/usr/include/firefox-esr-52/google/protobuf/message.h is in firefox-esr-dev 52.8.1esr-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 | // Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines Message, the abstract interface implemented by non-lite
// protocol message objects. Although it's possible to implement this
// interface manually, most users will use the protocol compiler to
// generate implementations.
//
// Example usage:
//
// Say you have a message defined as:
//
// message Foo {
// optional string text = 1;
// repeated int32 numbers = 2;
// }
//
// Then, if you used the protocol compiler to generate a class from the above
// definition, you could use it like so:
//
// string data; // Will store a serialized version of the message.
//
// {
// // Create a message and serialize it.
// Foo foo;
// foo.set_text("Hello World!");
// foo.add_numbers(1);
// foo.add_numbers(5);
// foo.add_numbers(42);
//
// foo.SerializeToString(&data);
// }
//
// {
// // Parse the serialized message and check that it contains the
// // correct data.
// Foo foo;
// foo.ParseFromString(data);
//
// assert(foo.text() == "Hello World!");
// assert(foo.numbers_size() == 3);
// assert(foo.numbers(0) == 1);
// assert(foo.numbers(1) == 5);
// assert(foo.numbers(2) == 42);
// }
//
// {
// // Same as the last block, but do it dynamically via the Message
// // reflection interface.
// Message* foo = new Foo;
// const Descriptor* descriptor = foo->GetDescriptor();
//
// // Get the descriptors for the fields we're interested in and verify
// // their types.
// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
// assert(text_field != NULL);
// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
// const FieldDescriptor* numbers_field = descriptor->
// FindFieldByName("numbers");
// assert(numbers_field != NULL);
// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
//
// // Parse the message.
// foo->ParseFromString(data);
//
// // Use the reflection interface to examine the contents.
// const Reflection* reflection = foo->GetReflection();
// assert(reflection->GetString(foo, text_field) == "Hello World!");
// assert(reflection->FieldSize(foo, numbers_field) == 3);
// assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
// assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
// assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
//
// delete foo;
// }
#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
#define GOOGLE_PROTOBUF_MESSAGE_H__
#include <iosfwd>
#include <string>
#include <vector>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/descriptor.h>
#define GOOGLE_PROTOBUF_HAS_ONEOF
namespace google {
namespace protobuf {
// Defined in this file.
class Message;
class Reflection;
class MessageFactory;
// Defined in other files.
class UnknownFieldSet; // unknown_field_set.h
namespace io {
class ZeroCopyInputStream; // zero_copy_stream.h
class ZeroCopyOutputStream; // zero_copy_stream.h
class CodedInputStream; // coded_stream.h
class CodedOutputStream; // coded_stream.h
}
template<typename T>
class RepeatedField; // repeated_field.h
template<typename T>
class RepeatedPtrField; // repeated_field.h
// A container to hold message metadata.
struct Metadata {
const Descriptor* descriptor;
const Reflection* reflection;
};
// Abstract interface for protocol messages.
//
// See also MessageLite, which contains most every-day operations. Message
// adds descriptors and reflection on top of that.
//
// The methods of this class that are virtual but not pure-virtual have
// default implementations based on reflection. Message classes which are
// optimized for speed will want to override these with faster implementations,
// but classes optimized for code size may be happy with keeping them. See
// the optimize_for option in descriptor.proto.
class LIBPROTOBUF_EXPORT Message : public MessageLite {
public:
inline Message() {}
virtual ~Message();
// Basic Operations ------------------------------------------------
// Construct a new instance of the same type. Ownership is passed to the
// caller. (This is also defined in MessageLite, but is defined again here
// for return-type covariance.)
virtual Message* New() const = 0;
// Make this message into a copy of the given message. The given message
// must have the same descriptor, but need not necessarily be the same class.
// By default this is just implemented as "Clear(); MergeFrom(from);".
virtual void CopyFrom(const Message& from);
// Merge the fields from the given message into this message. Singular
// fields will be overwritten, if specified in from, except for embedded
// messages which will be merged. Repeated fields will be concatenated.
