This file is indexed.

/usr/share/gccxml-0.9/GCC/4.1/gccxml_gnu_xmmintrin.h is in gccxml 0.9.0+git20140716-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/* Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING.  If not, write to
   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.  */

/* As a special exception, if you include this header file into source
   files compiled by GCC, this header file does not by itself cause
   the resulting executable to be covered by the GNU General Public
   License.  This exception does not however invalidate any other
   reasons why the executable file might be covered by the GNU General
   Public License.  */

/* Implemented from the specification included in the Intel C++ Compiler
   User Guide and Reference, version 8.0.  */

#ifndef _XMMINTRIN_H_INCLUDED
#define _XMMINTRIN_H_INCLUDED

#ifndef __SSE__
# error "SSE instruction set not enabled"
#else

/* We need type definitions from the MMX header file.  */
#include <mmintrin.h>

/* Get _mm_malloc () and _mm_free ().  */
#include <mm_malloc.h>

/* The Intel API is flexible enough that we must allow aliasing with other
   vector types, and their scalar components.  */
typedef float __m128 __attribute__ ((__vector_size__ (16), __may_alias__));

/* Internal data types for implementing the intrinsics.  */
typedef float __v4sf __attribute__ ((__vector_size__ (16)));

/* Create a selector for use with the SHUFPS instruction.  */
#define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \
 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | (fp0))

/* Constants for use with _mm_prefetch.  */
enum _mm_hint
{
  _MM_HINT_T0 = 3,
  _MM_HINT_T1 = 2,
  _MM_HINT_T2 = 1,
  _MM_HINT_NTA = 0
};

/* Bits in the MXCSR.  */
#define _MM_EXCEPT_MASK       0x003f
#define _MM_EXCEPT_INVALID    0x0001
#define _MM_EXCEPT_DENORM     0x0002
#define _MM_EXCEPT_DIV_ZERO   0x0004
#define _MM_EXCEPT_OVERFLOW   0x0008
#define _MM_EXCEPT_UNDERFLOW  0x0010
#define _MM_EXCEPT_INEXACT    0x0020

#define _MM_MASK_MASK         0x1f80
#define _MM_MASK_INVALID      0x0080
#define _MM_MASK_DENORM       0x0100
#define _MM_MASK_DIV_ZERO     0x0200
#define _MM_MASK_OVERFLOW     0x0400
#define _MM_MASK_UNDERFLOW    0x0800
#define _MM_MASK_INEXACT      0x1000

#define _MM_ROUND_MASK        0x6000
#define _MM_ROUND_NEAREST     0x0000
#define _MM_ROUND_DOWN        0x2000
#define _MM_ROUND_UP          0x4000
#define _MM_ROUND_TOWARD_ZERO 0x6000

#define _MM_FLUSH_ZERO_MASK   0x8000
#define _MM_FLUSH_ZERO_ON     0x8000
#define _MM_FLUSH_ZERO_OFF    0x0000

/* Create a vector of zeros.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_setzero_ps (void)
;

/* Perform the respective operation on the lower SPFP (single-precision
   floating-point) values of A and B; the upper three SPFP values are
   passed through from A.  */

static __inline __m128 __attribute__((__always_inline__))
_mm_add_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_sub_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_mul_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_div_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_sqrt_ss (__m128 __A)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_rcp_ss (__m128 __A)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_rsqrt_ss (__m128 __A)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_min_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_max_ss (__m128 __A, __m128 __B)
;

/* Perform the respective operation on the four SPFP values in A and B.  */

static __inline __m128 __attribute__((__always_inline__))
_mm_add_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_sub_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_mul_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_div_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_sqrt_ps (__m128 __A)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_rcp_ps (__m128 __A)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_rsqrt_ps (__m128 __A)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_min_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_max_ps (__m128 __A, __m128 __B)
;

/* Perform logical bit-wise operations on 128-bit values.  */

static __inline __m128 __attribute__((__always_inline__))
_mm_and_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_andnot_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_or_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_xor_ps (__m128 __A, __m128 __B)
;

/* Perform a comparison on the lower SPFP values of A and B.  If the
   comparison is true, place a mask of all ones in the result, otherwise a
   mask of zeros.  The upper three SPFP values are passed through from A.  */

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpeq_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmplt_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmple_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpgt_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpge_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpneq_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpnlt_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpnle_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpngt_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpnge_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpord_ss (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpunord_ss (__m128 __A, __m128 __B)
;

/* Perform a comparison on the four SPFP values of A and B.  For each
   element, if the comparison is true, place a mask of all ones in the
   result, otherwise a mask of zeros.  */

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpeq_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmplt_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmple_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpgt_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpge_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpneq_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpnlt_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpnle_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpngt_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpnge_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpord_ps (__m128 __A, __m128 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cmpunord_ps (__m128 __A, __m128 __B)
;

