/usr/include/firefox-esr-52/nsTArray-inl.h is in firefox-esr-dev 52.8.1esr-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsTArray_h__
# error "Don't include this file directly"
#endif
template<class Alloc, class Copy>
nsTArray_base<Alloc, Copy>::nsTArray_base()
: mHdr(EmptyHdr())
{
MOZ_COUNT_CTOR(nsTArray_base);
}
template<class Alloc, class Copy>
nsTArray_base<Alloc, Copy>::~nsTArray_base()
{
if (mHdr != EmptyHdr() && !UsesAutoArrayBuffer()) {
Alloc::Free(mHdr);
}
MOZ_COUNT_DTOR(nsTArray_base);
}
template<class Alloc, class Copy>
const nsTArrayHeader*
nsTArray_base<Alloc, Copy>::GetAutoArrayBufferUnsafe(size_t aElemAlign) const
{
// Assuming |this| points to an nsAutoArray, we want to get a pointer to
// mAutoBuf. So just cast |this| to nsAutoArray* and read &mAutoBuf!
const void* autoBuf =
&reinterpret_cast<const AutoTArray<nsTArray<uint32_t>, 1>*>(this)->mAutoBuf;
// If we're on a 32-bit system and aElemAlign is 8, we need to adjust our
// pointer to take into account the extra alignment in the auto array.
static_assert(sizeof(void*) != 4 ||
(MOZ_ALIGNOF(mozilla::AlignedElem<8>) == 8 &&
sizeof(AutoTArray<mozilla::AlignedElem<8>, 1>) ==
sizeof(void*) + sizeof(nsTArrayHeader) +
4 + sizeof(mozilla::AlignedElem<8>)),
"auto array padding wasn't what we expected");
// We don't support alignments greater than 8 bytes.
MOZ_ASSERT(aElemAlign <= 4 || aElemAlign == 8,
"unsupported alignment.");
if (sizeof(void*) == 4 && aElemAlign == 8) {
autoBuf = reinterpret_cast<const char*>(autoBuf) + 4;
}
return reinterpret_cast<const Header*>(autoBuf);
}
template<class Alloc, class Copy>
bool
nsTArray_base<Alloc, Copy>::UsesAutoArrayBuffer() const
{
if (!mHdr->mIsAutoArray) {
return false;
}
// This is nuts. If we were sane, we'd pass aElemAlign as a parameter to
// this function. Unfortunately this function is called in nsTArray_base's
// destructor, at which point we don't know elem_type's alignment.
//
// We'll fall on our face and return true when we should say false if
//
// * we're not using our auto buffer,
// * aElemAlign == 4, and
// * mHdr == GetAutoArrayBuffer(8).
//
// This could happen if |*this| lives on the heap and malloc allocated our
// buffer on the heap adjacent to |*this|.
//
// However, we can show that this can't happen. If |this| is an auto array
// (as we ensured at the beginning of the method), GetAutoArrayBuffer(8)
// always points to memory owned by |*this|, because (as we assert below)
//
// * GetAutoArrayBuffer(8) is at most 4 bytes past GetAutoArrayBuffer(4), and
// * sizeof(nsTArrayHeader) > 4.
//
// Since AutoTArray always contains an nsTArrayHeader,
// GetAutoArrayBuffer(8) will always point inside the auto array object,
// even if it doesn't point at the beginning of the header.
//
// Note that this means that we can't store elements with alignment 16 in an
// nsTArray, because GetAutoArrayBuffer(16) could lie outside the memory
// owned by this AutoTArray. We statically assert that elem_type's
// alignment is 8 bytes or less in AutoTArray.
static_assert(sizeof(nsTArrayHeader) > 4,
"see comment above");
#ifdef DEBUG
ptrdiff_t diff = reinterpret_cast<const char*>(GetAutoArrayBuffer(8)) -
reinterpret_cast<const char*>(GetAutoArrayBuffer(4));
MOZ_ASSERT(diff >= 0 && diff <= 4,
"GetAutoArrayBuffer doesn't do what we expect.");
#endif
return mHdr == GetAutoArrayBuffer(4) || mHdr == GetAutoArrayBuffer(8);
}
// defined in nsTArray.cpp
bool IsTwiceTheRequiredBytesRepresentableAsUint32(size_t aCapacity,
size_t aElemSize);
template<class Alloc, class Copy>
template<typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy
nsTArray_base<Alloc, Copy>::EnsureCapacity(size_type aCapacity,
size_type aElemSize)
{
// This should be the most common case so test this first
if (aCapacity <= mHdr->mCapacity) {
return ActualAlloc::SuccessResult();
}
// If the requested memory allocation exceeds size_type(-1)/2, then
// our doubling algorithm may not be able to allocate it.
