/usr/share/doc/geographiclib/html/GeodSolve.1.html is in geographiclib-tools 1.37-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | <?xml version="1.0" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><link href="http://search.cpan.org/s/style.css" rel="stylesheet" type="text/css">
<title>GeodSolve(1)</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<link rev="made" href="mailto:root@localhost" />
</head>
<body style="background-color: white">
<h1 id="NAME">NAME</h1>
<p>GeodSolve -- perform geodesic calculations</p>
<h1 id="SYNOPSIS">SYNOPSIS</h1>
<p><b>GeodSolve</b> [ <b>-i</b> | <b>-l</b> <i>lat1</i> <i>lon1</i> <i>azi1</i> ] [ <b>-a</b> ] [ <b>-e</b> <i>a</i> <i>f</i> ] [ <b>-d</b> | <b>-:</b> ] [ <b>-b</b> ] [ <b>-f</b> ] [ <b>-p</b> <i>prec</i> ] [ <b>-E</b> ] [ <b>--comment-delimiter</b> <i>commentdelim</i> ] [ <b>--version</b> | <b>-h</b> | <b>--help</b> ] [ <b>--input-file</b> <i>infile</i> | <b>--input-string</b> <i>instring</i> ] [ <b>--line-separator</b> <i>linesep</i> ] [ <b>--output-file</b> <i>outfile</i> ]</p>
<h1 id="DESCRIPTION">DESCRIPTION</h1>
<p>The shortest path between two points on the ellipsoid at (<i>lat1</i>, <i>lon1</i>) and (<i>lat2</i>, <i>lon2</i>) is called the geodesic. Its length is <i>s12</i> and the geodesic from point 1 to point 2 has forward azimuths <i>azi1</i> and <i>azi2</i> at the two end points.</p>
<p><b>GeodSolve</b> operates in one of three modes:</p>
<ol>
<li><p>By default, <b>GeodSolve</b> accepts lines on the standard input containing <i>lat1</i> <i>lon1</i> <i>azi1</i> <i>s12</i> and prints <i>lat2</i> <i>lon2</i> <i>azi2</i> on standard output. This is the direct geodesic calculation.</p>
</li>
<li><p>Command line arguments <b>-l</b> <i>lat1</i> <i>lon1</i> <i>azi1</i> specify a geodesic line. <b>GeodSolve</b> then accepts a sequence of <i>s12</i> values (one per line) on standard input and prints <i>lat2</i> <i>lon2</i> <i>azi2</i> for each. This generates a sequence of points on a single geodesic.</p>
</li>
<li><p>With the <b>-i</b> command line argument, <b>GeodSolve</b> performs the inverse geodesic calculation. It reads lines containing <i>lat1</i> <i>lon1</i> <i>lat2</i> <i>lon2</i> and prints the corresponding values of <i>azi1</i> <i>azi2</i> <i>s12</i>.</p>
</li>
</ol>
<h1 id="OPTIONS">OPTIONS</h1>
<dl>
<dt id="i"><b>-i</b></dt>
<dd>
<p>perform an inverse geodesic calculation (see 3 above).</p>
</dd>
<dt id="l"><b>-l</b></dt>
<dd>
<p>line mode (see 2 above); generate a sequence of points along the geodesic specified by <i>lat1</i> <i>lon1</i> <i>azi1</i>.</p>
</dd>
<dt id="a"><b>-a</b></dt>
<dd>
<p>arc mode; on input <i>and</i> output <i>s12</i> is replaced by <i>a12</i> the arc length (in degrees) on the auxiliary sphere. See <a href="#AUXILIARY-SPHERE">"AUXILIARY SPHERE"</a>.</p>
</dd>
<dt id="e"><b>-e</b></dt>
<dd>
<p>specify the ellipsoid via <i>a</i> <i>f</i>; the equatorial radius is <i>a</i> and the flattening is <i>f</i>. Setting <i>f</i> = 0 results in a sphere. Specify <i>f</i> < 0 for a prolate ellipsoid. A simple fraction, e.g., 1/297, is allowed for <i>f</i>. (Also, if <i>f</i> > 1, the flattening is set to 1/<i>f</i>.) By default, the WGS84 ellipsoid is used, <i>a</i> = 6378137 m, <i>f</i> = 1/298.257223563.</p>
</dd>
<dt id="d"><b>-d</b></dt>
<dd>
<p>output angles as degrees, minutes, seconds instead of decimal degrees.</p>
</dd>
<dt id="pod"><b>-:</b></dt>
<dd>
<p>like <b>-d</b>, except use : as a separator instead of the d, ', and " delimiters.</p>
</dd>
<dt id="b"><b>-b</b></dt>
<dd>
<p>report the <i>back</i> azimuth at point 2 instead of the forward azimuth.</p>
