This file is indexed.

/usr/include/firefox-esr-52/gtest/gtest-printers.h is in firefox-esr-dev 52.8.1esr-1~deb8u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Test - The Google C++ Testing Framework
//
// This file implements a universal value printer that can print a
// value of any type T:
//
//   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
//
// A user can teach this function how to print a class type T by
// defining either operator<<() or PrintTo() in the namespace that
// defines T.  More specifically, the FIRST defined function in the
// following list will be used (assuming T is defined in namespace
// foo):
//
//   1. foo::PrintTo(const T&, ostream*)
//   2. operator<<(ostream&, const T&) defined in either foo or the
//      global namespace.
//
// If none of the above is defined, it will print the debug string of
// the value if it is a protocol buffer, or print the raw bytes in the
// value otherwise.
//
// To aid debugging: when T is a reference type, the address of the
// value is also printed; when T is a (const) char pointer, both the
// pointer value and the NUL-terminated string it points to are
// printed.
//
// We also provide some convenient wrappers:
//
//   // Prints a value to a string.  For a (const or not) char
//   // pointer, the NUL-terminated string (but not the pointer) is
//   // printed.
//   std::string ::testing::PrintToString(const T& value);
//
//   // Prints a value tersely: for a reference type, the referenced
//   // value (but not the address) is printed; for a (const or not) char
//   // pointer, the NUL-terminated string (but not the pointer) is
//   // printed.
//   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
//
//   // Prints value using the type inferred by the compiler.  The difference
//   // from UniversalTersePrint() is that this function prints both the
//   // pointer and the NUL-terminated string for a (const or not) char pointer.
//   void ::testing::internal::UniversalPrint(const T& value, ostream*);
//
//   // Prints the fields of a tuple tersely to a string vector, one
//   // element for each field. Tuple support must be enabled in
//   // gtest-port.h.
//   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
//       const Tuple& value);
//
// Known limitation:
//
// The print primitives print the elements of an STL-style container
// using the compiler-inferred type of *iter where iter is a
// const_iterator of the container.  When const_iterator is an input
// iterator but not a forward iterator, this inferred type may not
// match value_type, and the print output may be incorrect.  In
// practice, this is rarely a problem as for most containers
// const_iterator is a forward iterator.  We'll fix this if there's an
// actual need for it.  Note that this fix cannot rely on value_type
// being defined as many user-defined container types don't have
// value_type.

#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_

#include <ostream>  // NOLINT
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gtest/internal/gtest-port.h"
#include "gtest/internal/gtest-internal.h"

namespace testing {

// Definitions in the 'internal' and 'internal2' name spaces are
// subject to change without notice.  DO NOT USE THEM IN USER CODE!
namespace internal2 {

// Prints the given number of bytes in the given object to the given
// ostream.
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
                                     size_t count,
                                     ::std::ostream* os);

// For selecting which printer to use when a given type has neither <<
// nor PrintTo().
enum TypeKind {
  kProtobuf,              // a protobuf type
  kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
                          // (e.g. a named or unnamed enum type)
  kOtherType              // anything else
};

// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
// by the universal printer to print a value of type T when neither
// operator<< nor PrintTo() is defined for T, where kTypeKind is the
// "kind" of T as defined by enum TypeKind.
template <typename T, TypeKind kTypeKind>
class TypeWithoutFormatter {
 public:
  // This default version is called when kTypeKind is kOtherType.
  static void PrintValue(const T& value, ::std::ostream* os) {
    PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
                         sizeof(value), os);
  }
};

// We print a protobuf using its ShortDebugString() when the string
// doesn't exceed this many characters; otherwise we print it using
// DebugString() for better readability.
const size_t kProtobufOneLinerMaxLength = 50;

template <typename T>
class TypeWithoutFormatter<T, kProtobuf> {
 public:
  static void PrintValue(const T& value, ::std::ostream* os) {
    const ::testing::internal::string short_str = value.ShortDebugString();
    const ::testing::internal::string pretty_str =
        short_str.length() <= kProtobufOneLinerMaxLength ?
        short_str : ("\n" + value.DebugString());
    *os << ("<" + pretty_str + ">");
  }
};

template <typename T>
class TypeWithoutFormatter<T, kConvertibleToInteger> {
 public:
  // Since T has no << operator or PrintTo() but can be implicitly
  // converted to BiggestInt, we print it as a BiggestInt.
  //
  // Most likely T is an enum type (either named or unnamed), in which
  // case printing it as an integer is the desired behavior.  In case
  // T is not an enum, printing it as an integer is the best we can do
  // given that it has no user-defined printer.
  static void PrintValue(const T& value, ::std::ostream* os) {
    const internal::BiggestInt kBigInt = value;
    *os << kBigInt;
  }
};

