get_vars():
f_file.write (adios.fortranFormatter.get_write_line (v) )
f_file.write ('\n\n! Stop timing the writes')
f_file.write ('\n skel_access_timer = skel_access_timer + MPI_Wtime()')
# close the file
f_file.write ('\n\n! Time the closes')
if measure.use_barrier_before_close():
f_file.write ('\n call MPI_Barrier (MPI_COMM_WORLD, error)')
f_file.write ('\n skel_close_timer = skel_close_timer - MPI_Wtime()')
f_file.write ('\n call adios_close (adios_handle, adios_error)')
if measure.use_barrier_after_close():
f_file.write ('\n call MPI_Barrier (MPI_COMM_WORLD, error)')
f_file.write ('\n skel_close_timer = skel_close_timer + MPI_Wtime()')
f_file.write ('\n\n END DO')
if measure.use_barrier_before_final_time():
f_file.write ('\n\n call MPI_Barrier (MPI_COMM_WORLD, error)')
f_file.write ('\n\n skel_total_timer = skel_total_timer + MPI_Wtime()')
# Output timing info
# For now, do a reduce to output a single value for the total time
# In future we can gather and output all of the times to see variability
f_file.write ('\n\n! Output results')
if measure.use_adios_timing():
f_file.write ('\n\n call adios_timing_write_xml (adios_handle, "' + params.get_application() + '_skel_time.xml")')
else:
f_file.write ('\n\n call skel_write_coarse_xml_data_f (skel_open_timer, skel_access_timer, skel_close_timer, skel_total_timer)')
if measure.use_reduce():
f_file.write ('\n\n call MPI_Reduce (skel_init_timer, skel_total_init, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0, MPI_COMM_WORLD, error)')
f_file.write ('\n call MPI_Reduce (skel_open_timer, skel_total_open, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0, MPI_COMM_WORLD, error)')
f_file.write ('\n call MPI_Reduce (skel_access_timer, skel_total_access, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0, MPI_COMM_WORLD, error)')
f_file.write ('\n call MPI_Reduce (skel_close_timer, skel_total_close, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0, MPI_COMM_WORLD, error)')
f_file.write ('\n call MPI_Reduce (skel_total_timer, skel_total_total, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0, MPI_COMM_WORLD, error)')
else:
f_file.write ('\n skel_total_init = skel_init_timer')
f_file.write ('\n skel_total_open = skel_open_timer')
f_file.write ('\n skel_total_access = skel_access_timer')
f_file.write ('\n skel_total_close = skel_close_timer')
f_file.write ('\n skel_total_total = skel_total_timer')
# All rank reporting disabled for skel, use ADIOS timing library instead.
#f_file.write ('\n fprintf (stdout, "rank, %i, open: %f, access %f, close %f, total %f\\n", skel_mpi_rank, skel_open_timer, skel_access_timer, skel_close_timer, skel_total_timer);')
#f_file.write ("\n\n write (*,'(a6,i7,a7,f15.8,a9,f15.8,a7,f15.8,a7,f15.8)') 'rank, ', skel_mpi_rank , ' open: ', skel_open_timer, ', access ', skel_access_timer, ' close ', skel_close_timer, ' total ', skel_total_timer")
#f_file.write ('\n fprintf (stdout, "effective bandwidth %f, adios_groupsize %lli\\n", adios_groupsize * skel_mpi_size / (skel_total_total * (1024 * 1024 * 1024) ), adios_groupsize);')
#f_file.write ("\n write (*, '(a20,f15.8,a17,i9)') 'effective bandwidth ', adios_groupsize * skel_mpi_size / (skel_total_total * (1024 * 1024 * 1024) ), 'adios_groupsize: ', adios_groupsize")
f_file.write ('\n\n if (skel_mpi_rank == 0) then')
f_file.write ("\n write (*,*) '\\n'")
f_file.write ("\n write (*,*) '**************************'")
f_file.write ("\n write (*,*) ' Groupsize: ', adios_groupsize")
f_file.write ("\n write (*,*) ' Open Time: ', skel_total_open")
f_file.write ("\n write (*,*) 'Access Time: ', skel_total_access")
f_file.write ("\n write (*,*) ' Close Time: ', skel_total_close")
f_file.write ("\n write (*,*) ' Total Time: ', skel_total_total")
f_file.write ("\n write (*,*) '**************************'")
f_file.write ("\n write (*,*) '\\n'")
#f_file.write ("\n write (*, '(a10,i9,a7,f15.8,a8,f15.8,a7,f15.8,a7,f15.8,a2)') 'RRR rank, ', skel_mpi_rank, ' open: ', skel_total_open, ' access ', skel_total_access, ' close ', skel_total_close, ' total ', skel_total_total, '\\n'")
#f_file.write ("\n write (*,'(a24,f15.8,a17,i9)') 'RRR effective bandwidth ', adios_groupsize * skel_mpi_size / (skel_total_total * (1024 * 1024 * 1024) ), 'adios_groupsize', adios_groupsize")
f_file.write ('\n endif')
# free the array memory -- skip this for now
#f_file.write ('\n\n// Free the arrays')
#frees = set()
#for v in filter (lambda x : not x.is_scalar(), g.get_vars() ):
# frees.add ('\nfree (' + v.get_gwrite() + ');')
#for f in frees:
# f_file.write (f)
f_file.write ('\n\n! Clean up')
f_file.write ('\n call adios_finalize(0, adios_error)')
f_file.write ('\n call MPI_Finalize(error)')
f_file.write ('\n\nend program skel\n')
# Just write one group, so if we get here, we are finished
break
f_file.close()
# end: generate_fortran_write
# Needs to be updated to use new read API
def generate_c_read_all (outfile, config, params, test):
outfile = outfile.replace ('.c', '_read_all.c')
c_file = open (outfile, 'w')