// Additionally, if it exceeds uint32_t(-1) then we couldn't fit in the
// Header::mCapacity member. Just bail out in cases like that. We don't want
// to be allocating 2 GB+ arrays anyway.
if (!IsTwiceTheRequiredBytesRepresentableAsUint32(aCapacity, aElemSize)) {
ActualAlloc::SizeTooBig((size_t)aCapacity * aElemSize);
return ActualAlloc::FailureResult();
}
size_t reqSize = sizeof(Header) + aCapacity * aElemSize;
if (mHdr == EmptyHdr()) {
// Malloc() new data
Header* header = static_cast<Header*>(ActualAlloc::Malloc(reqSize));
if (!header) {
return ActualAlloc::FailureResult();
}
header->mLength = 0;
header->mCapacity = aCapacity;
header->mIsAutoArray = 0;
mHdr = header;
return ActualAlloc::SuccessResult();
}
// We increase our capacity so that the allocated buffer grows exponentially,
// which gives us amortized O(1) appending. Below the threshold, we use
// powers-of-two. Above the threshold, we grow by at least 1.125, rounding up
// to the nearest MiB.
const size_t slowGrowthThreshold = 8 * 1024 * 1024;
size_t bytesToAlloc;
if (reqSize >= slowGrowthThreshold) {
size_t currSize = sizeof(Header) + Capacity() * aElemSize;
size_t minNewSize = currSize + (currSize >> 3); // multiply by 1.125
bytesToAlloc = reqSize > minNewSize ? reqSize : minNewSize;
// Round up to the next multiple of MiB.
const size_t MiB = 1 << 20;
bytesToAlloc = MiB * ((bytesToAlloc + MiB - 1) / MiB);
} else {
// Round up to the next power of two.
bytesToAlloc = mozilla::RoundUpPow2(reqSize);
}
Header* header;
if (UsesAutoArrayBuffer() || !Copy::allowRealloc) {
// Malloc() and copy
header = static_cast<Header*>(ActualAlloc::Malloc(bytesToAlloc));
if (!header) {
return ActualAlloc::FailureResult();
}
Copy::MoveNonOverlappingRegionWithHeader(header, mHdr, Length(), aElemSize);
if (!UsesAutoArrayBuffer()) {
ActualAlloc::Free(mHdr);
}
} else {
// Realloc() existing data
header = static_cast<Header*>(ActualAlloc::Realloc(mHdr, bytesToAlloc));
if (!header) {
return ActualAlloc::FailureResult();
}
}
// How many elements can we fit in bytesToAlloc?
size_t newCapacity = (bytesToAlloc - sizeof(Header)) / aElemSize;
MOZ_ASSERT(newCapacity >= aCapacity, "Didn't enlarge the array enough!");
header->mCapacity = newCapacity;
mHdr = header;
return ActualAlloc::SuccessResult();
}
// We don't need use Alloc template parameter specified here because failure to
// shrink the capacity will leave the array unchanged.
template<class Alloc, class Copy>
void
nsTArray_base<Alloc, Copy>::ShrinkCapacity(size_type aElemSize,
size_t aElemAlign)
{
if (mHdr == EmptyHdr() || UsesAutoArrayBuffer()) {
return;
}
if (mHdr->mLength >= mHdr->mCapacity) { // should never be greater than...
return;
}
size_type length = Length();
if (IsAutoArray() && GetAutoArrayBuffer(aElemAlign)->mCapacity >= length) {
Header* header = GetAutoArrayBuffer(aElemAlign);
// Move the data, but don't copy the header to avoid overwriting mCapacity.
