/usr/include/ace/Strategies_T.cpp is in libace-dev 6.2.8+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 | // $Id: Strategies_T.cpp 96985 2013-04-11 15:50:32Z huangh $
#ifndef ACE_STRATEGIES_T_CPP
#define ACE_STRATEGIES_T_CPP
#include "ace/Strategies_T.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Service_Repository.h"
#include "ace/Service_Types.h"
#include "ace/Thread_Manager.h"
#include "ace/WFMO_Reactor.h"
#include "ace/ACE.h"
#include "ace/OS_NS_dlfcn.h"
#include "ace/OS_NS_string.h"
#include "ace/OS_Errno.h"
#include "ace/Svc_Handler.h"
#if defined (ACE_OPENVMS)
# include "ace/Lib_Find.h"
#endif
#if !defined (__ACE_INLINE__)
#include "ace/Strategies_T.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
template<class SVC_HANDLER>
ACE_Recycling_Strategy<SVC_HANDLER>::~ACE_Recycling_Strategy (void)
{
}
template<class SVC_HANDLER> int
ACE_Recycling_Strategy<SVC_HANDLER>::assign_recycler (SVC_HANDLER *svc_handler,
ACE_Connection_Recycling_Strategy *recycler,
const void *recycling_act)
{
svc_handler->recycler (recycler, recycling_act);
return 0;
}
template<class SVC_HANDLER> int
ACE_Recycling_Strategy<SVC_HANDLER>::prepare_for_recycling (SVC_HANDLER *svc_handler)
{
return svc_handler->recycle ();
}
template <class SVC_HANDLER>
ACE_Singleton_Strategy<SVC_HANDLER>::~ACE_Singleton_Strategy (void)
{
ACE_TRACE ("ACE_Singleton_Strategy<SVC_HANDLER>::~ACE_Singleton_Strategy");
if (this->delete_svc_handler_)
delete this->svc_handler_;
}
// Create a Singleton SVC_HANDLER by always returning the same
// SVC_HANDLER.
template <class SVC_HANDLER> int
ACE_Singleton_Strategy<SVC_HANDLER>::make_svc_handler (SVC_HANDLER *&sh)
{
ACE_TRACE ("ACE_Singleton_Strategy<SVC_HANDLER>::make_svc_handler");
sh = this->svc_handler_;
return 0;
}
template <class SVC_HANDLER> int
ACE_Singleton_Strategy<SVC_HANDLER>::open (SVC_HANDLER *sh,
ACE_Thread_Manager *)
{
ACE_TRACE ("ACE_Singleton_Strategy<SVC_HANDLER>::open");
if (this->delete_svc_handler_)
delete this->svc_handler_;
// If <sh> is NULL then create a new <SVC_HANDLER>.
if (sh == 0)
{
ACE_NEW_RETURN (this->svc_handler_,
SVC_HANDLER,
-1);
this->delete_svc_handler_ = true;
}
else
{
this->svc_handler_ = sh;
this->delete_svc_handler_ = false;
}
return 0;
}
template <class SVC_HANDLER> int
ACE_DLL_Strategy<SVC_HANDLER>::open (const ACE_TCHAR dll_name[],
const ACE_TCHAR factory_function[],
const ACE_TCHAR svc_name[],
ACE_Service_Repository *svc_rep,
ACE_Thread_Manager *thr_mgr)
{
ACE_TRACE ("ACE_DLL_Strategy<SVC_HANDLER>::open");
this->inherited::open (thr_mgr);
ACE_OS::strcpy (this->dll_name_, dll_name);
ACE_OS::strcpy (this->factory_function_, factory_function);
ACE_OS::strcpy (this->svc_name_, svc_name);
this->svc_rep_ = svc_rep;
return 0;
}
// Create a SVC_HANDLER by dynamically linking it from a DLL.
template <class SVC_HANDLER> int
ACE_DLL_Strategy<SVC_HANDLER>::make_svc_handler (SVC_HANDLER *&sh)
{
ACE_TRACE ("ACE_DLL_Strategy<SVC_HANDLER>::make_svc_handler");
// Open the shared library.
ACE_SHLIB_HANDLE handle = ACE_OS::dlopen (this->dll_name_);
// Extract the factory function.
#if defined (ACE_OPENVMS)
SVC_HANDLER *(*factory)(void) =
(SVC_HANDLER *(*)(void)) ACE::ldsymbol (handle,
this->factory_function_);
#else
SVC_HANDLER *(*factory)(void) =
(SVC_HANDLER *(*)(void)) ACE_OS::dlsym (handle,
this->factory_function_);
#endif
// Call the factory function to obtain the new SVC_Handler (should
// use RTTI here when it becomes available...)