# Look at all of the groups, Generate the code when we find the requested group
# The loop is left over from a previous iteration, it could very well be removed.
for g in config.get_groups():
# if a group was specified, and this is not it, go to the next group
if g.get_name() != test.get_group_name():
continue
c_file.write ('//\n// Automatically generated by skel. Modify at your own risk.\n')
# Generate includes
c_file.write ('\n#include "adios.h"')
c_file.write ('\n#include "adios_read.h"')
c_file.write ('\n#include "mpi.h"')
c_file.write ('\n#include <stdlib.h>')
c_file.write ('\n#include <stdio.h>')
c_file.write ('\n\nint main (int argc, char ** argv)')
c_file.write ('\n{')
c_file.write ('\n\nMPI_Init (&argc, &argv);')
c_file.write ('\nadios_init ("' + config.get_filename() + '", MPI_COMM_WORLD);')
c_file.write ('\nint skel_mpi_size, skel_mpi_rank, skel_i;')
c_file.write ('\nMPI_Comm_rank (MPI_COMM_WORLD, &skel_mpi_rank);')
c_file.write ('\nMPI_Comm_size (MPI_COMM_WORLD, &skel_mpi_size);')
# Declare timers
c_file.write ('\n\ndouble skel_open_timer = 0;')
c_file.write ('\ndouble skel_access_timer = 0;')
c_file.write ('\ndouble skel_close_timer = 0;')
# Declare all of the program variables
# We split the scalars and the arrays, since the arrays will likely depend on some of
# the scalars having already been declared.
# The sets are used to eliminate duplicates when multiple file vars are written from the
# same program var (as is done by genarray)
c_file.write ('\n\n// Scalar declarations')
declarations = set()
for v in [x for x in g.get_vars() if x.is_scalar()]:
declarations.add (adios.cFormatter.get_declaration (v, params.get_group (g.get_name() ) ) )
for d in declarations:
c_file.write (d)
c_file.write ('\n\n// Array declarations')
declarations = set()
for v in [x for x in g.get_vars() if not x.is_scalar()]:
declarations.add (adios.cFormatter.get_declaration (v, params.get_group (g.get_name() ) ) )
for d in declarations:
c_file.write ('\n' + d)
#start timing
c_file.write ('\n\n// Time the opens')
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_open_timer -= MPI_Wtime();')
c_file.write ('\nMPI_Comm comm = MPI_COMM_WORLD;')
c_file.write ('\nADIOS_FILE* afile = adios_fopen ("out_' + test.get_group_name() + '_' + test.get_type() + '.bp", comm);')
c_file.write ('\nADIOS_GROUP* group = adios_gopen (afile, "' + g.get_name() + '");')
#end timing
c_file.write ('\nskel_open_timer += MPI_Wtime();')
# Generate the write statements
c_file.write ('\n\n// Time the writes')
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_access_timer -= MPI_Wtime();')
c_file.write ('\n\n// Read all of each variable')
c_file.write ('\nuint64_t starts[] = {0,0,0,0,0,0,0,0}; // 8 dimensions should do it.')
c_file.write ('\nuint64_t counts[] = {0,0,0,0,0,0,0,0};')
for v in g.get_vars():
c_file.write ('\n')
