/usr/include/firefox-esr-52/gmock/gmock-actions.h is in firefox-esr-dev 52.8.1esr-1~deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 | // Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#include <algorithm>
#include <string>
#ifndef _WIN32_WCE
# include <errno.h>
#endif
#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"
namespace testing {
// To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a
// const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Action objects can now be copied like plain values.
namespace internal {
template <typename F1, typename F2>
class ActionAdaptor;
// BuiltInDefaultValue<T>::Get() returns the "built-in" default
// value for type T, which is NULL when T is a pointer type, 0 when T
// is a numeric type, false when T is bool, or "" when T is string or
// std::string. For any other type T, this value is undefined and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
public:
// This function returns true iff type T has a built-in default value.
static bool Exists() { return false; }
static T Get() {
Assert(false, __FILE__, __LINE__,
"Default action undefined for the function return type.");
return internal::Invalid<T>();
// The above statement will never be reached, but is required in
// order for this function to compile.
}
};
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
public:
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
static T Get() { return BuiltInDefaultValue<T>::Get(); }
};
// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
public:
static bool Exists() { return true; }
static T* Get() { return NULL; }
};
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \
class BuiltInDefaultValue<type> { \
public: \
static bool Exists() { return true; } \
static type Get() { return value; } \
}
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
#if GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
#endif // GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
} // namespace internal
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type). The usage is:
//
// // Sets the default value for type T to be foo.
// DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
public:
// Sets the default value for type T; requires T to be
// copy-constructable and have a public destructor.
static void Set(T x) {
delete value_;
value_ = new T(x);
}
// Unsets the default value for type T.
static void Clear() {
delete value_;
value_ = NULL;
}
// Returns true iff the user has set the default value for type T.
static bool IsSet() { return value_ != NULL; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
}
// Returns the default value for type T if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T Get() {
return value_ == NULL ?
internal::BuiltInDefaultValue<T>::Get() : *value_;
}
private:
static const T* value_;
};
// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
public:
// Sets the default value for type T&.
static void Set(T& x) { // NOLINT
address_ = &x;
}
// Unsets the default value for type T&.
static void Clear() {
address_ = NULL;
}
// Returns true iff the user has set the default value for type T&.
static bool IsSet() { return address_ != NULL; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
}
// Returns the default value for type T& if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T& Get() {
return address_ == NULL ?
internal::BuiltInDefaultValue<T&>::Get() : *address_;
}
private:
static T* address_;
};
// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
public:
static bool Exists() { return true; }
static void Get() {}
};
// Points to the user-set default value for type T.
template <typename T>
const T* DefaultValue<T>::value_ = NULL;
// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = NULL;
// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
ActionInterface() {}
virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to
// remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0;
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called. The implementation of Action<T> is just a
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
// Don't inherit from Action!
//
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
Action() : impl_(NULL) {}
// Constructs an Action from its implementation. A NULL impl is
// used to represent the "do-default" action.
explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
// Copy constructor.
Action(const Action& action) : impl_(action.impl_) {}
// This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to
// F's.
template <typename Func>
explicit Action(const Action<Func>& action);
// Returns true iff this is the DoDefault() action.
bool IsDoDefault() const { return impl_.get() == NULL; }
// Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const
// pointer and a pointer to const.)
Result Perform(const ArgumentTuple& args) const {
internal::Assert(
!IsDoDefault(), __FILE__, __LINE__,
"You are using DoDefault() inside a composite action like "
"DoAll() or WithArgs(). This is not supported for technical "
"reasons. Please instead spell out the default action, or "
"assign the default action to an Action variable and use "
"the variable in various places.");
return impl_->Perform(args);
}
private:
template <typename F1, typename F2>
friend class internal::ActionAdaptor;
internal::linked_ptr<ActionInterface<F> > impl_;
};
// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
// class FooAction {
// public:
// template <typename Result, typename ArgumentTuple>
// Result Perform(const ArgumentTuple& args) const {
// // Processes the arguments and returns a result, using
// // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
// }
// ...