// Prints the given value to the given ostream.  If the value is a
// protocol message, its debug string is printed; if it's an enum or
// of a type implicitly convertible to BiggestInt, it's printed as an
// integer; otherwise the bytes in the value are printed.  This is
// what UniversalPrinter<T>::Print() does when it knows nothing about
// type T and T has neither << operator nor PrintTo().
//
// A user can override this behavior for a class type Foo by defining
// a << operator in the namespace where Foo is defined.
//
// We put this operator in namespace 'internal2' instead of 'internal'
// to simplify the implementation, as much code in 'internal' needs to
// use << in STL, which would conflict with our own << were it defined
// in 'internal'.
//
// Note that this operator<< takes a generic std::basic_ostream<Char,
// CharTraits> type instead of the more restricted std::ostream.  If
// we define it to take an std::ostream instead, we'll get an
// "ambiguous overloads" compiler error when trying to print a type
// Foo that supports streaming to std::basic_ostream<Char,
// CharTraits>, as the compiler cannot tell whether
// operator<<(std::ostream&, const T&) or
// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
// specific.
template <typename Char, typename CharTraits, typename T>
::std::basic_ostream<Char, CharTraits>& operator<<(
    ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
  TypeWithoutFormatter<T,
      (internal::IsAProtocolMessage<T>::value ? kProtobuf :
       internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
       kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
  return os;
}

}  // namespace internal2
}  // namespace testing

// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
// magic needed for implementing UniversalPrinter won't work.
namespace testing_internal {

// Used to print a value that is not an STL-style container when the
// user doesn't define PrintTo() for it.
template <typename T>
void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
  // With the following statement, during unqualified name lookup,
  // testing::internal2::operator<< appears as if it was declared in
  // the nearest enclosing namespace that contains both
  // ::testing_internal and ::testing::internal2, i.e. the global
  // namespace.  For more details, refer to the C++ Standard section
  // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
  // testing::internal2::operator<< in case T doesn't come with a <<
  // operator.
  //
  // We cannot write 'using ::testing::internal2::operator<<;', which
  // gcc 3.3 fails to compile due to a compiler bug.
  using namespace ::testing::internal2;  // NOLINT

  // Assuming T is defined in namespace foo, in the next statement,
  // the compiler will consider all of:
  //
  //   1. foo::operator<< (thanks to Koenig look-up),
  //   2. ::operator<< (as the current namespace is enclosed in ::),
  //   3. testing::internal2::operator<< (thanks to the using statement above).
  //
  // The operator<< whose type matches T best will be picked.
  //
  // We deliberately allow #2 to be a candidate, as sometimes it's
  // impossible to define #1 (e.g. when foo is ::std, defining
  // anything in it is undefined behavior unless you are a compiler
  // vendor.).
  *os << value;
}

}  // namespace testing_internal

namespace testing {
namespace internal {

// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
// value to the given ostream.  The caller must ensure that
// 'ostream_ptr' is not NULL, or the behavior is undefined.
//
// We define UniversalPrinter as a class template (as opposed to a
// function template), as we need to partially specialize it for
// reference types, which cannot be done with function templates.
template <typename T>
class UniversalPrinter;

template <typename T>
void UniversalPrint(const T& value, ::std::ostream* os);

// Used to print an STL-style container when the user doesn't define
// a PrintTo() for it.
template <typename C>
void DefaultPrintTo(IsContainer /* dummy */,
                    false_type /* is not a pointer */,
                    const C& container, ::std::ostream* os) {
  const size_t kMaxCount = 32;  // The maximum number of elements to print.
  *os << '{';
  size_t count = 0;
  for (typename C::const_iterator it = container.begin();
       it != container.end(); ++it, ++count) {
    if (count > 0) {
      *os << ',';
      if (count == kMaxCount) {  // Enough has been printed.
        *os << " ...";
        break;
      }
    }
    *os << ' ';
    // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
    // handle *it being a native array.
    internal::UniversalPrint(*it, os);
  }