// The given message must be of the same type as this message (i.e. the
// exact same class).
virtual void MergeFrom(const Message& from);
// Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
// a nice error message.
void CheckInitialized() const;
// Slowly build a list of all required fields that are not set.
// This is much, much slower than IsInitialized() as it is implemented
// purely via reflection. Generally, you should not call this unless you
// have already determined that an error exists by calling IsInitialized().
void FindInitializationErrors(vector<string>* errors) const;
// Like FindInitializationErrors, but joins all the strings, delimited by
// commas, and returns them.
string InitializationErrorString() const;
// Clears all unknown fields from this message and all embedded messages.
// Normally, if unknown tag numbers are encountered when parsing a message,
// the tag and value are stored in the message's UnknownFieldSet and
// then written back out when the message is serialized. This allows servers
// which simply route messages to other servers to pass through messages
// that have new field definitions which they don't yet know about. However,
// this behavior can have security implications. To avoid it, call this
// method after parsing.
//
// See Reflection::GetUnknownFields() for more on unknown fields.
virtual void DiscardUnknownFields();
// Computes (an estimate of) the total number of bytes currently used for
// storing the message in memory. The default implementation calls the
// Reflection object's SpaceUsed() method.
virtual int SpaceUsed() const;
// Debugging & Testing----------------------------------------------
// Generates a human readable form of this message, useful for debugging
// and other purposes.
string DebugString() const;
// Like DebugString(), but with less whitespace.
string ShortDebugString() const;
// Like DebugString(), but do not escape UTF-8 byte sequences.
string Utf8DebugString() const;
// Convenience function useful in GDB. Prints DebugString() to stdout.
void PrintDebugString() const;
// Heavy I/O -------------------------------------------------------
// Additional parsing and serialization methods not implemented by
// MessageLite because they are not supported by the lite library.
// Parse a protocol buffer from a file descriptor. If successful, the entire
// input will be consumed.
bool ParseFromFileDescriptor(int file_descriptor);
// Like ParseFromFileDescriptor(), but accepts messages that are missing
// required fields.
bool ParsePartialFromFileDescriptor(int file_descriptor);
// Parse a protocol buffer from a C++ istream. If successful, the entire
// input will be consumed.
bool ParseFromIstream(istream* input);
// Like ParseFromIstream(), but accepts messages that are missing
// required fields.
bool ParsePartialFromIstream(istream* input);
// Serialize the message and write it to the given file descriptor. All
// required fields must be set.
bool SerializeToFileDescriptor(int file_descriptor) const;
// Like SerializeToFileDescriptor(), but allows missing required fields.
bool SerializePartialToFileDescriptor(int file_descriptor) const;
// Serialize the message and write it to the given C++ ostream. All
// required fields must be set.
bool SerializeToOstream(ostream* output) const;
// Like SerializeToOstream(), but allows missing required fields.
bool SerializePartialToOstream(ostream* output) const;
// Reflection-based methods ----------------------------------------
// These methods are pure-virtual in MessageLite, but Message provides
// reflection-based default implementations.
virtual string GetTypeName() const;
virtual void Clear();
virtual bool IsInitialized() const;
virtual void CheckTypeAndMergeFrom(const MessageLite& other);
virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
virtual int ByteSize() const;
virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
private:
// This is called only by the default implementation of ByteSize(), to
// update the cached size. If you override ByteSize(), you do not need
// to override this. If you do not override ByteSize(), you MUST override
// this; the default implementation will crash.
//
// The method is private because subclasses should never call it; only
// override it. Yes, C++ lets you do that. Crazy, huh?
virtual void SetCachedSize(int size) const;
public:
// Introspection ---------------------------------------------------
// Typedef for backwards-compatibility.
typedef google::protobuf::Reflection Reflection;
// Get a Descriptor for this message's type. This describes what
// fields the message contains, the types of those fields, etc.
const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
// Get the Reflection interface for this Message, which can be used to
// read and modify the fields of the Message dynamically (in other words,
// without knowing the message type at compile time). This object remains
// property of the Message.