// };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction. See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
public:
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
template <typename F>
operator Action<F>() const {
return Action<F>(new MonomorphicImpl<F>(impl_));
}
private:
template <typename F>
class MonomorphicImpl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
virtual Result Perform(const ArgumentTuple& args) {
return impl_.template Perform<Result>(args);
}
private:
Impl impl_;
GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
};
Impl impl_;
GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
};
// Creates an Action from its implementation and returns it. The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
return Action<F>(impl);
}
// Creates a polymorphic action from its implementation. This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicAction(foo);
// vs
// PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
return PolymorphicAction<Impl>(impl);
}
namespace internal {
// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
// and F1 are compatible.
template <typename F1, typename F2>
class ActionAdaptor : public ActionInterface<F1> {
public:
typedef typename internal::Function<F1>::Result Result;
typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
virtual Result Perform(const ArgumentTuple& args) {
return impl_->Perform(args);
}
private:
const internal::linked_ptr<ActionInterface<F2> > impl_;
GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
};
// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
// Foo foo;
// X x(&foo);
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed. If copying X just copies a reference to foo,
// that copy will be left with a hanging reference. If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
template <typename R>
class ReturnAction {
public:
// Constructs a ReturnAction object from the value to be returned.
// 'value' is passed by value instead of by const reference in order
// to allow Return("string literal") to compile.
explicit ReturnAction(R value) : value_(value) {}
// This template type conversion operator allows Return(x) to be
// used in ANY function that returns x's type.
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename Function<F>::Result Result;
GTEST_COMPILE_ASSERT_(
!internal::is_reference<Result>::value,
use_ReturnRef_instead_of_Return_to_return_a_reference);
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the Return(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
// The implicit cast is necessary when Result has more than one
// single-argument constructor (e.g. Result is std::vector<int>) and R
// has a type conversion operator template. In that case, value_(value)
// won't compile as the compiler doesn't known which constructor of
// Result to call. ImplicitCast_ forces the compiler to convert R to
// Result without considering explicit constructors, thus resolving the
// ambiguity. value_ is then initialized using its copy constructor.
explicit Impl(R value)
: value_(::testing::internal::ImplicitCast_<Result>(value)) {}
virtual Result Perform(const ArgumentTuple&) { return value_; }
private:
GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
Result_cannot_be_a_reference_type);
Result value_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
R value_;
GTEST_DISALLOW_ASSIGN_(ReturnAction);
};
// Implements the ReturnNull() action.
class ReturnNullAction {
public:
// Allows ReturnNull() to be used in any pointer-returning function.
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) {
GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
ReturnNull_can_be_used_to_return_a_pointer_only);
return NULL;
}
};
// Implements the Return() action.
class ReturnVoidAction {
public:
// Allows Return() to be used in any void-returning function.
template <typename Result, typename ArgumentTuple>
static void Perform(const ArgumentTuple&) {
CompileAssertTypesEqual<void, Result>();
}
};
// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
public:
// Constructs a ReturnRefAction object from the reference to be returned.
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
use_Return_instead_of_ReturnRef_to_return_a_value);
return Action<F>(new Impl<F>(ref_));
}
private:
// Implements the ReturnRef(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
virtual Result Perform(const ArgumentTuple&) {
return ref_;
}
private:
T& ref_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
T& ref_;
GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
};
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
public:
// Constructs a ReturnRefOfCopyAction object from the reference to
// be returned.
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
// This template type conversion operator allows ReturnRefOfCopy(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(
internal::is_reference<Result>::value,
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const T& value) : value_(value) {} // NOLINT
virtual Result Perform(const ArgumentTuple&) {
return value_;
}
private:
T value_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
const T value_;
GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
};
// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
public:
// This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F>
operator Action<F>() const { return Action<F>(NULL); }
};
// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
public:
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& /* args */) const {
*ptr_ = value_;
}
private:
T1* const ptr_;
const T2 value_;
GTEST_DISALLOW_ASSIGN_(AssignAction);
};
#if !GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
public:
SetErrnoAndReturnAction(int errno_value, T result)
: errno_(errno_value),
result_(result) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_;
return result_;
}
private:
const int errno_;
const T result_;
GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
};
#endif // !GTEST_OS_WINDOWS_MOBILE
// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type. The
// template parameter kIsProto is true iff type A is ProtocolMessage,
// proto2::Message, or a sub-class of those.
template <size_t N, typename A, bool kIsProto>
class SetArgumentPointeeAction {
public:
// Constructs an action that sets the variable pointed to by the
// N-th function argument to 'value'.
explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& args) const {
CompileAssertTypesEqual<void, Result>();
*::std::tr1::get<N>(args) = value_;
}
private:
const A value_;
GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};
template <size_t N, typename Proto>
class SetArgumentPointeeAction<N, Proto, true> {
public:
// Constructs an action that sets the variable pointed to by the
// N-th function argument to 'proto'. Both ProtocolMessage and
// proto2::Message have the CopyFrom() method, so the same
// implementation works for both.
explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
proto_->CopyFrom(proto);
}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& args) const {
CompileAssertTypesEqual<void, Result>();
::std::tr1::get<N>(args)->CopyFrom(*proto_);
}
private:
const internal::linked_ptr<Proto> proto_;
GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};
// Implements the InvokeWithoutArgs(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeWithoutArgsAction {
public:
// The c'tor makes a copy of function_impl (either a function
// pointer or a functor).
explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
: function_impl_(function_impl) {}
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
// compatible with f.