/* Compare the lower SPFP values of A and B and return 1 if true
   and 0 if false.  */

static __inline int __attribute__((__always_inline__))
_mm_comieq_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_comilt_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_comile_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_comigt_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_comige_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_comineq_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_ucomieq_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_ucomilt_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_ucomile_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_ucomigt_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_ucomige_ss (__m128 __A, __m128 __B)
;

static __inline int __attribute__((__always_inline__))
_mm_ucomineq_ss (__m128 __A, __m128 __B)
;

/* Convert the lower SPFP value to a 32-bit integer according to the current
   rounding mode.  */
static __inline int __attribute__((__always_inline__))
_mm_cvtss_si32 (__m128 __A)
;

static __inline int __attribute__((__always_inline__))
_mm_cvt_ss2si (__m128 __A)
;

#ifdef __x86_64__
/* Convert the lower SPFP value to a 32-bit integer according to the current
   rounding mode.  */

/* Intel intrinsic.  */
static __inline long long __attribute__((__always_inline__,__artificial__))
_mm_cvtss_si64 (__m128 __A)
;

/* Microsoft intrinsic.  */
static __inline long long __attribute__((__always_inline__))
_mm_cvtss_si64x (__m128 __A)
;
#endif

/* Convert the two lower SPFP values to 32-bit integers according to the
   current rounding mode.  Return the integers in packed form.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_cvtps_pi32 (__m128 __A)
;

static __inline __m64 __attribute__((__always_inline__))
_mm_cvt_ps2pi (__m128 __A)
;

/* Truncate the lower SPFP value to a 32-bit integer.  */
static __inline int __attribute__((__always_inline__))
_mm_cvttss_si32 (__m128 __A)
;

static __inline int __attribute__((__always_inline__))
_mm_cvtt_ss2si (__m128 __A)
;

#ifdef __x86_64__
/* Truncate the lower SPFP value to a 32-bit integer.  */
static __inline long long __attribute__((__always_inline__))
_mm_cvttss_si64x (__m128 __A)
;
#endif

/* Truncate the two lower SPFP values to 32-bit integers.  Return the
   integers in packed form.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_cvttps_pi32 (__m128 __A)
;

static __inline __m64 __attribute__((__always_inline__))
_mm_cvtt_ps2pi (__m128 __A)
;

/* Convert B to a SPFP value and insert it as element zero in A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtsi32_ss (__m128 __A, int __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cvt_si2ss (__m128 __A, int __B)
;

#ifdef __x86_64__
/* Convert B to a SPFP value and insert it as element zero in A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtsi64x_ss (__m128 __A, long long __B)
;
#endif

/* Convert the two 32-bit values in B to SPFP form and insert them
   as the two lower elements in A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtpi32_ps (__m128 __A, __m64 __B)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_cvt_pi2ps (__m128 __A, __m64 __B)
;

/* Convert the four signed 16-bit values in A to SPFP form.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtpi16_ps (__m64 __A)
;

/* Convert the four unsigned 16-bit values in A to SPFP form.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtpu16_ps (__m64 __A)
;

/* Convert the low four signed 8-bit values in A to SPFP form.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtpi8_ps (__m64 __A)
;

/* Convert the low four unsigned 8-bit values in A to SPFP form.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtpu8_ps(__m64 __A)
;

/* Convert the four signed 32-bit values in A and B to SPFP form.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_cvtpi32x2_ps(__m64 __A, __m64 __B)
;

/* Convert the four SPFP values in A to four signed 16-bit integers.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_cvtps_pi16(__m128 __A)
;

/* Convert the four SPFP values in A to four signed 8-bit integers.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_cvtps_pi8(__m128 __A)
;

/* Selects four specific SPFP values from A and B based on MASK.  */
#if 0
static __inline __m128 __attribute__((__always_inline__))
_mm_shuffle_ps (__m128 __A, __m128 __B, int __mask)
;
#else
#define _mm_shuffle_ps(A, B, MASK) \
 ((__m128) __builtin_ia32_shufps ((__v4sf)(A), (__v4sf)(B), (MASK)))
#endif


/* Selects and interleaves the upper two SPFP values from A and B.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_unpackhi_ps (__m128 __A, __m128 __B)
;

/* Selects and interleaves the lower two SPFP values from A and B.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_unpacklo_ps (__m128 __A, __m128 __B)
;

/* Sets the upper two SPFP values with 64-bits of data loaded from P;
   the lower two values are passed through from A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_loadh_pi (__m128 __A, __m64 const *__P)
;

/* Stores the upper two SPFP values of A into P.  */
static __inline void __attribute__((__always_inline__))
_mm_storeh_pi (__m64 *__P, __m128 __A)
;