//
// This method remains virtual in case a subclass does not implement
// reflection and wants to override the default behavior.
virtual const Reflection* GetReflection() const {
return GetMetadata().reflection;
}
protected:
// Get a struct containing the metadata for the Message. Most subclasses only
// need to implement this method, rather than the GetDescriptor() and
// GetReflection() wrappers.
virtual Metadata GetMetadata() const = 0;
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
};
// This interface contains methods that can be used to dynamically access
// and modify the fields of a protocol message. Their semantics are
// similar to the accessors the protocol compiler generates.
//
// To get the Reflection for a given Message, call Message::GetReflection().
//
// This interface is separate from Message only for efficiency reasons;
// the vast majority of implementations of Message will share the same
// implementation of Reflection (GeneratedMessageReflection,
// defined in generated_message.h), and all Messages of a particular class
// should share the same Reflection object (though you should not rely on
// the latter fact).
//
// There are several ways that these methods can be used incorrectly. For
// example, any of the following conditions will lead to undefined
// results (probably assertion failures):
// - The FieldDescriptor is not a field of this message type.
// - The method called is not appropriate for the field's type. For
// each field type in FieldDescriptor::TYPE_*, there is only one
// Get*() method, one Set*() method, and one Add*() method that is
// valid for that type. It should be obvious which (except maybe
// for TYPE_BYTES, which are represented using strings in C++).
// - A Get*() or Set*() method for singular fields is called on a repeated
// field.
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
// field.
// - The Message object passed to any method is not of the right type for
// this Reflection object (i.e. message.GetReflection() != reflection).
//
// You might wonder why there is not any abstract representation for a field
// of arbitrary type. E.g., why isn't there just a "GetField()" method that
// returns "const Field&", where "Field" is some class with accessors like
// "GetInt32Value()". The problem is that someone would have to deal with
// allocating these Field objects. For generated message classes, having to
// allocate space for an additional object to wrap every field would at least
// double the message's memory footprint, probably worse. Allocating the
// objects on-demand, on the other hand, would be expensive and prone to
// memory leaks. So, instead we ended up with this flat interface.
//
// TODO(kenton): Create a utility class which callers can use to read and
// write fields from a Reflection without paying attention to the type.
class LIBPROTOBUF_EXPORT Reflection {
public:
inline Reflection() {}
virtual ~Reflection();
// Get the UnknownFieldSet for the message. This contains fields which
// were seen when the Message was parsed but were not recognized according
// to the Message's definition.
virtual const UnknownFieldSet& GetUnknownFields(
const Message& message) const = 0;
// Get a mutable pointer to the UnknownFieldSet for the message. This
// contains fields which were seen when the Message was parsed but were not
// recognized according to the Message's definition.
virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
// Estimate the amount of memory used by the message object.
virtual int SpaceUsed(const Message& message) const = 0;
// Check if the given non-repeated field is set.
virtual bool HasField(const Message& message,
const FieldDescriptor* field) const = 0;
// Get the number of elements of a repeated field.
virtual int FieldSize(const Message& message,
const FieldDescriptor* field) const = 0;
// Clear the value of a field, so that HasField() returns false or
// FieldSize() returns zero.
virtual void ClearField(Message* message,
const FieldDescriptor* field) const = 0;
// Check if the oneof is set. Returns ture if any field in oneof
// is set, false otherwise.
// TODO(jieluo) - make it pure virtual after updating all
// the subclasses.
virtual bool HasOneof(const Message& message,
const OneofDescriptor* oneof_descriptor) const {
return false;
}
virtual void ClearOneof(Message* message,
const OneofDescriptor* oneof_descriptor) const {}
// Returns the field descriptor if the oneof is set. NULL otherwise.
// TODO(jieluo) - make it pure virtual.
virtual const FieldDescriptor* GetOneofFieldDescriptor(
const Message& message,
const OneofDescriptor* oneof_descriptor) const {
return NULL;
}
// Removes the last element of a repeated field.
