This file is indexed.

/usr/bin/last-pair-probs is in last-align 490-1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#! /usr/bin/env python

# Copyright 2011, 2012, 2013 Martin C. Frith

# This script reads alignments of DNA reads to a genome, and estimates
# the probability that each alignment represents the genomic source of
# the read.  It assumes that the reads come in pairs, where each pair
# is from either end of a DNA fragment.

# Seems to work with Python 2.x, x>=4.

# The --rna option makes it assume that the genomic fragment lengths
# follow a log-normal distribution (instead of a normal distribution).
# In one test with human RNA, log-normal was a remarkably good fit,
# but not perfect.  The true distribution looked like a mixture of 2
# log-normals: a dominant one for shorter introns, and a minor one for
# huge introns.  Thus, our use of a single log-normal fails to model
# rare, huge introns.  To compensate for that, the default value of
# --disjoint is increased when --rna is used.

# (Should we try to estimate the prior probability of disjoint mapping
# from the data?  But maybe ignore low-scoring alignments for that?
# Estimate disjoint maps to opposite strands of same chromosome = maps
# to same strand of same chromosome?)

import itertools, math, operator, optparse, os, signal, sys

def logSumExp(numbers):
    """Adds numbers, in log space, to avoid overflow."""
    n = list(numbers)
    if not n: return -1e99  # should be -inf
    m = max(n)
    s = sum(math.exp(i - m) for i in n)  # fsum is only Python >= 2.6.
    return math.log(s) + m

def warn(*things):
    prog = os.path.basename(sys.argv[0])
    text = " ".join(map(str, things))
    sys.stderr.write(prog + ": " + text + "\n")

def joinby(iterable1, iterable2, keyfunc):
    """Yields pairs from iterable1 and iterable2 that share the same key."""
    groups1 = itertools.groupby(iterable1, keyfunc)
    groups2 = itertools.groupby(iterable2, keyfunc)
    k1, v1 = groups1.next()
    k2, v2 = groups2.next()
    while 1:
        if k1 < k2:
            k1, v1 = groups1.next()
        elif k1 > k2:
            k2, v2 = groups2.next()
        else:
            v2 = list(v2)
            for i1 in v1:
                for i2 in v2:
                    yield i1, i2
            k1, v1 = groups1.next()
            k2, v2 = groups2.next()

class AlignmentParameters:
    """Parses the score scale factor, minimum score, and genome size."""

    def __init__(self):  # dummy values:
        self.t = -1  # score scale factor
        self.e = -1  # minimum score
        self.g = -1  # genome size

    def update(self, line):
        for i in line.split():
            if self.t == -1 and i.startswith("t="):
                self.t = float(i[2:])
                if self.t <= 0: raise Exception("t must be positive")
            if self.e == -1 and i.startswith("e="):
                self.e = float(i[2:])
                if self.e <= 0: raise Exception("e must be positive")
            if self.g == -1 and i.startswith("letters="):
                self.g = float(i[8:])
                if self.g <= 0: raise Exception("letters must be positive")

    def isValid(self):
        return self.t != -1 and self.e != -1 and self.g != -1

    def validate(self):
        if self.t == -1: raise Exception("I need a header line with t=")
        if self.e == -1: raise Exception("I need a header line with e=")
        if self.g == -1: raise Exception("I need a header line with letters=")

def printAlignmentWithMismapProb(alignment, prob, suf):
    lines = alignment[4]
    qName = alignment[5]
    if qName.endswith("/1") or qName.endswith("/2"): suf = ""
    p = "%.3g" % prob
    if len(lines) == 1:  # we have tabular format
        w = lines[0].split()
        w[6] += suf
        w.append(p)
        print "\t".join(w)
    else:  # we have MAF format
        print lines[0].rstrip() + " mismap=" + p
        pad = " " * len(suf)  # spacer to keep the alignment of MAF lines
        rNameEnd = len(alignment[0]) + 1  # where to insert the spacer
        qNameEnd = len(qName) + 2  # where to insert the suffix
        s = 0
        for i in lines[1:]:
            if i[0] in "sq":
                if i[0] == "s": s += 1
                if s == 1:    print i[:rNameEnd] + pad + i[rNameEnd:],
                else:         print i[:qNameEnd] + suf + i[qNameEnd:],
            elif i[0] == "p": print i[:1] + pad + i[1:]
            else:             print i,
        print  # each MAF block should end with a blank line