header->mLength = length;
Copy::MoveNonOverlappingRegion(header + 1, mHdr + 1, length, aElemSize);
nsTArrayFallibleAllocator::Free(mHdr);
mHdr = header;
return;
}
if (length == 0) {
MOZ_ASSERT(!IsAutoArray(), "autoarray should have fit 0 elements");
nsTArrayFallibleAllocator::Free(mHdr);
mHdr = EmptyHdr();
return;
}
size_type size = sizeof(Header) + length * aElemSize;
void* ptr = nsTArrayFallibleAllocator::Realloc(mHdr, size);
if (!ptr) {
return;
}
mHdr = static_cast<Header*>(ptr);
mHdr->mCapacity = length;
}
template<class Alloc, class Copy>
template<typename ActualAlloc>
void
nsTArray_base<Alloc, Copy>::ShiftData(index_type aStart,
size_type aOldLen, size_type aNewLen,
size_type aElemSize, size_t aElemAlign)
{
if (aOldLen == aNewLen) {
return;
}
// Determine how many elements need to be shifted
size_type num = mHdr->mLength - (aStart + aOldLen);
// Compute the resulting length of the array
mHdr->mLength += aNewLen - aOldLen;
if (mHdr->mLength == 0) {
ShrinkCapacity(aElemSize, aElemAlign);
} else {
// Maybe nothing needs to be shifted
if (num == 0) {
return;
}
// Perform shift (change units to bytes first)
aStart *= aElemSize;
aNewLen *= aElemSize;
aOldLen *= aElemSize;
char* baseAddr = reinterpret_cast<char*>(mHdr + 1) + aStart;
Copy::MoveOverlappingRegion(baseAddr + aNewLen, baseAddr + aOldLen, num, aElemSize);
}
}
template<class Alloc, class Copy>
template<typename ActualAlloc>
bool
nsTArray_base<Alloc, Copy>::InsertSlotsAt(index_type aIndex, size_type aCount,
size_type aElemSize,
size_t aElemAlign)
{
MOZ_ASSERT(aIndex <= Length(), "Bogus insertion index");
size_type newLen = Length() + aCount;
EnsureCapacity<ActualAlloc>(newLen, aElemSize);
// Check for out of memory conditions
if (Capacity() < newLen) {
return false;
}
// Move the existing elements as needed. Note that this will
// change our mLength, so no need to call IncrementLength.
ShiftData<ActualAlloc>(aIndex, 0, aCount, aElemSize, aElemAlign);
return true;
}
// nsTArray_base::IsAutoArrayRestorer is an RAII class which takes
// |nsTArray_base &array| in its constructor. When it's destructed, it ensures
// that
//
// * array.mIsAutoArray has the same value as it did when we started, and
// * if array has an auto buffer and mHdr would otherwise point to sEmptyHdr,
// array.mHdr points to array's auto buffer.
template<class Alloc, class Copy>
nsTArray_base<Alloc, Copy>::IsAutoArrayRestorer::IsAutoArrayRestorer(
nsTArray_base<Alloc, Copy>& aArray,
size_t aElemAlign)
: mArray(aArray)
, mElemAlign(aElemAlign)
, mIsAuto(aArray.IsAutoArray())
{
}
template<class Alloc, class Copy>
nsTArray_base<Alloc, Copy>::IsAutoArrayRestorer::~IsAutoArrayRestorer()
{
// Careful: We don't want to set mIsAutoArray = 1 on sEmptyHdr.
if (mIsAuto && mArray.mHdr == mArray.EmptyHdr()) {
// Call GetAutoArrayBufferUnsafe() because GetAutoArrayBuffer() asserts
// that mHdr->mIsAutoArray is true, which surely isn't the case here.
mArray.mHdr = mArray.GetAutoArrayBufferUnsafe(mElemAlign);
mArray.mHdr->mLength = 0;
} else if (mArray.mHdr != mArray.EmptyHdr()) {
mArray.mHdr->mIsAutoArray = mIsAuto;
}
}
template<class Alloc, class Copy>
template<typename ActualAlloc, class Allocator>
typename ActualAlloc::ResultTypeProxy
nsTArray_base<Alloc, Copy>::SwapArrayElements(nsTArray_base<Allocator,
Copy>& aOther,
size_type aElemSize,
size_t aElemAlign)
{
// EnsureNotUsingAutoArrayBuffer will set mHdr = sEmptyHdr even if we have an
// auto buffer. We need to point mHdr back to our auto buffer before we
// return, otherwise we'll forget that we have an auto buffer at all!
// IsAutoArrayRestorer takes care of this for us.