SVC_HANDLER *svc_handler = 0;
ACE_ALLOCATOR_RETURN (svc_handler, (*factory)(), -1);
if (svc_handler != 0)
{
// Create an ACE_Service_Type containing the SVC_Handler and
// insert into this->svc_rep_;
ACE_Service_Type_Impl *stp = 0;
ACE_NEW_RETURN (stp,
ACE_Service_Object_Type (svc_handler,
this->svc_name_),
-1);
ACE_Service_Type *srp = 0;
ACE_NEW_RETURN (srp,
ACE_Service_Type (this->svc_name_,
stp,
handle,
1),
-1);
if (srp == 0)
{
delete stp;
errno = ENOMEM;
return -1;
}
if (this->svc_rep_->insert (srp) == -1)
return -1;
// @@ Somehow, we need to deal with this->thr_mgr_...
}
sh = svc_handler;
return 0;
}
// Default behavior is to activate the SVC_HANDLER by calling it's
// open() method, which allows the SVC_HANDLER to determine its own
// concurrency strategy.
template <class SVC_HANDLER> int
ACE_Concurrency_Strategy<SVC_HANDLER>::activate_svc_handler (SVC_HANDLER *svc_handler,
void *arg)
{
ACE_TRACE ("ACE_Concurrency_Strategy<SVC_HANDLER>::activate_svc_handler");
int result = 0;
// See if we should enable non-blocking I/O on the <svc_handler>'s
// peer.
if (ACE_BIT_ENABLED (this->flags_, ACE_NONBLOCK) != 0)
{
if (svc_handler->peer ().enable (ACE_NONBLOCK) == -1)
result = -1;
}
// Otherwise, make sure it's disabled by default.
else if (svc_handler->peer ().disable (ACE_NONBLOCK) == -1)
result = -1;
if (result == 0 && svc_handler->open (arg) == -1)
result = -1;
if (result == -1)
// The connection was already made; so this close is a "normal" close
// operation.
svc_handler->close (NORMAL_CLOSE_OPERATION);
return result;
}
template <class SVC_HANDLER> int
ACE_Reactive_Strategy<SVC_HANDLER>::open (ACE_Reactor *reactor,
ACE_Reactor_Mask mask,
int flags)
{
ACE_TRACE ("ACE_Reactive_Strategy<SVC_HANDLER>::open");
this->reactor_ = reactor;
this->mask_ = mask;
this->flags_ = flags;
// Must have a <Reactor>
if (this->reactor_ == 0)
return -1;
else
return 0;
}
template <class SVC_HANDLER> int
ACE_Reactive_Strategy<SVC_HANDLER>::activate_svc_handler (SVC_HANDLER *svc_handler,
void *arg)
{
ACE_TRACE ("ACE_Reactive_Strategy<SVC_HANDLER>::activate_svc_handler");
int result = 0;
if (this->reactor_ == 0)
result = -1;
// Register with the Reactor with the appropriate <mask>.
else if (this->reactor_->register_handler (svc_handler, this->mask_) == -1)
result = -1;
// If the implementation of the reactor uses event associations
else if (this->reactor_->uses_event_associations ())
{
// If we don't have non-block on, it won't work with
// WFMO_Reactor
// This maybe too harsh
// if (!ACE_BIT_ENABLED (this->flags_, ACE_NONBLOCK))
// goto failure;
if (svc_handler->open (arg) != -1)
return 0;
else
result = -1;
}
else
// Call up to our parent to do the SVC_HANDLER initialization.
return this->inherited::activate_svc_handler (svc_handler, arg);
if (result == -1)
// The connection was already made; so this close is a "normal" close
// operation.
svc_handler->close (NORMAL_CLOSE_OPERATION);
return result;
}
template <class SVC_HANDLER> int
ACE_Thread_Strategy<SVC_HANDLER>::open (ACE_Thread_Manager *thr_mgr,
long thr_flags,
int n_threads,
int flags)
{
ACE_TRACE ("ACE_Thread_Strategy<SVC_HANDLER>::open");
this->thr_mgr_ = thr_mgr;
this->n_threads_ = n_threads;
this->thr_flags_ = thr_flags;
this->flags_ = flags;
// Must have a thread manager!
if (this->thr_mgr_ == 0)
ACELIB_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("error: must have a non-NULL thread manager\n")),
-1);
else
return 0;
}
template <class SVC_HANDLER> int
ACE_Thread_Strategy<SVC_HANDLER>::activate_svc_handler (SVC_HANDLER *svc_handler,
void *arg)
{
ACE_TRACE ("ACE_Thread_Strategy<SVC_HANDLER>::activate_svc_handler");
// Call up to our parent to do the SVC_HANDLER initialization.
if (this->inherited::activate_svc_handler (svc_handler,
arg) == -1)
return -1;
else
// Turn the <svc_handler> into an active object (if it isn't
// already one as a result of the first activation...)
return svc_handler->activate (this->thr_flags_,
this->n_threads_);
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1> int
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::open
(const ACE_PEER_ACCEPTOR_ADDR &local_addr, bool reuse_addr)
{
this->reuse_addr_ = reuse_addr;
this->peer_acceptor_addr_ = local_addr;
if (this->peer_acceptor_.open (local_addr, reuse_addr) == -1)
return -1;
// Set the peer acceptor's handle into non-blocking mode. This is a
// safe-guard against the race condition that can otherwise occur
// between the time when <select> indicates that a passive-mode
// socket handle is "ready" and when we call <accept>. During this
// interval, the client can shutdown the connection, in which case,
// the <accept> call can hang!