def headToHeadDistance(alignment1, alignment2):
    """The 5'-to-5' distance between 2 alignments on opposite strands."""
    length = alignment1[1] + alignment2[1]
    if length > alignment1[2]: length -= alignment1[2]  # for circular chroms
    return length

def conjointScores(aln1, alns2, fraglen, inner, isRna):
    for i in alns2:
        length = headToHeadDistance(aln1, i)
        if isRna:  # use a log-normal distribution
            if length <= 0: continue
            loglen = math.log(length)
            yield i[3] + inner * (loglen - fraglen) ** 2 - loglen
        else:      # use a normal distribution
            if (length > 0) != (fraglen > 0): continue  # ?
            yield i[3] + inner * (length - fraglen) ** 2

def probForEachAlignment(alignments1, alignments2, opts):
    x = opts.disjointScore + logSumExp(i[3] for i in alignments2)

    fraglen = opts.fraglen
    outer = opts.outer
    inner = opts.inner
    isRna = opts.rna

    groups2 = itertools.groupby(alignments2, operator.itemgetter(0))
    genomeStrand2 = " "  # assume this is < any genomeStrand1
    for aln1 in alignments1:
        genomeStrand1 = aln1[0]
        # get the items in alignments2 that have the same genomeStrand:
        if genomeStrand2 < genomeStrand1:
            for genomeStrand2, alns2 in groups2:
                if genomeStrand2 >= genomeStrand1:
                    alns2 = list(alns2)
                    break
            else:
                genomeStrand2 = "~"  # assume this is > any genomeStrand1
        if genomeStrand1 == genomeStrand2:
            y = outer + logSumExp(conjointScores(aln1, alns2, fraglen, inner, isRna))
            yield aln1[3] + logSumExp((x, y))
        else:  # no items in alignments2 have the same genomeStrand
            yield aln1[3] + x

def printAlnsForOneRead(alignments1, alignments2, opts, maxMissingScore, suf):
    if alignments2:
        zs = list(probForEachAlignment(alignments1, alignments2, opts))
        w = maxMissingScore + max(i[3] for i in alignments2)
    else:
        zs = [i[3] + opts.disjointScore for i in alignments1]
        w = maxMissingScore

    z = logSumExp(zs)
    zw = logSumExp((z, w))

    for i, j in itertools.izip(alignments1, zs):
        prob = 1 - math.exp(j - zw)
        if prob <= opts.mismap: printAlignmentWithMismapProb(i, prob, suf)

def unambiguousFragmentLength(alignments1, alignments2):
    """Returns the fragment length implied by alignments of a pair of reads."""
    old = None
    for i, j in joinby(alignments1, alignments2, operator.itemgetter(0)):
        new = headToHeadDistance(i, j)
        if old is None: old = new
        elif new != old: return None  # the fragment length is ambiguous
    return old

def unambiguousFragmentLengths(queryPairs):
    for i, j in queryPairs:
        length = unambiguousFragmentLength(i, j)
        if length is not None: yield length

def readHeaderOrDie(lines):
    params = AlignmentParameters()
    for line in lines:
        if line[0] == "#":
            params.update(line)
            if params.isValid():
                return params
        elif not line.isspace():
            break
    params.validate()  # die

def parseAlignment(score, rName, rStart, rSpan, rSize, qName, qStrand, text,
                   strand, scale, circularChroms):
    if qStrand == strand: genomeStrand = rName + "+"
    else:                 genomeStrand = rName + "-"