  if (count > 0) {
    *os << ' ';
  }
  *os << '}';
}

// Used to print a pointer that is neither a char pointer nor a member
// pointer, when the user doesn't define PrintTo() for it.  (A member
// variable pointer or member function pointer doesn't really point to
// a location in the address space.  Their representation is
// implementation-defined.  Therefore they will be printed as raw
// bytes.)
template <typename T>
void DefaultPrintTo(IsNotContainer /* dummy */,
                    true_type /* is a pointer */,
                    T* p, ::std::ostream* os) {
  if (p == NULL) {
    *os << "NULL";
  } else {
    // C++ doesn't allow casting from a function pointer to any object
    // pointer.
    //
    // IsTrue() silences warnings: "Condition is always true",
    // "unreachable code".
    if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
      // T is not a function type.  We just call << to print p,
      // relying on ADL to pick up user-defined << for their pointer
      // types, if any.
      *os << p;
    } else {
      // T is a function type, so '*os << p' doesn't do what we want
      // (it just prints p as bool).  We want to print p as a const
      // void*.  However, we cannot cast it to const void* directly,
      // even using reinterpret_cast, as earlier versions of gcc
      // (e.g. 3.4.5) cannot compile the cast when p is a function
      // pointer.  Casting to UInt64 first solves the problem.
      *os << reinterpret_cast<const void*>(
          reinterpret_cast<internal::UInt64>(p));
    }
  }
}

// Used to print a non-container, non-pointer value when the user
// doesn't define PrintTo() for it.
template <typename T>
void DefaultPrintTo(IsNotContainer /* dummy */,
                    false_type /* is not a pointer */,
                    const T& value, ::std::ostream* os) {
  ::testing_internal::DefaultPrintNonContainerTo(value, os);
}

// Prints the given value using the << operator if it has one;
// otherwise prints the bytes in it.  This is what
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
// or overloaded for type T.
//
// A user can override this behavior for a class type Foo by defining
// an overload of PrintTo() in the namespace where Foo is defined.  We
// give the user this option as sometimes defining a << operator for
// Foo is not desirable (e.g. the coding style may prevent doing it,
// or there is already a << operator but it doesn't do what the user
// wants).
template <typename T>
void PrintTo(const T& value, ::std::ostream* os) {
  // DefaultPrintTo() is overloaded.  The type of its first two
  // arguments determine which version will be picked.  If T is an
  // STL-style container, the version for container will be called; if
  // T is a pointer, the pointer version will be called; otherwise the
  // generic version will be called.
  //
  // Note that we check for container types here, prior to we check
  // for protocol message types in our operator<<.  The rationale is:
  //
  // For protocol messages, we want to give people a chance to
  // override Google Mock's format by defining a PrintTo() or
  // operator<<.  For STL containers, other formats can be
  // incompatible with Google Mock's format for the container
  // elements; therefore we check for container types here to ensure
  // that our format is used.
  //
  // The second argument of DefaultPrintTo() is needed to bypass a bug
  // in Symbian's C++ compiler that prevents it from picking the right
  // overload between:
  //
  //   PrintTo(const T& x, ...);
  //   PrintTo(T* x, ...);
  DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
}

// The following list of PrintTo() overloads tells
// UniversalPrinter<T>::Print() how to print standard types (built-in
// types, strings, plain arrays, and pointers).

// Overloads for various char types.
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
inline void PrintTo(char c, ::std::ostream* os) {
  // When printing a plain char, we always treat it as unsigned.  This
  // way, the output won't be affected by whether the compiler thinks
  // char is signed or not.
  PrintTo(static_cast<unsigned char>(c), os);
}

// Overloads for other simple built-in types.
inline void PrintTo(bool x, ::std::ostream* os) {
  *os << (x ? "true" : "false");
}

// Overload for wchar_t type.
// Prints a wchar_t as a symbol if it is printable or as its internal
// code otherwise and also as its decimal code (except for L'\0').
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
// as signed integer when wchar_t is implemented by the compiler
// as a signed type and is printed as an unsigned integer when wchar_t
// is implemented as an unsigned type.
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);

// Overloads for C strings.
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
inline void PrintTo(char* s, ::std::ostream* os) {
  PrintTo(ImplicitCast_<const char*>(s), os);
}

// signed/unsigned char is often used for representing binary data, so
// we print pointers to it as void* to be safe.
inline void PrintTo(const signed char* s, ::std::ostream* os) {
  PrintTo(ImplicitCast_<const void*>(s), os);
}
inline void PrintTo(signed char* s, ::std::ostream* os) {
  PrintTo(ImplicitCast_<const void*>(s), os);
}
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
  PrintTo(ImplicitCast_<const void*>(s), os);
}
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
  PrintTo(ImplicitCast_<const void*>(s), os);
}

// MSVC can be configured to define wchar_t as a typedef of unsigned
// short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
// type.  When wchar_t is a typedef, defining an overload for const
// wchar_t* would cause unsigned short* be printed as a wide string,
// possibly causing invalid memory accesses.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
// Overloads for wide C strings
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
inline void PrintTo(wchar_t* s, ::std::ostream* os) {
  PrintTo(ImplicitCast_<const wchar_t*>(s), os);
}
#endif

// Overload for C arrays.  Multi-dimensional arrays are printed
// properly.