if (this->peer_acceptor_.enable (ACE_NONBLOCK) == -1)
return -1;
return 0;
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1>
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::ACE_Accept_Strategy
(const ACE_PEER_ACCEPTOR_ADDR &local_addr,
bool reuse_addr,
ACE_Reactor *reactor)
: reactor_ (reactor)
{
ACE_TRACE ("ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::ACE_Accept_Strategy");
if (this->open (local_addr, reuse_addr) == -1)
ACELIB_ERROR ((LM_ERROR,
ACE_TEXT ("%p\n"),
ACE_TEXT ("open")));
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1> int
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::accept_svc_handler
(SVC_HANDLER *svc_handler)
{
ACE_TRACE ("ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::accept_svc_handler");
// Try to find out if the implementation of the reactor that we are
// using requires us to reset the event association for the newly
// created handle. This is because the newly created handle will
// inherit the properties of the listen handle, including its event
// associations.
bool reset_new_handle = this->reactor_->uses_event_associations ();
if (this->peer_acceptor_.accept (svc_handler->peer (), // stream
0, // remote address
0, // timeout
1, // restart
reset_new_handle // reset new handler
) == -1)
{
// Ensure that errno is preserved in case the svc_handler
// close() method resets it
ACE_Errno_Guard error(errno);
// Close down handler to avoid memory leaks.
svc_handler->close (CLOSE_DURING_NEW_CONNECTION);
return -1;
}
else
return 0;
}
template <class SVC_HANDLER, ACE_PEER_CONNECTOR_1> int
ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::connect_svc_handler
(SVC_HANDLER *&sh,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms)
{
ACE_TRACE ("ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::connect_svc_handler");
return this->connector_.connect (sh->peer (),
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms);
}
template <class SVC_HANDLER, ACE_PEER_CONNECTOR_1> int
ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::connect_svc_handler
(SVC_HANDLER *&sh,
SVC_HANDLER *&sh_copy,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms)
{
ACE_TRACE ("ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::connect_svc_handler");
int const result =
this->connector_.connect (sh->peer (),
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms);
sh_copy = sh;
return result;
}
template <class SVC_HANDLER> int
ACE_Process_Strategy<SVC_HANDLER>::open (size_t n_processes,
ACE_Event_Handler *acceptor,
ACE_Reactor *reactor,
int avoid_zombies)
{
ACE_TRACE ("ACE_Process_Strategy<SVC_HANDLER>::open");
this->n_processes_ = n_processes;
this->acceptor_ = acceptor;
this->reactor_ = reactor;
this->flags_ = avoid_zombies;
return 0;
}
template <class SVC_HANDLER> int
ACE_Process_Strategy<SVC_HANDLER>::activate_svc_handler (SVC_HANDLER *svc_handler,
void *arg)
{
ACE_TRACE ("ACE_Process_Strategy<SVC_HANDLER>::activate_svc_handler");
// If <flags_> is non-0 then we won't create zombies.
switch (ACE::fork (ACE_TEXT ("child"), this->flags_))
{
case -1:
{
ACE_Errno_Guard error (errno);
svc_handler->close ();
}
ACELIB_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("%p\n"),
ACE_TEXT ("fork")),
-1);
/* NOTREACHED */
case 0: // In child process.
// Close down the SOCK_Acceptor's handle since we don't need to
// keep it open.
if (this->acceptor_ != 0)
// Ignore the return value here...
(void) this->reactor_->remove_handler (this->acceptor_,
ACE_Event_Handler::ACCEPT_MASK);
// Call up to our ancestor in the inheritance to do the
// SVC_HANDLER initialization.
return this->inherited::activate_svc_handler (svc_handler, arg);
/* NOTREACHED */
default: // In parent process.
// We need to close down the <SVC_HANDLER> here because it's
// running in the child.
svc_handler->close ();
return 0;
}
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX>
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::ACE_Cached_Connect_Strategy
(creation_strategy_type *cre_s,
ACE_Concurrency_Strategy<SVC_HANDLER> *con_s,
ACE_Recycling_Strategy<SVC_HANDLER> *rec_s,
MUTEX *lock,
bool delete_lock)
: lock_ (lock),
delete_lock_ (delete_lock),
reverse_lock_ (0),
creation_strategy_ (0),
delete_creation_strategy_ (false),
concurrency_strategy_ (0),
delete_concurrency_strategy_ (false),
recycling_strategy_ (0),
delete_recycling_strategy_ (false)
{
// Create a new lock if necessary.