# The tricky bit here is deciding whether we need the & before the variable name.
# We omit it in two cases: 1) the variable type is string, or 2) the variable is not a scalar
if (v.get_c_type() == 'string' or v.get_dimensions() != None):
var_prefix = ''
else:
var_prefix = '&'
index = 0
if v.get_dimensions() != None:
for d in v.get_dimensions():
c_file.write ('\ncounts[%d] = '% index + d + ';')
index = index + 1
c_file.write ('\nadios_read_var(group, "' + v.get_name() + '", starts, counts, ' + var_prefix + v.get_gwrite() + ');' )
c_file.write ('\n\n// Stop timing the writes')
c_file.write ('\nskel_access_timer += MPI_Wtime();')
# close the file
c_file.write ('\n\n// Time the closes')
c_file.write ('\nMPI_Barrier (MPI_COMM_WORLD);')
c_file.write ('\nskel_close_timer -= MPI_Wtime();')
c_file.write ('\nadios_gclose (group);')
c_file.write ('\nadios_fclose (afile);')
c_file.write ('\nskel_close_timer += MPI_Wtime();')
# Output timing info
# For now, do a reduce to output a single value for the total time
# In future we can gather and output all of the times to see variability
c_file.write ('\n\n// Output results')
c_file.write ('\ndouble skel_total_open, skel_total_access, skel_total_close;')
c_file.write ('\nMPI_Reduce (&skel_open_timer, &skel_total_open, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nMPI_Reduce (&skel_access_timer, &skel_total_access, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nMPI_Reduce (&skel_close_timer, &skel_total_close, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);')
c_file.write ('\nif (skel_mpi_rank == 0) {')
c_file.write ('\n fprintf (stdout, "open: %f, access %f, close %f", skel_total_open, skel_total_access, skel_total_close);')
c_file.write ('\n}')
# free the array memory
c_file.write ('\n\n// Free the arrays')
frees = set()
for v in [x for x in g.get_vars() if not x.is_scalar()]:
frees.add ('\nfree (' + v.get_gwrite() + ');')
for f in frees:
c_file.write (f)
c_file.write ('\n\n// Clean up')
c_file.write ('\nadios_finalize(0);')
c_file.write ('\nMPI_Finalize();')
c_file.write ('\n}\n')
# Just write one group, so if we get here, we are finished
break
c_file.close()
#end: generate_c_read_all
def pparse_command_line (parent_parser):
parser = argparse.ArgumentParser (
parents = [parent_parser],
formatter_class=argparse.RawDescriptionHelpFormatter,
prog='skel',
#add_help=False,
description='''\
skel source
create source code to access the I/O pattern for the target skeletal application''')
parser.add_argument ('project', metavar='project', help='Name of the skel project')
parser.add_argument ('-y', '--yaml-file', dest='yamlfile', help='yaml file to use for I/O pattern')
parser.add_argument ('-f', '--force', dest='force', action='store_true', help='overwrite existing source file')
parser.set_defaults(force=False)
parser.add_argument ('-n', '--noxml', dest='noxml', action='store_true', help='generate noxml code')
parser.set_defaults(noxml=False)
return parser.parse_args()
def create_source_from_yaml (args, config):
#print "Using yaml file"
# Determine the target language
if config.host_language == "C" or config.host_language =="c":
filetype = ".c"
template_file_name = "~/.skel/templates/source_write_c.tmpl"
else:
filetype = ".f90"
template_file_name = "~/.skel/templates/source_write_fortran.tmpl"
bpy = skel_bpy.skel_bpy (args.yamlfile)
# Determine outfile name
#print bpy.get_group_name()
extension = '_skel_' + bpy.get_group_name()
outfilename = args.project + extension + filetype
# Only proceed if outfilename does not already exist, or if -f was used
if os.path.exists (outfilename) and not args.force:
print( "%s exists, aborting. Delete the file or use -f to overwrite." % outfilename)
return 999
skel_file = open (outfilename, 'w')
# Now for the Cheetah magic:
from Cheetah.Template import Template
template_file = open (os.path.expanduser(template_file_name), 'r')
t = Template(file=template_file)
t.bpy = bpy
t.project = args.project
t.noxml = args.noxml
skel_file.write (str(t) )
def create_sources_with_args (parent_parser):
args = pparse_command_line (parent_parser)
try:
config = adios.adiosConfig (args.project + '_skel.xml')
except (IOError):
print( "XXError reading " + args.project + "_skel.xml. Try running skel xml " + args.project + " first.")
return 1
if args.yamlfile is not None:
create_source_from_yaml(args, config)
else:
if args.noxml:
print( "NOXML generation only supported with yaml input. Generating XML based code.")
create_source_from_xml (args, config)
def create_source_from_xml (args, config):
try:
params = skelconf.skelConfig (args.project + '_params.xml')
except (IOError):
print( "Error reading " + args.project + "_params.xml. Try running skel params " + args.project + " first,")
print("then check that " + args.project + "_params.xml exists.")
return
# Determine the target language
if config.host_language == "C" or config.host_language =="c":
generate = generate_c
filetype = ".c"
else:
generate = generate_fortran
filetype = ".f90"
# Produce all of the Fortran files
for batch in params.get_batches():
for test in batch.get_tests():
# Determine outfile name
extension = '_skel_' + test.get_group_name()
outfilename = args.project + extension + filetype
generate (outfilename, config, params, test)
def parse_command_line():
parser = argparse.ArgumentParser (description='Generate the required source code for the specified skel project')
parser.add_argument ('project', metavar='project', help='Name of the skel project')
return parser.parse_args()
def main(argv=None):
skel_settings.create_settings_dir_if_needed()
args = parse_command_line()
config = adios.adiosConfig (args.project + '_skel.xml')
params = skelconf.skelConfig (args.project + '_params.xml')
create_sources (params, config, args.project)
if __name__ == "__main__":
main()
|