// Prints the given number of elements in an array, without printing
// the curly braces.
template <typename T>
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
  UniversalPrint(a[0], os);
  for (size_t i = 1; i != count; i++) {
    *os << ", ";
    UniversalPrint(a[i], os);
  }
}

// Overloads for ::string and ::std::string.
#if GTEST_HAS_GLOBAL_STRING
GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
inline void PrintTo(const ::string& s, ::std::ostream* os) {
  PrintStringTo(s, os);
}
#endif  // GTEST_HAS_GLOBAL_STRING

GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
  PrintStringTo(s, os);
}

// Overloads for ::wstring and ::std::wstring.
#if GTEST_HAS_GLOBAL_WSTRING
GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
  PrintWideStringTo(s, os);
}
#endif  // GTEST_HAS_GLOBAL_WSTRING

#if GTEST_HAS_STD_WSTRING
GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
  PrintWideStringTo(s, os);
}
#endif  // GTEST_HAS_STD_WSTRING

#if GTEST_HAS_TR1_TUPLE
// Overload for ::std::tr1::tuple.  Needed for printing function arguments,
// which are packed as tuples.

// Helper function for printing a tuple.  T must be instantiated with
// a tuple type.
template <typename T>
void PrintTupleTo(const T& t, ::std::ostream* os);

// Overloaded PrintTo() for tuples of various arities.  We support
// tuples of up-to 10 fields.  The following implementation works
// regardless of whether tr1::tuple is implemented using the
// non-standard variadic template feature or not.

inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1>
void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2>
void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4, typename T5>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
             ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4, typename T5,
          typename T6>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
             ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4, typename T5,
          typename T6, typename T7>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
             ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4, typename T5,
          typename T6, typename T7, typename T8>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
             ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4, typename T5,
          typename T6, typename T7, typename T8, typename T9>
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
             ::std::ostream* os) {
  PrintTupleTo(t, os);
}

template <typename T1, typename T2, typename T3, typename T4, typename T5,
          typename T6, typename T7, typename T8, typename T9, typename T10>
void PrintTo(
    const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
    ::std::ostream* os) {
  PrintTupleTo(t, os);
}
#endif  // GTEST_HAS_TR1_TUPLE

// Overload for std::pair.
template <typename T1, typename T2>
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
  *os << '(';
  // We cannot use UniversalPrint(value.first, os) here, as T1 may be
  // a reference type.  The same for printing value.second.
  UniversalPrinter<T1>::Print(value.first, os);
  *os << ", ";
  UniversalPrinter<T2>::Print(value.second, os);
  *os << ')';
}

// Implements printing a non-reference type T by letting the compiler
// pick the right overload of PrintTo() for T.
template <typename T>
class UniversalPrinter {
 public:
  // MSVC warns about adding const to a function type, so we want to
  // disable the warning.
#ifdef _MSC_VER
# pragma warning(push)          // Saves the current warning state.
# pragma warning(disable:4180)  // Temporarily disables warning 4180.
#endif  // _MSC_VER

  // Note: we deliberately don't call this PrintTo(), as that name
  // conflicts with ::testing::internal::PrintTo in the body of the
  // function.
  static void Print(const T& value, ::std::ostream* os) {
    // By default, ::testing::internal::PrintTo() is used for printing
    // the value.
    //
    // Thanks to Koenig look-up, if T is a class and has its own
    // PrintTo() function defined in its namespace, that function will
    // be visible here.  Since it is more specific than the generic ones
    // in ::testing::internal, it will be picked by the compiler in the
    // following statement - exactly what we want.
    PrintTo(value, os);
  }

#ifdef _MSC_VER
# pragma warning(pop)           // Restores the warning state.
#endif  // _MSC_VER
};

// UniversalPrintArray(begin, len, os) prints an array of 'len'
// elements, starting at address 'begin'.
template <typename T>
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
  if (len == 0) {
    *os << "{}";
  } else {
    *os << "{ ";
    const size_t kThreshold = 18;
    const size_t kChunkSize = 8;
    // If the array has more than kThreshold elements, we'll have to
    // omit some details by printing only the first and the last
    // kChunkSize elements.
    // TODO(wan@google.com): let the user control the threshold using a flag.
    if (len <= kThreshold) {
      PrintRawArrayTo(begin, len, os);
    } else {
      PrintRawArrayTo(begin, kChunkSize, os);
      *os << ", ..., ";
      PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
    }
    *os << " }";
  }
}
// This overload prints a (const) char array compactly.
GTEST_API_ void UniversalPrintArray(const char* begin,
                                    size_t len,
                                    ::std::ostream* os);