</dd>
<dt id="f"><b>-f</b></dt>
<dd>
<p>full output; each line of output consists of 12 quantities: <i>lat1</i> <i>lon1</i> <i>azi1</i> <i>lat2</i> <i>lon2</i> <i>azi2</i> <i>s12</i> <i>a12</i> <i>m12</i> <i>M12</i> <i>M21</i> <i>S12</i>. <i>a12</i> is described in <a href="#AUXILIARY-SPHERE">"AUXILIARY SPHERE"</a>. The four quantities <i>m12</i>, <i>M12</i>, <i>M21</i>, and <i>S12</i> are described in <a href="#ADDITIONAL-QUANTITIES">"ADDITIONAL QUANTITIES"</a>.</p>
</dd>
<dt id="p"><b>-p</b></dt>
<dd>
<p>set the output precision to <i>prec</i> (default 3); <i>prec</i> is the precision relative to 1 m. See <a href="#PRECISION">"PRECISION"</a>.</p>
</dd>
<dt id="E"><b>-E</b></dt>
<dd>
<p>use "exact" algorithms (based on elliptic integrals) for the geodesic calculations. These are more accurate than the (default) series expansions for |<i>f</i>| > 0.02.</p>
</dd>
<dt id="comment-delimiter"><b>--comment-delimiter</b></dt>
<dd>
<p>set the comment delimiter to <i>commentdelim</i> (e.g., "#" or "//"). If set, the input lines will be scanned for this delimiter and, if found, the delimiter and the rest of the line will be removed prior to processing and subsequently appended to the output line (separated by a space).</p>
</dd>
<dt id="version"><b>--version</b></dt>
<dd>
<p>print version and exit.</p>
</dd>
<dt id="h"><b>-h</b></dt>
<dd>
<p>print usage and exit.</p>
</dd>
<dt id="help"><b>--help</b></dt>
<dd>
<p>print full documentation and exit.</p>
</dd>
<dt id="input-file"><b>--input-file</b></dt>
<dd>
<p>read input from the file <i>infile</i> instead of from standard input; a file name of "-" stands for standard input.</p>
</dd>
<dt id="input-string"><b>--input-string</b></dt>
<dd>
<p>read input from the string <i>instring</i> instead of from standard input. All occurrences of the line separator character (default is a semicolon) in <i>instring</i> are converted to newlines before the reading begins.</p>
</dd>
<dt id="line-separator"><b>--line-separator</b></dt>
<dd>
<p>set the line separator character to <i>linesep</i>. By default this is a semicolon.</p>
</dd>
<dt id="output-file"><b>--output-file</b></dt>
<dd>
<p>write output to the file <i>outfile</i> instead of to standard output; a file name of "-" stands for standard output.</p>
</dd>
</dl>
<h1 id="INPUT">INPUT</h1>
<p><b>GeodSolve</b> measures all angles in degrees and all lengths (<i>s12</i>) in meters. On input angles (latitude, longitude, azimuth, arc length) can be as decimal degrees or degrees (d), minutes ('), seconds ("). A decimal point can only appear in the least significant component and the designator (d, ', or ") for this component is optional; thus <code>40d30</code>, <code>40d30'</code>, <code>40.5d</code>, and <code>40.5</code> are all equivalent. By default, latitude precedes longitude for each point; however on input either may be given first by appending (or prepending) <i>N</i> or <i>S</i> to the latitude and <i>E</i> or <i>W</i> to the longitude. Azimuths are measured clockwise from north; however this may be overridden with <i>E</i> or <i>W</i>.</p>
<p>See the <code>QUOTING</code> section of GeoConvert(1) for how to quote the DMS designators ' and ".</p>
<h1 id="AUXILIARY-SPHERE">AUXILIARY SPHERE</h1>
<p>Geodesics on the ellipsoid can be transferred to the <i>auxiliary sphere</i> on which the distance is measured in terms of the arc length <i>a12</i> (measured in degrees) instead of <i>s12</i>. In terms of <i>a12</i>, 180 degrees is the distance from one equator crossing to the next or from the minimum latitude to the maximum latitude. Geodesics with <i>a12</i> > 180 degrees do not correspond to shortest paths. With the <b>-a</b> flag, <i>s12</i> (on both input and output) is replaced by <i>a12</i>. The <b>-a</b> flag does <i>not</i> affect the full output given by the <b>-f</b> flag (which always includes both <i>s12</i> and <i>a12</i>).</p>