/* Moves the upper two values of B into the lower two values of A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_movehl_ps (__m128 __A, __m128 __B)
;

/* Moves the lower two values of B into the upper two values of A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_movelh_ps (__m128 __A, __m128 __B)
;

/* Sets the lower two SPFP values with 64-bits of data loaded from P;
   the upper two values are passed through from A.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_loadl_pi (__m128 __A, __m64 const *__P)
;

/* Stores the lower two SPFP values of A into P.  */
static __inline void __attribute__((__always_inline__))
_mm_storel_pi (__m64 *__P, __m128 __A)
;

/* Creates a 4-bit mask from the most significant bits of the SPFP values.  */
static __inline int __attribute__((__always_inline__))
_mm_movemask_ps (__m128 __A)
;

/* Return the contents of the control register.  */
static __inline unsigned int __attribute__((__always_inline__))
_mm_getcsr (void)
;

/* Read exception bits from the control register.  */
static __inline unsigned int __attribute__((__always_inline__))
_MM_GET_EXCEPTION_STATE (void)
;

static __inline unsigned int __attribute__((__always_inline__))
_MM_GET_EXCEPTION_MASK (void)
;

static __inline unsigned int __attribute__((__always_inline__))
_MM_GET_ROUNDING_MODE (void)
;

static __inline unsigned int __attribute__((__always_inline__))
_MM_GET_FLUSH_ZERO_MODE (void)
;

/* Set the control register to I.  */
static __inline void __attribute__((__always_inline__))
_mm_setcsr (unsigned int __I)
;

/* Set exception bits in the control register.  */
static __inline void __attribute__((__always_inline__))
_MM_SET_EXCEPTION_STATE(unsigned int __mask)
;

static __inline void __attribute__((__always_inline__))
_MM_SET_EXCEPTION_MASK (unsigned int __mask)
;

static __inline void __attribute__((__always_inline__))
_MM_SET_ROUNDING_MODE (unsigned int __mode)
;

static __inline void __attribute__((__always_inline__))
_MM_SET_FLUSH_ZERO_MODE (unsigned int __mode)
;

/* Create a vector with element 0 as F and the rest zero.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_set_ss (float __F)
;

/* Create a vector with all four elements equal to F.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_set1_ps (float __F)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_set_ps1 (float __F)
;

/* Create a vector with element 0 as *P and the rest zero.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_load_ss (float const *__P)
;

/* Create a vector with all four elements equal to *P.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_load1_ps (float const *__P)
;

static __inline __m128 __attribute__((__always_inline__))
_mm_load_ps1 (float const *__P)
;

/* Load four SPFP values from P.  The address must be 16-byte aligned.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_load_ps (float const *__P)
;

/* Load four SPFP values from P.  The address need not be 16-byte aligned.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_loadu_ps (float const *__P)
;

/* Load four SPFP values in reverse order.  The address must be aligned.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_loadr_ps (float const *__P)
;

/* Create the vector [Z Y X W].  */
static __inline __m128 __attribute__((__always_inline__))
_mm_set_ps (const float __Z, const float __Y, const float __X, const float __W)
;

/* Create the vector [W X Y Z].  */
static __inline __m128 __attribute__((__always_inline__))
_mm_setr_ps (float __Z, float __Y, float __X, float __W)
;

/* Stores the lower SPFP value.  */
static __inline void __attribute__((__always_inline__))
_mm_store_ss (float *__P, __m128 __A)
;

/* Store four SPFP values.  The address must be 16-byte aligned.  */
static __inline void __attribute__((__always_inline__))
_mm_store_ps (float *__P, __m128 __A)
;

/* Store four SPFP values.  The address need not be 16-byte aligned.  */
static __inline void __attribute__((__always_inline__))
_mm_storeu_ps (float *__P, __m128 __A)
;

/* Store the lower SPFP value across four words.  */
static __inline void __attribute__((__always_inline__))
_mm_store1_ps (float *__P, __m128 __A)
;

static __inline void __attribute__((__always_inline__))
_mm_store_ps1 (float *__P, __m128 __A)
;

/* Store four SPFP values in reverse order.  The address must be aligned.  */
static __inline void __attribute__((__always_inline__))
_mm_storer_ps (float *__P, __m128 __A)
;

/* Sets the low SPFP value of A from the low value of B.  */
static __inline __m128 __attribute__((__always_inline__))
_mm_move_ss (__m128 __A, __m128 __B)
;

/* Extracts one of the four words of A.  The selector N must be immediate.  */
#if 0
static __inline int __attribute__((__always_inline__))
_mm_extract_pi16 (__m64 const __A, int const __N)
;

static __inline int __attribute__((__always_inline__))
_m_pextrw (__m64 const __A, int const __N)
;
#else
#define _mm_extract_pi16(A, N)  __builtin_ia32_vec_ext_v4hi ((__v4hi)(A), (N))
#define _m_pextrw(A, N)         _mm_extract_pi16((A), (N))
#endif