if (this->lock_ == 0)
{
ACE_NEW (this->lock_,
MUTEX);
this->delete_lock_ = true;
}
ACE_NEW (this->reverse_lock_,
REVERSE_MUTEX (*this->lock_));
if (this->open (cre_s,
con_s,
rec_s) == -1)
ACELIB_ERROR ((LM_ERROR,
ACE_TEXT ("%p\n"),
ACE_TEXT ("ACE_Cached_Connect_Strategy::ACE_Cached_Connect_Strategy")));
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX>
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::~ACE_Cached_Connect_Strategy (void)
{
if (this->delete_lock_)
delete this->lock_;
delete this->reverse_lock_;
if (this->delete_creation_strategy_)
delete this->creation_strategy_;
this->delete_creation_strategy_ = false;
this->creation_strategy_ = 0;
if (this->delete_concurrency_strategy_)
delete this->concurrency_strategy_;
this->delete_concurrency_strategy_ = false;
this->concurrency_strategy_ = 0;
if (this->delete_recycling_strategy_)
delete this->recycling_strategy_;
this->delete_recycling_strategy_ = false;
this->recycling_strategy_ = 0;
// Close down all cached service handlers.
CONNECTION_MAP_ENTRY *entry = 0;
for (CONNECTION_MAP_ITERATOR iterator (connection_map_);
iterator.next (entry);
iterator.advance ())
{
entry->int_id_->recycler (0, 0);
entry->int_id_->close ();
}
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::open
(creation_strategy_type *cre_s,
ACE_Concurrency_Strategy<SVC_HANDLER> *con_s,
ACE_Recycling_Strategy<SVC_HANDLER> *rec_s)
{
// Initialize the creation strategy.
// First we decide if we need to clean up.
if (this->creation_strategy_ != 0 &&
this->delete_creation_strategy_ &&
cre_s != 0)
{
delete this->creation_strategy_;
this->creation_strategy_ = 0;
this->delete_creation_strategy_ = false;
}
if (cre_s != 0)
this->creation_strategy_ = cre_s;
else if (this->creation_strategy_ == 0)
{
ACE_NEW_RETURN (this->creation_strategy_,
CREATION_STRATEGY, -1);
this->delete_creation_strategy_ = true;
}
// Initialize the concurrency strategy.
if (this->concurrency_strategy_ != 0 &&
this->delete_concurrency_strategy_ &&
con_s != 0)
{
delete this->concurrency_strategy_;
this->concurrency_strategy_ = 0;
this->delete_concurrency_strategy_ = false;
}
if (con_s != 0)
this->concurrency_strategy_ = con_s;
else if (this->concurrency_strategy_ == 0)
{
ACE_NEW_RETURN (this->concurrency_strategy_,
CONCURRENCY_STRATEGY, -1);
this->delete_concurrency_strategy_ = true;
}
// Initialize the recycling strategy.
if (this->recycling_strategy_ != 0 &&
this->delete_recycling_strategy_ &&
rec_s != 0)
{
delete this->recycling_strategy_;
this->recycling_strategy_ = 0;
this->delete_recycling_strategy_ = false;
}
if (rec_s != 0)
this->recycling_strategy_ = rec_s;
else if (this->recycling_strategy_ == 0)
{
ACE_NEW_RETURN (this->recycling_strategy_,
RECYCLING_STRATEGY, -1);
this->delete_recycling_strategy_ = true;
}
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::make_svc_handler
(SVC_HANDLER *&sh)
{
return this->creation_strategy_->make_svc_handler (sh);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::activate_svc_handler
(SVC_HANDLER *svc_handler)
{
return this->concurrency_strategy_->activate_svc_handler (svc_handler);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::assign_recycler
(SVC_HANDLER *svc_handler,
ACE_Connection_Recycling_Strategy *recycler,
const void *recycling_act)
{
return this->recycling_strategy_->assign_recycler (svc_handler,
recycler,
recycling_act);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::prepare_for_recycling
(SVC_HANDLER *svc_handler)
{
return this->recycling_strategy_->prepare_for_recycling (svc_handler);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::check_hint_i
(SVC_HANDLER *&sh,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms,
CONNECTION_MAP_ENTRY *&entry,
int &found)
{
ACE_UNUSED_ARG (remote_addr);
ACE_UNUSED_ARG (timeout);
ACE_UNUSED_ARG (local_addr);
ACE_UNUSED_ARG (reuse_addr);
ACE_UNUSED_ARG (flags);
ACE_UNUSED_ARG (perms);
found = 0;
// Get the recycling act for the svc_handler
CONNECTION_MAP_ENTRY *possible_entry = (CONNECTION_MAP_ENTRY *) sh->recycling_act ();
// Check to see if the hint svc_handler has been closed down
if (possible_entry->ext_id_.recycle_state () == ACE_RECYCLABLE_CLOSED)
{
// If close, decrement refcount
if (possible_entry->ext_id_.decrement () == 0)
{
// If refcount goes to zero, close down the svc_handler
possible_entry->int_id_->recycler (0, 0);
possible_entry->int_id_->close ();
this->purge_i (possible_entry);
}
// Hint not successful
found = 0;
// Reset hint
sh = 0;
}
// If hint is not closed, see if it is connected to the correct
// address and is recyclable
else if ((possible_entry->ext_id_.recycle_state () == ACE_RECYCLABLE_IDLE_AND_PURGABLE ||
possible_entry->ext_id_.recycle_state () == ACE_RECYCLABLE_IDLE_BUT_NOT_PURGABLE) &&
possible_entry->ext_id_.subject () == remote_addr)
{
// Hint successful
found = 1;
// Tell the <svc_handler> that it should prepare itself for
// being recycled.