<h1 id="ADDITIONAL-QUANTITIES">ADDITIONAL QUANTITIES</h1>
<p>The <b>-f</b> flag reports four additional quantities.</p>
<p>The reduced length of the geodesic, <i>m12</i>, is defined such that if the initial azimuth is perturbed by d<i>azi1</i> (radians) then the second point is displaced by <i>m12</i> d<i>azi1</i> in the direction perpendicular to the geodesic. <i>m12</i> is given in meters. On a curved surface the reduced length obeys a symmetry relation, <i>m12</i> + <i>m21</i> = 0. On a flat surface, we have <i>m12</i> = <i>s12</i>.</p>
<p><i>M12</i> and <i>M21</i> are geodesic scales. If two geodesics are parallel at point 1 and separated by a small distance <i>dt</i>, then they are separated by a distance <i>M12</i> <i>dt</i> at point 2. <i>M21</i> is defined similarly (with the geodesics being parallel to one another at point 2). <i>M12</i> and <i>M21</i> are dimensionless quantities. On a flat surface, we have <i>M12</i> = <i>M21</i> = 1.</p>
<p>If points 1, 2, and 3 lie on a single geodesic, then the following addition rules hold, <i>s13</i> = <i>s12</i> + <i>s23</i>, <i>a13</i> = <i>a12</i> + <i>a23</i>, <i>S13</i> = <i>S12</i> + <i>S23</i>, <i>m13</i> = <i>m12</i> <i>M23</i> + <i>m23</i> <i>M21</i>, <i>M13</i> = <i>M12</i> <i>M23</i> - (1 - <i>M12</i> <i>M21</i>) <i>m23</i> / <i>m12</i>, and <i>M31</i> = <i>M32</i> <i>M21</i> - (1 - <i>M23</i> <i>M32</i>) <i>m12</i> / <i>m23</i>.</p>
<p>Finally, <i>S12</i> is the area between the geodesic from point 1 to point 2 and the equator; i.e., it is the area, measured counter-clockwise, of the geodesic quadrilateral with corners (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>), (0,<i>lon2</i>), and (<i>lat2</i>,<i>lon2</i>). It is given in meters^2.</p>
<h1 id="PRECISION">PRECISION</h1>
<p><i>prec</i> gives precision of the output with <i>prec</i> = 0 giving 1 m precision, <i>prec</i> = 3 giving 1 mm precision, etc. <i>prec</i> is the number of digits after the decimal point for lengths. For decimal degrees, the number of digits after the decimal point is <i>prec</i> + 5. For DMS (degree, minute, seconds) output, the number of digits after the decimal point in the seconds component is <i>prec</i> + 1. The minimum value of <i>prec</i> is 0 and the maximum is 10.</p>
<h1 id="ERRORS">ERRORS</h1>
<p>An illegal line of input will print an error message to standard output beginning with <code>ERROR:</code> and causes <b>GeodSolve</b> to return an exit code of 1. However, an error does not cause <b>GeodSolve</b> to terminate; following lines will be converted.</p>
<h1 id="ACCURACY">ACCURACY</h1>
<p>Using the (default) series solution, GeodSolve is accurate to about 15 nm (15 nanometers) for the WGS84 ellipsoid. The approximate maximum error (expressed as a distance) for an ellipsoid with the same major radius as the WGS84 ellipsoid and different values of the flattening is</p>
<pre><code> |f| error
0.01 25 nm
0.02 30 nm
0.05 10 um
0.1 1.5 mm
0.2 300 mm</code></pre>
<p>If <b>-E</b> is specified, GeodSolve is accurate to about 40 nm (40 nanometers) for the WGS84 ellipsoid. The approximate maximum error (expressed as a distance) for an ellipsoid with a quarter meridian of 10000 km and different values of the <i>a/b</i> = 1 - <i>f</i> is</p>
<pre><code> 1-f error (nm)
1/128 387
1/64 345
1/32 269
1/16 210