/* Inserts word D into one of four words of A.  The selector N must be
   immediate.  */
#if 0
static __inline __m64 __attribute__((__always_inline__))
_mm_insert_pi16 (__m64 const __A, int const __D, int const __N)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pinsrw (__m64 const __A, int const __D, int const __N)
;
#else
#define _mm_insert_pi16(A, D, N) \
  ((__m64) __builtin_ia32_vec_set_v4hi ((__v4hi)(A), (D), (N)))
#define _m_pinsrw(A, D, N)       _mm_insert_pi16((A), (D), (N))
#endif

/* Compute the element-wise maximum of signed 16-bit values.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_max_pi16 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pmaxsw (__m64 __A, __m64 __B)
;

/* Compute the element-wise maximum of unsigned 8-bit values.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_max_pu8 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pmaxub (__m64 __A, __m64 __B)
;

/* Compute the element-wise minimum of signed 16-bit values.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_min_pi16 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pminsw (__m64 __A, __m64 __B)
;

/* Compute the element-wise minimum of unsigned 8-bit values.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_min_pu8 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pminub (__m64 __A, __m64 __B)
;

/* Create an 8-bit mask of the signs of 8-bit values.  */
static __inline int __attribute__((__always_inline__))
_mm_movemask_pi8 (__m64 __A)
;

static __inline int __attribute__((__always_inline__))
_m_pmovmskb (__m64 __A)
;

/* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values
   in B and produce the high 16 bits of the 32-bit results.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_mulhi_pu16 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pmulhuw (__m64 __A, __m64 __B)
;

/* Return a combination of the four 16-bit values in A.  The selector
   must be an immediate.  */
#if 0
static __inline __m64 __attribute__((__always_inline__))
_mm_shuffle_pi16 (__m64 __A, int __N)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pshufw (__m64 __A, int __N)
;
#else
#define _mm_shuffle_pi16(A, N) \
  ((__m64) __builtin_ia32_pshufw ((__v4hi)(A), (N)))
#define _m_pshufw(A, N)         _mm_shuffle_pi16 ((A), (N))
#endif

/* Conditionally store byte elements of A into P.  The high bit of each
   byte in the selector N determines whether the corresponding byte from
   A is stored.  */
static __inline void __attribute__((__always_inline__))
_mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P)
;

static __inline void __attribute__((__always_inline__))
_m_maskmovq (__m64 __A, __m64 __N, char *__P)
;

/* Compute the rounded averages of the unsigned 8-bit values in A and B.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_avg_pu8 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pavgb (__m64 __A, __m64 __B)
;

/* Compute the rounded averages of the unsigned 16-bit values in A and B.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_avg_pu16 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_pavgw (__m64 __A, __m64 __B)
;

/* Compute the sum of the absolute differences of the unsigned 8-bit
   values in A and B.  Return the value in the lower 16-bit word; the
   upper words are cleared.  */
static __inline __m64 __attribute__((__always_inline__))
_mm_sad_pu8 (__m64 __A, __m64 __B)
;

static __inline __m64 __attribute__((__always_inline__))
_m_psadbw (__m64 __A, __m64 __B)
;

/* Loads one cache line from address P to a location "closer" to the
   processor.  The selector I specifies the type of prefetch operation.  */
#if 0
static __inline void __attribute__((__always_inline__))
_mm_prefetch (void *__P, enum _mm_hint __I)
;
#else
#define _mm_prefetch(P, I) \
  __builtin_prefetch ((P), 0, (I))
#endif

/* Stores the data in A to the address P without polluting the caches.  */
static __inline void __attribute__((__always_inline__))
_mm_stream_pi (__m64 *__P, __m64 __A)
;

/* Likewise.  The address must be 16-byte aligned.  */
static __inline void __attribute__((__always_inline__))
_mm_stream_ps (float *__P, __m128 __A)
;

/* Guarantees that every preceding store is globally visible before
   any subsequent store.  */
static __inline void __attribute__((__always_inline__))
_mm_sfence (void)
;

/* The execution of the next instruction is delayed by an implementation
   specific amount of time.  The instruction does not modify the
   architectural state.  */
static __inline void __attribute__((__always_inline__))
_mm_pause (void)
;

/* Transpose the 4x4 matrix composed of row[0-3].  */
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3)                       \
do {                                                                    \
} while (0)

/* For backward source compatibility.  */
#include <emmintrin.h>

#endif /* __SSE__ */
#endif /* _XMMINTRIN_H_INCLUDED */