this->prepare_for_recycling (sh);
}
else
{
// This hint will not be used.
possible_entry->ext_id_.decrement ();
// Hint not successful
found = 0;
// If <sh> is not connected to the correct address or is busy,
// we will not use it.
sh = 0;
}
if (found)
entry = possible_entry;
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::find_or_create_svc_handler_i
(SVC_HANDLER *&sh,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms,
CONNECTION_MAP_ENTRY *&entry,
int &found)
{
// Explicit type conversion
REFCOUNTED_HASH_RECYCLABLE_ADDRESS search_addr (remote_addr);
// Try to find the address in the cache. Only if we don't find it
// do we create a new <SVC_HANDLER> and connect it with the server.
if (this->find (search_addr, entry) == -1)
{
// Set the flag
found = 0;
// We need to use a temporary variable here since we are not
// allowed to change <sh> because other threads may use this
// when we let go of the lock during the OS level connect.
//
// Note that making a new svc_handler, connecting remotely,
// binding to the map, and assigning of the hint and recycler
// should be atomic to the outside world.
SVC_HANDLER *potential_handler = 0;
// Create a new svc_handler
if (this->make_svc_handler (potential_handler) == -1)
return -1;
// Actively establish the connection. This is a timed blocking
// connect.
if (this->new_connection (potential_handler,
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms) == -1)
{
// If connect() failed because of timeouts, we have to
// reject the connection entirely. This is necessary since
// currently there is no way for the non-blocking connects
// to complete and for the <Connector> to notify the cache
// of the completion of connect().
if (errno == EWOULDBLOCK)
errno = ENOTSUP;
// Close the svc handler.
potential_handler->close (0);
return -1;
}
else
{
// Insert the new SVC_HANDLER instance into the cache.
if (this->connection_map_.bind (search_addr,
potential_handler,
entry) == -1)
{
// Close the svc handler.
potential_handler->close (CLOSE_DURING_NEW_CONNECTION);
return -1;
}
// Everything succeeded as planned. Assign <sh> to <potential_handler>.
sh = potential_handler;
// Set the recycler and the recycling act
this->assign_recycler (sh, this, entry);
}
}
else
// We found a cached svc_handler.
{
// Set the flag
found = 1;
// Get the cached <svc_handler>
sh = entry->int_id_;
// Tell the <svc_handler> that it should prepare itself for
// being recycled.
this->prepare_for_recycling (sh);
}
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::new_connection
(SVC_HANDLER *&sh,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms)
{
// Yow, Reverse Guard! Let go of the lock for the duration of the
// actual connect. This will allow other threads to hack on the
// connection cache while this thread creates the new connection.
ACE_GUARD_RETURN (REVERSE_MUTEX, ace_mon, *this->reverse_lock_, -1);
return this->CONNECT_STRATEGY::connect_svc_handler (sh,
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::connect_svc_handler
(SVC_HANDLER *&sh,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms)
{
int found = 0;
// This artificial scope is required since we need to let go of the
// lock *before* registering the newly created handler with the
// Reactor.
{
// Synchronization is required here as the setting of the
// recyclable state must be done atomically with the finding and
// binding of the service handler in the cache.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
int result = this->connect_svc_handler_i (sh,
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms,
found);
if (result != 0)
return result;
}
// If it is a new connection, activate it.
//
// Note: This activation is outside the scope of the lock of the
// cached connector. This is necessary to avoid subtle deadlock
// conditions with this lock and the Reactor lock.
if (!found)
{
if (this->activate_svc_handler (sh) == -1)
{
// If an error occurs while activating the handler, the
// <activate_svc_handler> method will close the handler.
// This in turn will remove this entry from the internal
// table.
// Synchronization is required here as the setting of the
// handler to zero must be done atomically with the users of
// the cache.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
// Reset handler.
sh = 0;
return -1;
}
}
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::connect_svc_handler
(SVC_HANDLER *&sh,
SVC_HANDLER *&sh_copy,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms)
{
int found = 0;
// This artificial scope is required since we need to let go of the
// lock *before* registering the newly created handler with the
// Reactor.
{
// Synchronization is required here as the setting of the
// recyclable state must be done atomically with the finding and
// binding of the service handler in the cache.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
int result = this->connect_svc_handler_i (sh,
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms,
found);
sh_copy = sh;
if (result != 0)
return result;
}
// If it is a new connection, activate it.