1/8 115
1/4 69
1/2 36
1 15
2 25
4 96
8 318
16 985
32 2352
64 6008
128 19024</code></pre>
<h1 id="MULTIPLE-SOLUTIONS">MULTIPLE SOLUTIONS</h1>
<p>The shortest distance returned for the inverse problem is (obviously) uniquely defined. However, in a few special cases there are multiple azimuths which yield the same shortest distance. Here is a catalog of those cases:</p>
<dl>
<dt id="lat1--lat2-with-neither-point-at-a-pole"><i>lat1</i> = -<i>lat2</i> (with neither point at a pole)</dt>
<dd>
<p>If <i>azi1</i> = <i>azi2</i>, the geodesic is unique. Otherwise there are two geodesics and the second one is obtained by setting [<i>azi1</i>,<i>azi2</i>] = [<i>azi2</i>,<i>azi1</i>], [<i>M12</i>,<i>M21</i>] = [<i>M21</i>,<i>M12</i>], <i>S12</i> = -<i>S12</i>. (This occurs when the longitude difference is near +/-180 for oblate ellipsoids.)</p>
</dd>
<dt id="lon2-lon1---180-with-neither-point-at-a-pole"><i>lon2</i> = <i>lon1</i> +/- 180 (with neither point at a pole)</dt>
<dd>
<p>If <i>azi1</i> = 0 or +/-180, the geodesic is unique. Otherwise there are two geodesics and the second one is obtained by setting [<i>azi1</i>,<i>azi2</i>] = [-<i>azi1</i>,-<i>azi2</i>], <i>S12</i> = -<i>S12</i>. (This occurs when <i>lat2</i> is near -<i>lat1</i> for prolate ellipsoids.)</p>
</dd>
<dt id="Points-1-and-2-at-opposite-poles">Points 1 and 2 at opposite poles</dt>
<dd>
<p>There are infinitely many geodesics which can be generated by setting [<i>azi1</i>,<i>azi2</i>] = [<i>azi1</i>,<i>azi2</i>] + [<i>d</i>,-<i>d</i>], for arbitrary <i>d</i>. (For spheres, this prescription applies when points 1 and 2 are antipodal.)</p>
</dd>
<dt id="s12-0-coincident-points"><i>s12</i> = 0 (coincident points)</dt>
<dd>
<p>There are infinitely many geodesics which can be generated by setting [<i>azi1</i>,<i>azi2</i>] = [<i>azi1</i>,<i>azi2</i>] + [<i>d</i>,<i>d</i>], for arbitrary <i>d</i>.</p>
</dd>
</dl>
<h1 id="EXAMPLES">EXAMPLES</h1>
<p>Route from JFK Airport to Singapore Changi Airport:</p>
<pre><code> echo 40:38:23N 073:46:44W 01:21:33N 103:59:22E |
GeodSolve -i -: -p 0
003:18:29.9 177:29:09.2 15347628</code></pre>
<p>Waypoints on the route at intervals of 2000km:</p>
<pre><code> for ((i = 0; i <= 16; i += 2)); do echo ${i}000000;done |
GeodSolve -l 40:38:23N 073:46:44W 003:18:29.9 -: -p 0
40:38:23.0N 073:46:44.0W 003:18:29.9
58:34:45.1N 071:49:36.7W 004:48:48.8
76:22:28.4N 065:32:17.8W 010:41:38.4
84:50:28.0N 075:04:39.2E 150:55:00.9
67:26:20.3N 098:00:51.2E 173:27:20.3
49:33:03.2N 101:06:52.6E 176:07:54.3
31:34:16.5N 102:30:46.3E 177:03:08.4
13:31:56.0N 103:26:50.7E 177:24:55.0
04:32:05.7S 104:14:48.7E 177:28:43.6</code></pre>
<h1 id="SEE-ALSO">SEE ALSO</h1>
<p>GeoConvert(1). The algorithms are described in C. F. F. Karney, <i>Algorithms for geodesics</i>, J. Geodesy 87, 43-55 (2013); DOI: <a href="http://dx.doi.org/10.1007/s00190-012-0578-z">http://dx.doi.org/10.1007/s00190-012-0578-z</a>; addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">http://geographiclib.sf.net/geod-addenda.html</a>. The wikipedia page, Geodesics on an ellipsoid, <a href="http://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid">http://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid</a>.</p>
<h1 id="AUTHOR">AUTHOR</h1>
<p><b>GeodSolve</b> was written by Charles Karney.</p>
<h1 id="HISTORY">HISTORY</h1>
<p><b>GeodSolve</b> was added to GeographicLib, <a href="http://geographiclib.sf.net">http://geographiclib.sf.net</a>, in 2009-03. Prior to version 1.30, it was called <b>Geod</b>. (The name was changed to avoid a conflict with the <b>geod</b> utility in <i>proj.4</i>.)</p>
</body>
</html>
|