This file is indexed.

/usr/share/doc/geographiclib/scripts/geod-google-instructions.html is in geographiclib-tools 1.37-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!DOCTYPE html>
<html>
  <head>
    <title>
      Geodesic lines, circles, envelopes in Google Maps (instructions)
    </title>
    <meta name="description"
	  content="Geodesic lines, circles,
		   envelopes in Google Maps (instructions)" />
    <meta name="author" content="Charles F. F. Karney">
    <meta name="keywords"
	  content="geodesics,
		   geodesic distance,
		   geographic distance,
		   shortest path,
		   direct geodesic problem,
		   inverse geodesic problem,
		   distance and azimuth,
		   distance and heading,
		   range and bearing,
		   geographic circle,
		   geodesic envelope,
		   geodesic astroid,
		   latitude and longitude,
		   Google Maps,
		   WGS84 ellipsoid,
		   GeographicLib" />
  </head>
  <body>
    <h2>
      Geodesic lines, circles, envelopes in Google Maps (instructions)
    </h2>
    <p>
      The <a href="geod-google.html">page</a> allows you to draw
      accurate ellipsoidal geodesics on Google Maps.  You can specify the
      geodesic in one of two forms:
      <ul>
	<li>
	  The <b>direct</b> problem: specify a starting point, an
	  azimuth and a distance as <i>lat1 lon1 azi1 s12</i> as degrees
	  and meters.
	<li>
	  The <b>inverse</b> problem: specify the two end points
	  as <i>lat1 lon1 lat2 lon2</i> as degrees; this finds the
	  shortest path between the two points.
      </ul>
      (Angles may be entered as decimal degrees or as degrees, minutes,
      and seconds, e.g. -20.51125, 20&deg;30&prime;40.5&Prime;S,
      S20d30'40.5&quot;, or -20:30:40.5.)  Click on the
      corresponding "compute" button.  The display then shows
      <ul>
	<li>The requested geodesic as a <font color="blue">blue
	  line</font>; the WGS84 ellipsoid model is used.
	<li>The geodesic circle as a <font color="green">green
	  curve</font>; this shows the locus of points a
	  distance <i>s12</i> from <i>lat1, lon1</i>.
	<li>The geodesic envelopes as <font color="red">red
	  curves</font>; all the geodesics emanating from <i>lat1,
	  lon1</i> are tangent to the envelopes (providing they are
	  extended far enough).  The number of solutions to the inverse
	  problem changes depending on whether <i>lat2, lon2</i> lies
	  inside the envelopes.  For example, there are four (resp. two)
	  approximately hemispheroidal geodesics if this point lies
	  inside (resp. outside) the inner envelope (only one of which
	  is a shortest path).
      </ul>
    </p>
    <p>
      The sample data has <i>lat1, lon1</i> in Wellington, New
      Zealand, <i>lat2, lon2</i> in Salamanca, Spain, and <i>s12</i>
      about 1.5 times the earth's circumference.  Try clicking on the
      "compute" button next to the "Direct:" input box when the page
      first loads.  You can navigate around the map using the normal
      Google Map controls.
    </p>
    <p>
      The precision of output for the geodesic is 0.1&quot; or 1&nbsp;m.
      A text-only <a href="geod-calc.html">geodesic calculator</a> based
      on the same JavaScript library is also available; this calculator
      solves the inverse and direct geodesic problems, computes
      intermediate points on a geodesic, and finds the area of a
      geodesic polygon; it allows you to specify the precision of the
      output and choose between decimal degrees and degress, minutes,
      and seconds.
    <p>
      The Javascipt code for computing the geodesic lines, circles, and
      envelopes is part of
      <a href="http://geographiclib.sourceforge.net/">GeographicLib</a>.
      The algorithms are derived in
      <blockquote>
	Charles F. F. Karney,<br>
	<a href="http://dx.doi.org/10.1007/s00190-012-0578-z">
	  <i>Algorithms for geodesics</i></a>,<br>
	J. Geodesy <b>87</b>(1), 43&ndash;55 (Jan. 2013);<br>
	DOI:
	<a href="http://dx.doi.org/10.1007/s00190-012-0578-z">
	  10.1007/s00190-012-0578-z</a>
	(<a href="http://dx.doi.org/10.1007/s00190-012-0578-z">pdf</a>);<br>
	addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
	  geod-addenda.html</a>.
      </blockquote>
      In putting together this Google Maps demonstration, I started with
      the sample code
      <a href="https://developers.google.com/maps/documentation/javascript/examples/geometry-headings">
	geometry-headings</a>.
    </p>
    <hr>
    <address>Charles Karney
      <a href="mailto:charles@karney.com">&lt;charles@karney.com&gt;</a>
      (2011-08-02)</address>
    <br>
    <a href="http://geographiclib.sourceforge.net">Geographiclib Sourceforge</a>
  </body>
</html>