//
// Note: This activation is outside the scope of the lock of the
// cached connector. This is necessary to avoid subtle deadlock
// conditions with this lock and the Reactor lock.
if (!found)
{
if (this->activate_svc_handler (sh_copy) == -1)
{
// If an error occurs while activating the handler, the
// <activate_svc_handler> method will close the handler.
// This in turn will remove this entry from the internal
// table.
// Synchronization is required here as the setting of the
// handler to zero must be done atomically with the users of
// the cache.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
// Reset handler.
sh = 0;
sh_copy = 0;
return -1;
}
}
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::connect_svc_handler_i
(SVC_HANDLER *&sh,
const ACE_PEER_CONNECTOR_ADDR &remote_addr,
ACE_Time_Value *timeout,
const ACE_PEER_CONNECTOR_ADDR &local_addr,
bool reuse_addr,
int flags,
int perms,
int& found)
{
CONNECTION_MAP_ENTRY *entry = 0;
// Check if the user passed a hint svc_handler
if (sh != 0)
{
int result = this->check_hint_i (sh,
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms,
entry,
found);
if (result != 0)
return result;
}
// If not found
if (!found)
{
int result = this->find_or_create_svc_handler_i (sh,
remote_addr,
timeout,
local_addr,
reuse_addr,
flags,
perms,
entry,
found);
if (result != 0)
return result;
}
if (entry)
{
// For all successful cases: mark the <svc_handler> in the cache
// as being <in_use>. Therefore recyclable is BUSY.
entry->ext_id_.recycle_state (ACE_RECYCLABLE_BUSY);
// And increment the refcount
entry->ext_id_.increment ();
}
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::cache (const void *recycling_act)
{
// Synchronization is required here as the setting of the recyclable
// state must be done atomically with respect to other threads that
// are querying the cache.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
return this->cache_i (recycling_act);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::cache_i (const void *recycling_act)
{
// The wonders and perils of ACT
CONNECTION_MAP_ENTRY *entry = (CONNECTION_MAP_ENTRY *) recycling_act;
// Mark the <svc_handler> in the cache as not being <in_use>.
// Therefore recyclable is IDLE.
entry->ext_id_.recycle_state (ACE_RECYCLABLE_IDLE_AND_PURGABLE);
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::recycle_state (const void *recycling_act,
ACE_Recyclable_State new_state)
{
// Synchronization is required here as the setting of the recyclable
// state must be done atomically with respect to other threads that
// are querying the cache.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
return this->recycle_state_i (recycling_act,
new_state);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::recycle_state_i (const void *recycling_act,
ACE_Recyclable_State new_state)
{
// The wonders and perils of ACT
CONNECTION_MAP_ENTRY *entry = (CONNECTION_MAP_ENTRY *) recycling_act;
// Mark the <svc_handler> in the cache as not being <in_use>.
// Therefore recyclable is IDLE.
entry->ext_id_.recycle_state (new_state);
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> ACE_Recyclable_State
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::recycle_state (const void *recycling_act) const
{
// Const cast.
SELF *fake_this = const_cast<SELF *> (this);
// Synchronization is required here.
ACE_GUARD_RETURN (MUTEX, ace_mon, *fake_this->lock_, ACE_RECYCLABLE_UNKNOWN);
return this->recycle_state_i (recycling_act);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> ACE_Recyclable_State
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::recycle_state_i (const void *recycling_act) const
{
// The wonders and perils of ACT
CONNECTION_MAP_ENTRY *entry = (CONNECTION_MAP_ENTRY *) recycling_act;
// Mark the <svc_handler> in the cache as not being <in_use>.
// Therefore recyclable is IDLE.
return entry->ext_id_.recycle_state ();
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::purge (const void *recycling_act)
{
// Excluded other threads from changing cache while we take this
// entry out.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
return this->purge_i (recycling_act);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::purge_i (const void *recycling_act)
{
// The wonders and perils of ACT
CONNECTION_MAP_ENTRY *entry = (CONNECTION_MAP_ENTRY *) recycling_act;
return this->connection_map_.unbind (entry);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::mark_as_closed (const void *recycling_act)
{
// Excluded other threads from changing cache while we take this
// entry out.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
return this->mark_as_closed_i (recycling_act);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::mark_as_closed_i (const void *recycling_act)
{
// The wonders and perils of ACT
CONNECTION_MAP_ENTRY *entry = (CONNECTION_MAP_ENTRY *) recycling_act;
// Mark the <svc_handler> in the cache as CLOSED.
entry->ext_id_.recycle_state (ACE_RECYCLABLE_CLOSED);
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::cleanup_hint (const void *recycling_act,
void **act_holder)
{
// Excluded other threads from changing cache while we take this
// entry out.