// We don't provide a way to remove any element other than the last
// because it invites inefficient use, such as O(n^2) filtering loops
// that should have been O(n). If you want to remove an element other
// than the last, the best way to do it is to re-arrange the elements
// (using Swap()) so that the one you want removed is at the end, then
// call RemoveLast().
virtual void RemoveLast(Message* message,
const FieldDescriptor* field) const = 0;
// Removes the last element of a repeated message field, and returns the
// pointer to the caller. Caller takes ownership of the returned pointer.
virtual Message* ReleaseLast(Message* message,
const FieldDescriptor* field) const = 0;
// Swap the complete contents of two messages.
virtual void Swap(Message* message1, Message* message2) const = 0;
// Swap fields listed in fields vector of two messages.
virtual void SwapFields(Message* message1,
Message* message2,
const vector<const FieldDescriptor*>& fields)
const = 0;
// Swap two elements of a repeated field.
virtual void SwapElements(Message* message,
const FieldDescriptor* field,
int index1,
int index2) const = 0;
// List all fields of the message which are currently set. This includes
// extensions. Singular fields will only be listed if HasField(field) would
// return true and repeated fields will only be listed if FieldSize(field)
// would return non-zero. Fields (both normal fields and extension fields)
// will be listed ordered by field number.
virtual void ListFields(const Message& message,
vector<const FieldDescriptor*>* output) const = 0;
// Singular field getters ------------------------------------------
// These get the value of a non-repeated field. They return the default
// value for fields that aren't set.
virtual int32 GetInt32 (const Message& message,
const FieldDescriptor* field) const = 0;
virtual int64 GetInt64 (const Message& message,
const FieldDescriptor* field) const = 0;
virtual uint32 GetUInt32(const Message& message,
const FieldDescriptor* field) const = 0;
virtual uint64 GetUInt64(const Message& message,
const FieldDescriptor* field) const = 0;
virtual float GetFloat (const Message& message,
const FieldDescriptor* field) const = 0;
virtual double GetDouble(const Message& message,
const FieldDescriptor* field) const = 0;
virtual bool GetBool (const Message& message,
const FieldDescriptor* field) const = 0;
virtual string GetString(const Message& message,
const FieldDescriptor* field) const = 0;
virtual const EnumValueDescriptor* GetEnum(
const Message& message, const FieldDescriptor* field) const = 0;
// See MutableMessage() for the meaning of the "factory" parameter.
virtual const Message& GetMessage(const Message& message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Get a string value without copying, if possible.
//
// GetString() necessarily returns a copy of the string. This can be
// inefficient when the string is already stored in a string object in the
// underlying message. GetStringReference() will return a reference to the
// underlying string in this case. Otherwise, it will copy the string into
// *scratch and return that.
//
// Note: It is perfectly reasonable and useful to write code like:
// str = reflection->GetStringReference(field, &str);
// This line would ensure that only one copy of the string is made
// regardless of the field's underlying representation. When initializing
// a newly-constructed string, though, it's just as fast and more readable
// to use code like:
// string str = reflection->GetString(field);
virtual const string& GetStringReference(const Message& message,
const FieldDescriptor* field,
string* scratch) const = 0;
// Singular field mutators -----------------------------------------
// These mutate the value of a non-repeated field.
virtual void SetInt32 (Message* message,
const FieldDescriptor* field, int32 value) const = 0;
virtual void SetInt64 (Message* message,
const FieldDescriptor* field, int64 value) const = 0;
virtual void SetUInt32(Message* message,
const FieldDescriptor* field, uint32 value) const = 0;
virtual void SetUInt64(Message* message,
const FieldDescriptor* field, uint64 value) const = 0;
virtual void SetFloat (Message* message,
const FieldDescriptor* field, float value) const = 0;
virtual void SetDouble(Message* message,
const FieldDescriptor* field, double value) const = 0;
virtual void SetBool (Message* message,
const FieldDescriptor* field, bool value) const = 0;
virtual void SetString(Message* message,
const FieldDescriptor* field,
const string& value) const = 0;
virtual void SetEnum (Message* message,
const FieldDescriptor* field,
const EnumValueDescriptor* value) const = 0;
// Get a mutable pointer to a field with a message type. If a MessageFactory
// is provided, it will be used to construct instances of the sub-message;
// otherwise, the default factory is used. If the field is an extension that
// does not live in the same pool as the containing message's descriptor (e.g.