IsAutoArrayRestorer ourAutoRestorer(*this, aElemAlign);
typename nsTArray_base<Allocator, Copy>::IsAutoArrayRestorer
otherAutoRestorer(aOther, aElemAlign);
// If neither array uses an auto buffer which is big enough to store the
// other array's elements, then ensure that both arrays use malloc'ed storage
// and swap their mHdr pointers.
if ((!UsesAutoArrayBuffer() || Capacity() < aOther.Length()) &&
(!aOther.UsesAutoArrayBuffer() || aOther.Capacity() < Length())) {
if (!EnsureNotUsingAutoArrayBuffer<ActualAlloc>(aElemSize) ||
!aOther.template EnsureNotUsingAutoArrayBuffer<ActualAlloc>(aElemSize)) {
return ActualAlloc::FailureResult();
}
Header* temp = mHdr;
mHdr = aOther.mHdr;
aOther.mHdr = temp;
return ActualAlloc::SuccessResult();
}
// Swap the two arrays by copying, since at least one is using an auto
// buffer which is large enough to hold all of the aOther's elements. We'll
// copy the shorter array into temporary storage.
//
// (We could do better than this in some circumstances. Suppose we're
// swapping arrays X and Y. X has space for 2 elements in its auto buffer,
// but currently has length 4, so it's using malloc'ed storage. Y has length
// 2. When we swap X and Y, we don't need to use a temporary buffer; we can
// write Y straight into X's auto buffer, write X's malloc'ed buffer on top
// of Y, and then switch X to using its auto buffer.)
if (!ActualAlloc::Successful(EnsureCapacity<ActualAlloc>(aOther.Length(), aElemSize)) ||
!Allocator::Successful(aOther.template EnsureCapacity<Allocator>(Length(), aElemSize))) {
return ActualAlloc::FailureResult();
}
// The EnsureCapacity calls above shouldn't have caused *both* arrays to
// switch from their auto buffers to malloc'ed space.
MOZ_ASSERT(UsesAutoArrayBuffer() || aOther.UsesAutoArrayBuffer(),
"One of the arrays should be using its auto buffer.");
size_type smallerLength = XPCOM_MIN(Length(), aOther.Length());
size_type largerLength = XPCOM_MAX(Length(), aOther.Length());
void* smallerElements;
void* largerElements;
if (Length() <= aOther.Length()) {
smallerElements = Hdr() + 1;
largerElements = aOther.Hdr() + 1;
} else {
smallerElements = aOther.Hdr() + 1;
largerElements = Hdr() + 1;
}
// Allocate temporary storage for the smaller of the two arrays. We want to
// allocate this space on the stack, if it's not too large. Sounds like a
// job for AutoTArray! (One of the two arrays we're swapping is using an
// auto buffer, so we're likely not allocating a lot of space here. But one
// could, in theory, allocate a huge AutoTArray on the heap.)
AutoTArray<nsTArray_Impl<uint8_t, ActualAlloc>, 64> temp;
if (!ActualAlloc::Successful(temp.template EnsureCapacity<ActualAlloc>(smallerLength,
aElemSize))) {
return ActualAlloc::FailureResult();
}
Copy::MoveNonOverlappingRegion(temp.Elements(), smallerElements, smallerLength, aElemSize);
Copy::MoveNonOverlappingRegion(smallerElements, largerElements, largerLength, aElemSize);
Copy::MoveNonOverlappingRegion(largerElements, temp.Elements(), smallerLength, aElemSize);
// Swap the arrays' lengths.
MOZ_ASSERT((aOther.Length() == 0 || mHdr != EmptyHdr()) &&
(Length() == 0 || aOther.mHdr != EmptyHdr()),
"Don't set sEmptyHdr's length.");
size_type tempLength = Length();
// Avoid writing to EmptyHdr, since it can trigger false
// positives with TSan.
if (mHdr != EmptyHdr()) {
mHdr->mLength = aOther.Length();
}
if (aOther.mHdr != EmptyHdr()) {
aOther.mHdr->mLength = tempLength;
}
return ActualAlloc::SuccessResult();
}
template<class Alloc, class Copy>
template<typename ActualAlloc>
bool
nsTArray_base<Alloc, Copy>::EnsureNotUsingAutoArrayBuffer(size_type aElemSize)
{
if (UsesAutoArrayBuffer()) {
// If you call this on a 0-length array, we'll set that array's mHdr to
// sEmptyHdr, in flagrant violation of the AutoTArray invariants. It's
// up to you to set it back! (If you don't, the AutoTArray will forget
// that it has an auto buffer.)
if (Length() == 0) {
mHdr = EmptyHdr();
return true;
}
size_type size = sizeof(Header) + Length() * aElemSize;
Header* header = static_cast<Header*>(ActualAlloc::Malloc(size));
if (!header) {
return false;
}
Copy::MoveNonOverlappingRegionWithHeader(header, mHdr, Length(), aElemSize);
header->mCapacity = Length();
mHdr = header;
}
return true;
}
|