ACE_GUARD_RETURN (MUTEX, ace_mon, *this->lock_, -1);
return this->cleanup_hint_i (recycling_act,
act_holder);
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::cleanup_hint_i (const void *recycling_act,
void **act_holder)
{
// Reset the <*act_holder> in the confines and protection of the
// lock.
if (act_holder)
*act_holder = 0;
// The wonders and perils of ACT
CONNECTION_MAP_ENTRY *entry = (CONNECTION_MAP_ENTRY *) recycling_act;
// Decrement the refcount on the <svc_handler>.
int refcount = entry->ext_id_.decrement ();
// If the svc_handler state is closed and the refcount == 0, call
// close() on svc_handler.
if (entry->ext_id_.recycle_state () == ACE_RECYCLABLE_CLOSED &&
refcount == 0)
{
entry->int_id_->recycler (0, 0);
entry->int_id_->close ();
this->purge_i (entry);
}
return 0;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> ACE_Creation_Strategy<SVC_HANDLER> *
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::creation_strategy (void) const
{
return this->creation_strategy_;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> ACE_Recycling_Strategy<SVC_HANDLER> *
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::recycling_strategy (void) const
{
return this->recycling_strategy_;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> ACE_Concurrency_Strategy<SVC_HANDLER> *
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::concurrency_strategy (void) const
{
return this->concurrency_strategy_;
}
template<class SVC_HANDLER, ACE_PEER_CONNECTOR_1, class MUTEX> int
ACE_Cached_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2, MUTEX>::find (
REFCOUNTED_HASH_RECYCLABLE_ADDRESS &search_addr,
CONNECTION_MAP_ENTRY *&entry)
{
typedef ACE_Hash_Map_Bucket_Iterator<REFCOUNTED_HASH_RECYCLABLE_ADDRESS,
SVC_HANDLER *,
ACE_Hash<REFCOUNTED_HASH_RECYCLABLE_ADDRESS>,
ACE_Equal_To<REFCOUNTED_HASH_RECYCLABLE_ADDRESS>,
ACE_Null_Mutex>
CONNECTION_MAP_BUCKET_ITERATOR;
CONNECTION_MAP_BUCKET_ITERATOR iterator (this->connection_map_,
search_addr);
CONNECTION_MAP_BUCKET_ITERATOR end (this->connection_map_,
search_addr,
1);
for (;
iterator != end;
++iterator)
{
REFCOUNTED_HASH_RECYCLABLE_ADDRESS &addr = (*iterator).ext_id_;
if (addr.recycle_state () != ACE_RECYCLABLE_IDLE_AND_PURGABLE &&
addr.recycle_state () != ACE_RECYCLABLE_IDLE_BUT_NOT_PURGABLE)
continue;
if (addr.subject () != search_addr.subject ())
continue;
entry = &(*iterator);
return 0;
}
return -1;
}
template <class SVC_HANDLER> void
ACE_DLL_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_DLL_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER>
ACE_Concurrency_Strategy<SVC_HANDLER>::~ACE_Concurrency_Strategy (void)
{
ACE_TRACE ("ACE_Concurrency_Strategy<SVC_HANDLER>::~ACE_Concurrency_Strategy");
}
template <class SVC_HANDLER> void
ACE_Concurrency_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Concurrency_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER>
ACE_Reactive_Strategy<SVC_HANDLER>::~ACE_Reactive_Strategy (void)
{
ACE_TRACE ("ACE_Reactive_Strategy<SVC_HANDLER>::~ACE_Reactive_Strategy");
}
template <class SVC_HANDLER> void
ACE_Reactive_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Reactive_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER>
ACE_Thread_Strategy<SVC_HANDLER>::~ACE_Thread_Strategy (void)
{
ACE_TRACE ("ACE_Thread_Strategy<SVC_HANDLER>::~ACE_Thread_Strategy");
}
template <class SVC_HANDLER> void
ACE_Thread_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Thread_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1>
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::~ACE_Accept_Strategy (void)
{
ACE_TRACE ("ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::~ACE_Accept_Strategy");
// Close the underlying acceptor.