// it lives in an overlay pool), then a MessageFactory must be provided.
// If you have no idea what that meant, then you probably don't need to worry
// about it (don't provide a MessageFactory). WARNING: If the
// FieldDescriptor is for a compiled-in extension, then
// factory->GetPrototype(field->message_type() MUST return an instance of the
// compiled-in class for this type, NOT DynamicMessage.
virtual Message* MutableMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Replaces the message specified by 'field' with the already-allocated object
// sub_message, passing ownership to the message. If the field contained a
// message, that message is deleted. If sub_message is NULL, the field is
// cleared.
virtual void SetAllocatedMessage(Message* message,
Message* sub_message,
const FieldDescriptor* field) const = 0;
// Releases the message specified by 'field' and returns the pointer,
// ReleaseMessage() will return the message the message object if it exists.
// Otherwise, it may or may not return NULL. In any case, if the return value
// is non-NULL, the caller takes ownership of the pointer.
// If the field existed (HasField() is true), then the returned pointer will
// be the same as the pointer returned by MutableMessage().
// This function has the same effect as ClearField().
virtual Message* ReleaseMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Repeated field getters ------------------------------------------
// These get the value of one element of a repeated field.
virtual int32 GetRepeatedInt32 (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual int64 GetRepeatedInt64 (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual uint32 GetRepeatedUInt32(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual uint64 GetRepeatedUInt64(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual float GetRepeatedFloat (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual double GetRepeatedDouble(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual bool GetRepeatedBool (const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual string GetRepeatedString(const Message& message,
const FieldDescriptor* field,
int index) const = 0;
virtual const EnumValueDescriptor* GetRepeatedEnum(
const Message& message,
const FieldDescriptor* field, int index) const = 0;
virtual const Message& GetRepeatedMessage(
const Message& message,
const FieldDescriptor* field, int index) const = 0;
// See GetStringReference(), above.
virtual const string& GetRepeatedStringReference(
const Message& message, const FieldDescriptor* field,
int index, string* scratch) const = 0;
// Repeated field mutators -----------------------------------------
// These mutate the value of one element of a repeated field.
virtual void SetRepeatedInt32 (Message* message,
const FieldDescriptor* field,
int index, int32 value) const = 0;
virtual void SetRepeatedInt64 (Message* message,
const FieldDescriptor* field,
int index, int64 value) const = 0;
virtual void SetRepeatedUInt32(Message* message,
const FieldDescriptor* field,
int index, uint32 value) const = 0;
virtual void SetRepeatedUInt64(Message* message,
const FieldDescriptor* field,
int index, uint64 value) const = 0;
virtual void SetRepeatedFloat (Message* message,
const FieldDescriptor* field,
int index, float value) const = 0;
virtual void SetRepeatedDouble(Message* message,
const FieldDescriptor* field,
int index, double value) const = 0;
virtual void SetRepeatedBool (Message* message,
const FieldDescriptor* field,
int index, bool value) const = 0;
virtual void SetRepeatedString(Message* message,
const FieldDescriptor* field,
int index, const string& value) const = 0;
virtual void SetRepeatedEnum(Message* message,
const FieldDescriptor* field, int index,
const EnumValueDescriptor* value) const = 0;
// Get a mutable pointer to an element of a repeated field with a message
// type.
virtual Message* MutableRepeatedMessage(
Message* message, const FieldDescriptor* field, int index) const = 0;
// Repeated field adders -------------------------------------------
// These add an element to a repeated field.