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple&) { return function_impl_(); }
private:
FunctionImpl function_impl_;
GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
};
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodWithoutArgsAction {
public:
InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
: obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple&) const {
return (obj_ptr_->*method_ptr_)();
}
private:
Class* const obj_ptr_;
const MethodPtr method_ptr_;
GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
};
// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
public:
explicit IgnoreResultAction(const A& action) : action_(action) {}
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename internal::Function<F>::Result Result;
// Asserts at compile time that F returns void.
CompileAssertTypesEqual<void, Result>();
return Action<F>(new Impl<F>(action_));
}
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const A& action) : action_(action) {}
virtual void Perform(const ArgumentTuple& args) {
// Performs the action and ignores its result.
action_.Perform(args);
}
private:
// Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue
OriginalFunction;
const Action<OriginalFunction> action_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
const A action_;
GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
};
// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not. It can be explicitly converted
// from, and implicitly converted to, a T&. Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference. This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action. The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
public:
// Constructs a ReferenceWrapper<T> object from a T&.
explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
// Allows a ReferenceWrapper<T> object to be implicitly converted to
// a T&.
operator T&() const { return *pointer_; }
private:
T* pointer_;
};
// Allows the expression ByRef(x) to be printed as a reference to x.
template <typename T>
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
T& value = ref;
UniversalPrinter<T&>::Print(value, os);
}
// Does two actions sequentially. Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
public:
DoBothAction(Action1 action1, Action2 action2)
: action1_(action1), action2_(action2) {}
// This template type conversion operator allows DoAll(a1, ..., a_n)
// to be used in ANY function of compatible type.
template <typename F>
operator Action<F>() const {
return Action<F>(new Impl<F>(action1_, action2_));
}
private:
// Implements the DoAll(...) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::MakeResultVoid VoidResult;
Impl(const Action<VoidResult>& action1, const Action<F>& action2)
: action1_(action1), action2_(action2) {}
virtual Result Perform(const ArgumentTuple& args) {
action1_.Perform(args);
return action2_.Perform(args);
}
private:
const Action<VoidResult> action1_;
const Action<F> action2_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
Action1 action1_;
Action2 action2_;
GTEST_DISALLOW_ASSIGN_(DoBothAction);
};
} // namespace internal
// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given
//
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
// return sqrt(x*x + y*y);
// }
// double DistanceToOriginWithIndex(int index, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXEPCT_CALL(mock, Foo("abc", _, _))
// .WillOnce(Invoke(DistanceToOriginWithLabel));
// EXEPCT_CALL(mock, Bar(5, _, _))
// .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
// // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;
// This constructor allows us to turn an Action<From> object into an
// Action<To>, as long as To's arguments can be implicitly converted
// to From's and From's return type cann be implicitly converted to
// To's.
template <typename To>
template <typename From>
Action<To>::Action(const Action<From>& from)
: impl_(new internal::ActionAdaptor<To, From>(from)) {}
// Creates an action that returns 'value'. 'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(value);
}
// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
return MakePolymorphicAction(internal::ReturnNullAction());
}
// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
return MakePolymorphicAction(internal::ReturnVoidAction());
}
// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x);
}
// Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x);
}
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
return internal::DoDefaultAction();
}
// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
PolymorphicAction<
internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value> >
SetArgPointee(const T& x) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value>(x));
}
#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
// This overload allows SetArgPointee() to accept a string literal.
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
// this overload from the templated version and emit a compile error.
template <size_t N>
PolymorphicAction<
internal::SetArgumentPointeeAction<N, const char*, false> >
SetArgPointee(const char* p) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, const char*, false>(p));
}
template <size_t N>
PolymorphicAction<
internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
SetArgPointee(const wchar_t* p) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, const wchar_t*, false>(p));
}
#endif
// The following version is DEPRECATED.
template <size_t N, typename T>
PolymorphicAction<
internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T& x) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value>(x));
}
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}
#if !GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Various overloads for InvokeWithoutArgs().
// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl) {
return MakePolymorphicAction(
internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
}
// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
return MakePolymorphicAction(
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
obj_ptr, method_ptr));
}
// Creates an action that performs an_action and throws away its
// result. In other words, it changes the return type of an_action to
// void. an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
return internal::IgnoreResultAction<A>(an_action);
}
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
return internal::ReferenceWrapper<T>(l_value);
}
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|