// Implements printing an array type T[N].
template <typename T, size_t N>
class UniversalPrinter<T[N]> {
 public:
  // Prints the given array, omitting some elements when there are too
  // many.
  static void Print(const T (&a)[N], ::std::ostream* os) {
    UniversalPrintArray(a, N, os);
  }
};

// Implements printing a reference type T&.
template <typename T>
class UniversalPrinter<T&> {
 public:
  // MSVC warns about adding const to a function type, so we want to
  // disable the warning.
#ifdef _MSC_VER
# pragma warning(push)          // Saves the current warning state.
# pragma warning(disable:4180)  // Temporarily disables warning 4180.
#endif  // _MSC_VER

  static void Print(const T& value, ::std::ostream* os) {
    // Prints the address of the value.  We use reinterpret_cast here
    // as static_cast doesn't compile when T is a function type.
    *os << "@" << reinterpret_cast<const void*>(&value) << " ";

    // Then prints the value itself.
    UniversalPrint(value, os);
  }

#ifdef _MSC_VER
# pragma warning(pop)           // Restores the warning state.
#endif  // _MSC_VER
};

// Prints a value tersely: for a reference type, the referenced value
// (but not the address) is printed; for a (const) char pointer, the
// NUL-terminated string (but not the pointer) is printed.
template <typename T>
void UniversalTersePrint(const T& value, ::std::ostream* os) {
  UniversalPrint(value, os);
}
inline void UniversalTersePrint(const char* str, ::std::ostream* os) {
  if (str == NULL) {
    *os << "NULL";
  } else {
    UniversalPrint(string(str), os);
  }
}
inline void UniversalTersePrint(char* str, ::std::ostream* os) {
  UniversalTersePrint(static_cast<const char*>(str), os);
}

// Prints a value using the type inferred by the compiler.  The
// difference between this and UniversalTersePrint() is that for a
// (const) char pointer, this prints both the pointer and the
// NUL-terminated string.
template <typename T>
void UniversalPrint(const T& value, ::std::ostream* os) {
  UniversalPrinter<T>::Print(value, os);
}

#if GTEST_HAS_TR1_TUPLE
typedef ::std::vector<string> Strings;

// This helper template allows PrintTo() for tuples and
// UniversalTersePrintTupleFieldsToStrings() to be defined by
// induction on the number of tuple fields.  The idea is that
// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
// fields in tuple t, and can be defined in terms of
// TuplePrefixPrinter<N - 1>.

// The inductive case.
template <size_t N>
struct TuplePrefixPrinter {
  // Prints the first N fields of a tuple.
  template <typename Tuple>
  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
    TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
    *os << ", ";
    UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type>
        ::Print(::std::tr1::get<N - 1>(t), os);
  }

  // Tersely prints the first N fields of a tuple to a string vector,
  // one element for each field.
  template <typename Tuple>
  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
    TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
    ::std::stringstream ss;
    UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss);
    strings->push_back(ss.str());
  }
};

// Base cases.
template <>
struct TuplePrefixPrinter<0> {
  template <typename Tuple>
  static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}

  template <typename Tuple>
  static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
};
// We have to specialize the entire TuplePrefixPrinter<> class
// template here, even though the definition of
// TersePrintPrefixToStrings() is the same as the generic version, as
// Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't
// support specializing a method template of a class template.
template <>
struct TuplePrefixPrinter<1> {
  template <typename Tuple>
  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
    UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>::
        Print(::std::tr1::get<0>(t), os);
  }

  template <typename Tuple>
  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
    ::std::stringstream ss;
    UniversalTersePrint(::std::tr1::get<0>(t), &ss);
    strings->push_back(ss.str());
  }
};

// Helper function for printing a tuple.  T must be instantiated with
// a tuple type.
template <typename T>
void PrintTupleTo(const T& t, ::std::ostream* os) {
  *os << "(";
  TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>::
      PrintPrefixTo(t, os);
  *os << ")";
}

// Prints the fields of a tuple tersely to a string vector, one
// element for each field.  See the comment before
// UniversalTersePrint() for how we define "tersely".
template <typename Tuple>
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
  Strings result;
  TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>::
      TersePrintPrefixToStrings(value, &result);
  return result;
}
#endif  // GTEST_HAS_TR1_TUPLE

}  // namespace internal

template <typename T>
::std::string PrintToString(const T& value) {
  ::std::stringstream ss;
  internal::UniversalTersePrint(value, &ss);
  return ss.str();
}

}  // namespace testing

#endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_