    rStart = int(rStart)
    rSize = int(rSize)

    if qStrand == "+":
        c = -rStart
    else:
        c = rStart + int(rSpan)
        if rName in circularChroms or "." in circularChroms: c += rSize

    scaledScore = float(score) / scale  # needed in 2nd pass

    return genomeStrand, c, rSize, scaledScore, text, qName

def parseMafScore(aLine):
    for i in aLine.split():
        if i.startswith("score="): return i[6:]
    raise Exception("missing score")

def parseMaf(lines, strand, scale, circularChroms):
    score = parseMafScore(lines[0])
    r, q = [i.split() for i in lines if i[0] == "s"]
    return parseAlignment(score, r[1], r[2], r[3], r[5], q[1], q[4], lines,
                          strand, scale, circularChroms)

def parseTab(line, strand, scale, circularChroms):
    w = line.split()
    return parseAlignment(w[0], w[1], w[2], w[3], w[5], w[6], w[9], [line],
                          strand, scale, circularChroms)

def readBatches(lines, strand, scale, circularChroms):
    """Yields alignment data from MAF or tabular format."""
    alns = []
    maf = []
    for line in lines:
        if line[0].isdigit():
            alns.append(parseTab(line, strand, scale, circularChroms))
        elif line[0].isalpha():
            maf.append(line)
        elif line.isspace():
            if maf: alns.append(parseMaf(maf, strand, scale, circularChroms))
            maf = []
        elif line.startswith("# batch "):
            if maf: alns.append(parseMaf(maf, strand, scale, circularChroms))
            maf = []
            yield alns  # might be empty
            alns = []
    if maf: alns.append(parseMaf(maf, strand, scale, circularChroms))
    yield alns  # might be empty

def readQueryPairs(in1, in2, scale1, scale2, circularChroms):
    batches1 = readBatches(in1, "+", scale1, circularChroms)
    batches2 = readBatches(in2, "-", scale2, circularChroms)
    for i, j in itertools.izip(batches1, batches2):
        i.sort()
        j.sort()
        yield i, j

def myRound(myFloat):
    """Round a real number to a moderate amount of significant figures."""
    return float("%g" % myFloat)

def estimateFragmentLengthDistribution(lengths, opts):
    if not lengths:
        raise Exception("can't estimate the distribution of distances")

    # Define quartiles in the most naive way possible:
    lengths.sort()
    sampleSize = len(lengths)
    quartile1 = lengths[sampleSize // 4]
    quartile2 = lengths[sampleSize // 2]
    quartile3 = lengths[sampleSize * 3 // 4]

    warn("distance sample size:", sampleSize)
    warn("distance quartiles:", quartile1, quartile2, quartile3)

    if opts.rna and quartile1 <= 0:
        raise Exception("too many distances <= 0")

    if opts.rna: thing = "ln[distance]"
    else:        thing = "distance"

    if opts.fraglen is None:
        if opts.rna: opts.fraglen = myRound(math.log(quartile2))
        else:        opts.fraglen = float(quartile2)
        warn("estimated mean %s: %s" % (thing, opts.fraglen))

    if opts.sdev is None:
        if opts.rna: iqr = math.log(quartile3) - math.log(quartile1)
        else:        iqr = quartile3 - quartile1
        # Normal Distribution: sdev = iqr / (2 * qnorm(0.75))
        opts.sdev = myRound(iqr / 1.34898)
        warn("estimated standard deviation of %s: %s" % (thing, opts.sdev))

def safeLog(x):
    if x == 0: return -1e99
    else:      return math.log(x)

def calculateScorePieces(opts, params1, params2):
    if opts.sdev == 0:
        if opts.rna: opts.outer = opts.fraglen
        else:        opts.outer = 0.0
        opts.inner = -1e99
    else:  # parameters for a Normal Distribution (of fragment lengths):
        opts.outer = -math.log(opts.sdev * math.sqrt(2 * math.pi))
        opts.inner = -1.0 / (2 * opts.sdev ** 2)

    opts.outer += safeLog(1 - opts.disjoint)

    if params1.g != params2.g: raise Exception("unequal genome sizes")
    # Multiply genome size by 2, because it has 2 strands:
    opts.disjointScore = safeLog(opts.disjoint) - math.log(params1.g * 2)