virtual void AddInt32 (Message* message,
const FieldDescriptor* field, int32 value) const = 0;
virtual void AddInt64 (Message* message,
const FieldDescriptor* field, int64 value) const = 0;
virtual void AddUInt32(Message* message,
const FieldDescriptor* field, uint32 value) const = 0;
virtual void AddUInt64(Message* message,
const FieldDescriptor* field, uint64 value) const = 0;
virtual void AddFloat (Message* message,
const FieldDescriptor* field, float value) const = 0;
virtual void AddDouble(Message* message,
const FieldDescriptor* field, double value) const = 0;
virtual void AddBool (Message* message,
const FieldDescriptor* field, bool value) const = 0;
virtual void AddString(Message* message,
const FieldDescriptor* field,
const string& value) const = 0;
virtual void AddEnum (Message* message,
const FieldDescriptor* field,
const EnumValueDescriptor* value) const = 0;
// See MutableMessage() for comments on the "factory" parameter.
virtual Message* AddMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = NULL) const = 0;
// Repeated field accessors -------------------------------------------------
// The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
// access to the data in a RepeatedField. The methods below provide aggregate
// access by exposing the RepeatedField object itself with the Message.
// Applying these templates to inappropriate types will lead to an undefined
// reference at link time (e.g. GetRepeatedField<***double>), or possibly a
// template matching error at compile time (e.g. GetRepeatedPtrField<File>).
//
// Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
// for T = Cord and all protobuf scalar types except enums.
template<typename T>
const RepeatedField<T>& GetRepeatedField(
const Message&, const FieldDescriptor*) const;
// for T = Cord and all protobuf scalar types except enums.
template<typename T>
RepeatedField<T>* MutableRepeatedField(
Message*, const FieldDescriptor*) const;
// for T = string, google::protobuf::internal::StringPieceField
// google::protobuf::Message & descendants.
template<typename T>
const RepeatedPtrField<T>& GetRepeatedPtrField(
const Message&, const FieldDescriptor*) const;
// for T = string, google::protobuf::internal::StringPieceField
// google::protobuf::Message & descendants.
template<typename T>
RepeatedPtrField<T>* MutableRepeatedPtrField(
Message*, const FieldDescriptor*) const;
// Extensions ----------------------------------------------------------------
// Try to find an extension of this message type by fully-qualified field
// name. Returns NULL if no extension is known for this name or number.
virtual const FieldDescriptor* FindKnownExtensionByName(
const string& name) const = 0;
// Try to find an extension of this message type by field number.
// Returns NULL if no extension is known for this name or number.
virtual const FieldDescriptor* FindKnownExtensionByNumber(
int number) const = 0;
// ---------------------------------------------------------------------------
protected:
// Obtain a pointer to a Repeated Field Structure and do some type checking:
// on field->cpp_type(),
// on field->field_option().ctype() (if ctype >= 0)
// of field->message_type() (if message_type != NULL).
// We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
virtual void* MutableRawRepeatedField(
Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
int ctype, const Descriptor* message_type) const = 0;
private:
// Special version for specialized implementations of string. We can't call
// MutableRawRepeatedField directly here because we don't have access to
// FieldOptions::* which are defined in descriptor.pb.h. Including that
// file here is not possible because it would cause a circular include cycle.
void* MutableRawRepeatedString(
Message* message, const FieldDescriptor* field, bool is_string) const;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
};
// Abstract interface for a factory for message objects.
class LIBPROTOBUF_EXPORT MessageFactory {
public:
inline MessageFactory() {}
virtual ~MessageFactory();
// Given a Descriptor, gets or constructs the default (prototype) Message
// of that type. You can then call that message's New() method to construct
// a mutable message of that type.
//
// Calling this method twice with the same Descriptor returns the same
// object. The returned object remains property of the factory. Also, any
// objects created by calling the prototype's New() method share some data
// with the prototype, so these must be destroyed before the MessageFactory
// is destroyed.