this->peer_acceptor_.close ();
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1> ACE_HANDLE
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::get_handle (void) const
{
ACE_TRACE ("ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::get_handle");
return this->peer_acceptor_.get_handle ();
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1> ACE_PEER_ACCEPTOR &
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::acceptor (void) const
{
ACE_TRACE ("ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::acceptor");
return (ACE_PEER_ACCEPTOR &) this->peer_acceptor_;
}
template <class SVC_HANDLER, ACE_PEER_ACCEPTOR_1> void
ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Accept_Strategy<SVC_HANDLER, ACE_PEER_ACCEPTOR_2>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER, ACE_PEER_CONNECTOR_1>
ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::~ACE_Connect_Strategy (void)
{
ACE_TRACE ("ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::~ACE_Connect_Strategy");
}
template <class SVC_HANDLER, ACE_PEER_CONNECTOR_1> ACE_PEER_CONNECTOR &
ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::connector (void) const
{
ACE_TRACE ("ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::connector");
return (ACE_PEER_CONNECTOR &) this->connector_;
}
template <class SVC_HANDLER, ACE_PEER_CONNECTOR_1> void
ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Connect_Strategy<SVC_HANDLER, ACE_PEER_CONNECTOR_2>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER>
ACE_Process_Strategy<SVC_HANDLER>::~ACE_Process_Strategy (void)
{
ACE_TRACE ("ACE_Process_Strategy<SVC_HANDLER>::~ACE_Process_Strategy");
}
template <class SVC_HANDLER> void
ACE_Process_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Process_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER>
ACE_Scheduling_Strategy<SVC_HANDLER>::~ACE_Scheduling_Strategy (void)
{
ACE_TRACE ("ACE_Scheduling_Strategy<SVC_HANDLER>::~ACE_Scheduling_Strategy");
}
template <class SVC_HANDLER> int
ACE_Scheduling_Strategy<SVC_HANDLER>::suspend (void)
{
ACE_TRACE ("ACE_Scheduling_Strategy<SVC_HANDLER>::suspend");
return -1;
}
template <class SVC_HANDLER> int
ACE_Scheduling_Strategy<SVC_HANDLER>::resume (void)
{
ACE_TRACE ("ACE_Scheduling_Strategy<SVC_HANDLER>::resume");
return -1;
}
template <class SVC_HANDLER> void
ACE_Scheduling_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Scheduling_Strategy<SVC_HANDLER>::dump");
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER> int
ACE_Schedule_All_Reactive_Strategy<SVC_HANDLER>::suspend (void)
{
ACE_TRACE ("ACE_Schedule_All_Reactive_Strategy<SVC_HANDLER>::suspend");
return this->reactor_->suspend_handlers ();
}
template <class SVC_HANDLER> int
ACE_Schedule_All_Reactive_Strategy<SVC_HANDLER>::resume (void)
{
ACE_TRACE ("ACE_Schedule_All_Reactive_Strategy<SVC_HANDLER>::resume");
return this->reactor_->resume_handlers ();
}
template <class SVC_HANDLER> void
ACE_Schedule_All_Reactive_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Schedule_All_Reactive_Strategy<SVC_HANDLER>::dump");
ACE_Scheduling_Strategy<SVC_HANDLER>::dump ();
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER> int
ACE_Schedule_All_Threaded_Strategy<SVC_HANDLER>::suspend (void)
{
ACE_TRACE ("ACE_Schedule_All_Threaded_Strategy<SVC_HANDLER>::suspend");
return this->thr_mgr_->suspend_all ();
}
template <class SVC_HANDLER> int
ACE_Schedule_All_Threaded_Strategy<SVC_HANDLER>::resume (void)
{
ACE_TRACE ("ACE_Schedule_All_Threaded_Strategy<SVC_HANDLER>::resume");
return this->thr_mgr_->resume_all ();
}
template <class SVC_HANDLER> void
ACE_Schedule_All_Threaded_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Schedule_All_Threaded_Strategy<SVC_HANDLER>::dump");
ACE_Scheduling_Strategy<SVC_HANDLER>::dump ();
#endif /* ACE_HAS_DUMP */
}
template <class T>
ACE_Refcounted_Hash_Recyclable<T>::~ACE_Refcounted_Hash_Recyclable (void)
{
}
template <class SVC_HANDLER> void
ACE_Singleton_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Singleton_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER>
ACE_Creation_Strategy<SVC_HANDLER>::~ACE_Creation_Strategy (void)
{
ACE_TRACE ("ACE_Creation_Strategy<SVC_HANDLER>::~ACE_Creation_Strategy");
}
// Default behavior is to make a new SVC_HANDLER, passing in the
// Thread_Manager (if any).
template <class SVC_HANDLER> int
ACE_Creation_Strategy<SVC_HANDLER>::make_svc_handler (SVC_HANDLER *&sh)
{
ACE_TRACE ("ACE_Creation_Strategy<SVC_HANDLER>::make_svc_handler");
if (sh == 0)
ACE_NEW_RETURN (sh, SVC_HANDLER (this->thr_mgr_), -1);
sh->reactor (this->reactor_);
return 0;
}
template <class SVC_HANDLER> void
ACE_Creation_Strategy<SVC_HANDLER>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Creation_Strategy<SVC_HANDLER>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class SVC_HANDLER> int
ACE_NOOP_Creation_Strategy<SVC_HANDLER>::make_svc_handler (SVC_HANDLER *&)
{
ACE_TRACE ("ACE_NOOP_Creation_Strategy<SVC_HANDLER>::make_svc_handler");
return 0;
}
template <class SVC_HANDLER> int
ACE_NOOP_Concurrency_Strategy<SVC_HANDLER>::activate_svc_handler (SVC_HANDLER *,
void *)
{
ACE_TRACE ("ACE_NOOP_Concurrency_Strategy<SVC_HANDLER>::activate_svc_handler");
return 0;
}
ACE_ALLOC_HOOK_DEFINE(ACE_Creation_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Singleton_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_DLL_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Concurrency_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Thread_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Connect_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Process_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Accept_Strategy)
ACE_ALLOC_HOOK_DEFINE(ACE_Thread_Strategy)
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_STRATEGIES_T_CPP */
|