    # Max possible influence of an alignment just below the score threshold:
    maxLogPrior = opts.outer
    if opts.rna: maxLogPrior += opts.sdev ** 2 / 2 - opts.fraglen
    opts.maxMissingScore1 = (params1.e - 1) / params1.t + maxLogPrior
    opts.maxMissingScore2 = (params2.e - 1) / params2.t + maxLogPrior

def lastPairProbs(opts, args):
    fileName1, fileName2 = args

    if opts.fraglen is None or opts.sdev is None:
        in1 = open(fileName1)
        in2 = open(fileName2)
        qp = readQueryPairs(in1, in2, 1, 1, opts.circular)
        lengths = list(unambiguousFragmentLengths(qp))
        estimateFragmentLengthDistribution(lengths, opts)
        in1.close()
        in2.close()

    if not opts.estdist:
        in1 = open(fileName1)
        in2 = open(fileName2)
        params1 = readHeaderOrDie(in1)
        params2 = readHeaderOrDie(in2)
        calculateScorePieces(opts, params1, params2)
        printme = opts.fraglen, opts.sdev, opts.disjoint, params1.g
        print "# fraglen=%s sdev=%s disjoint=%s genome=%.17g" % printme
        qp = readQueryPairs(in1, in2, params1.t, params2.t, opts.circular)
        for i, j in qp:
            printAlnsForOneRead(i, j, opts, opts.maxMissingScore1, "/1")
            printAlnsForOneRead(j, i, opts, opts.maxMissingScore2, "/2")
        in1.close()
        in2.close()

if __name__ == "__main__":
    signal.signal(signal.SIGPIPE, signal.SIG_DFL)  # avoid silly error message

    usage = """
  %prog --help
  %prog [options] alignments1 alignments2"""

    description = "Read alignments of paired DNA reads to a genome, and: (1) estimate the distribution of distances between paired reads, (2) estimate the probability that each alignment represents the genomic source of the read."

    op = optparse.OptionParser(usage=usage, description=description)
    op.add_option("-r", "--rna", action="store_true", help=
                  "assume the reads are from potentially-spliced RNA")
    op.add_option("-e", "--estdist", action="store_true",
                  help="just estimate the distribution of distances")
    op.add_option("-m", "--mismap", type="float", default=0.01, metavar="M",
                  help="don't write alignments with mismap probability > M (default: %default)")
    op.add_option("-f", "--fraglen", type="float", metavar="BP",
                  help="mean distance in bp")
    op.add_option("-s", "--sdev", type="float", metavar="BP",
                  help="standard deviation of distance")
    op.add_option("-d", "--disjoint", type="float",
                  metavar="PROB", help=
                  "prior probability of disjoint mapping (default: 0.02 if -r, else 0.01)")
    op.add_option("-c", "--circular", action="append", metavar="CHROM",
                  help="specifies that chromosome CHROM is circular (default: chrM)")
    (opts, args) = op.parse_args()
    if opts.disjoint is None:
        if opts.rna: opts.disjoint = 0.02
        else:        opts.disjoint = 0.01
    if opts.disjoint < 0: op.error("option -d: should be >= 0")
    if opts.disjoint > 1: op.error("option -d: should be <= 1")
    if opts.sdev and opts.sdev < 0: op.error("option -s: should be >= 0")
    if len(args) != 2: op.error("please give me two file names")
    if opts.circular is None: opts.circular = ["chrM"]

    try: lastPairProbs(opts, args)
    except KeyboardInterrupt: pass  # avoid silly error message
    except Exception, e:
        warn("error:", e)
        sys.exit(1)