//
// The given descriptor must outlive the returned message, and hence must
// outlive the MessageFactory.
//
// Some implementations do not support all types. GetPrototype() will
// return NULL if the descriptor passed in is not supported.
//
// This method may or may not be thread-safe depending on the implementation.
// Each implementation should document its own degree thread-safety.
virtual const Message* GetPrototype(const Descriptor* type) = 0;
// Gets a MessageFactory which supports all generated, compiled-in messages.
// In other words, for any compiled-in type FooMessage, the following is true:
// MessageFactory::generated_factory()->GetPrototype(
// FooMessage::descriptor()) == FooMessage::default_instance()
// This factory supports all types which are found in
// DescriptorPool::generated_pool(). If given a descriptor from any other
// pool, GetPrototype() will return NULL. (You can also check if a
// descriptor is for a generated message by checking if
// descriptor->file()->pool() == DescriptorPool::generated_pool().)
//
// This factory is 100% thread-safe; calling GetPrototype() does not modify
// any shared data.
//
// This factory is a singleton. The caller must not delete the object.
static MessageFactory* generated_factory();
// For internal use only: Registers a .proto file at static initialization
// time, to be placed in generated_factory. The first time GetPrototype()
// is called with a descriptor from this file, |register_messages| will be
// called, with the file name as the parameter. It must call
// InternalRegisterGeneratedMessage() (below) to register each message type
// in the file. This strange mechanism is necessary because descriptors are
// built lazily, so we can't register types by their descriptor until we
// know that the descriptor exists. |filename| must be a permanent string.
static void InternalRegisterGeneratedFile(
const char* filename, void (*register_messages)(const string&));
// For internal use only: Registers a message type. Called only by the
// functions which are registered with InternalRegisterGeneratedFile(),
// above.
static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
const Message* prototype);
private:
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
};
#define DECLARE_GET_REPEATED_FIELD(TYPE) \
template<> \
LIBPROTOBUF_EXPORT \
const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>( \
const Message& message, const FieldDescriptor* field) const; \
\
template<> \
RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
Message* message, const FieldDescriptor* field) const;
DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)
DECLARE_GET_REPEATED_FIELD(uint32)
DECLARE_GET_REPEATED_FIELD(uint64)
DECLARE_GET_REPEATED_FIELD(float)
DECLARE_GET_REPEATED_FIELD(double)
DECLARE_GET_REPEATED_FIELD(bool)
#undef DECLARE_GET_REPEATED_FIELD
// =============================================================================
// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
// specializations for <string>, <StringPieceField> and <Message> and handle
// everything else with the default template which will match any type having
// a method with signature "static const google::protobuf::Descriptor* descriptor()".
// Such a type presumably is a descendant of google::protobuf::Message.
template<>
inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
const Message& message, const FieldDescriptor* field) const {
return *static_cast<RepeatedPtrField<string>* >(
MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
}
template<>
inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<string>* >(
MutableRawRepeatedString(message, field, true));
}
// -----
template<>
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
const Message& message, const FieldDescriptor* field) const {
return *static_cast<RepeatedPtrField<Message>* >(
MutableRawRepeatedField(const_cast<Message*>(&message), field,
FieldDescriptor::CPPTYPE_MESSAGE, -1,
NULL));
}
template<>
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<Message>* >(
MutableRawRepeatedField(message, field,
FieldDescriptor::CPPTYPE_MESSAGE, -1,
NULL));
}
template<typename PB>
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
const Message& message, const FieldDescriptor* field) const {
return *static_cast<RepeatedPtrField<PB>* >(
MutableRawRepeatedField(const_cast<Message*>(&message), field,
FieldDescriptor::CPPTYPE_MESSAGE, -1,
PB::default_instance().GetDescriptor()));
}
template<typename PB>
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<PB>* >(
MutableRawRepeatedField(message, field,
FieldDescriptor::CPPTYPE_MESSAGE, -1,
PB::default_instance().GetDescriptor()));
}
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_MESSAGE_H__
|