This file is indexed.

/usr/share/doc/yacas-doc/html/codingchapter2.html is in yacas-doc 1.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
<html>
<head>
  <title>Evaluation of expressions</title>
  <link rel="stylesheet" href="yacas.css" TYPE="text/css" MEDIA="screen">
</head>
<body>
<a name="c2">

</a>
<h1>
2. Evaluation of expressions
</h1>
<p> </p>
When programming in some language, it helps to have a mental
model of what goes on behind the scenes when evaluating expressions,
or in this case simplifying expressions.


<p>
This section aims to explain how evaluation (and simplification)
of expressions works internally, in <b><tt>Yacas</tt></b>.


<p>

<a name="c2s1">

</a>
<h2>
<hr>2.1 The LISP heritage
</h2>
<h3>
<hr>Representation of expressions
</h3>
Much of the inner workings is based on how LISP-like languages
are built up. When an expression is entered, or composed in some
fashion, it is converted into a prefix form much like you get
in LISP:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
a+b    -&gt;    (+ a b)
Sin(a) -&gt;    (Sin a)
</pre></tr>
</table>
Here the sub-expression is changed into a list of so-called "atoms", 
where the first atom is a function name of the function to be 
invoked, and the atoms following are the arguments to be passed in
as parameters to that function. 


<p>
<b><tt>Yacas</tt></b> has the function <b><tt>FullForm</tt></b> to show the internal representation:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; FullForm(a+b)
(+ a b )
Out&gt; a+b;
In&gt; FullForm(Sin(a))
(Sin a )
Out&gt; Sin(a);
In&gt; FullForm(a+b+c)
(+ (+ a b )c )
Out&gt; a+b+c;
</pre></tr>
</table>


<p>
The internal representation is very close to what <b><tt>FullForm</tt></b> shows
on screen. <b><tt>a+b+c</tt></b> would be <b><tt>(+ (+ a b )c )</tt></b> internally, or:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
()
|
|
+  -&gt; () -&gt; c
       |
       |
       + -&gt; a -&gt; b
</pre></tr>
</table>


<p>

<h3>
<hr>Evaluation
</h3>
An expression like described above is done in the following manner:
first the arguments are evaluated (if they need to be evaluated,
<b><tt>Yacas</tt></b> can be told to not evaluate certain parameters to functions),
and only then are these arguments passed in to the function for
evaluation. They are passed in by binding local variables to the
values, so these arguments are available as local values.


<p>
For instance, suppose we are evaluating <b><tt>2*3+4</tt></b>. This first gets
changed to the internal representation <b><tt>(+ (* 2 3 )4 )</tt></b>. Then,
during evaluation, the top expression refers to function "<b><tt>+</tt></b>".
Its arguments are <b><tt>(* 2 3)</tt></b> and <b><tt>4</tt></b>. First <b><tt>(* 2 3)</tt></b> gets evaluated.
This is a function call to the function "<b><tt>*</tt></b>" with arguments <b><tt>2</tt></b>
and <b><tt>3</tt></b>, which evaluate to themselves. Then the function "<b><tt>*</tt></b>" is
invoked with these arguments. The <b><tt>Yacas</tt></b> standard script library
has code that accepts numeric input and performs the multiplication
numerically, resulting in <b><tt>6</tt></b>. 


<p>
The second argument to the top-level "<b><tt>+</tt></b>" is <b><tt>4</tt></b>, which evaluates
to itself. 


<p>
Now, both arguments to the "<b><tt>+</tt></b>" function have been evaluated, and
the results are <b><tt>6</tt></b> and <b><tt>4</tt></b>. Now the "<b><tt>+</tt></b>" function is invoked.
This function also has code in the script library to actually
perform the addition when the arguments are numeric, so the result
is 10:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; FullForm(Hold(2*3+4))
(+ (* 2 3 )4 )
Out&gt; 2*3+4;
In&gt; 2*3+4
Out&gt; 10;
</pre></tr>
</table>


<p>
Note that in <b><tt>Yacas</tt></b>, the script language does not define a "<b><tt>+</tt></b>" function
in the core. This and other functions are all implemented in the script library.
The feature "when the arguments to "<b><tt>+</tt></b>" are numeric, perform the numeric
addition" is considered to be a "policy" which should be configurable.
It should not be a part of the core language.


<p>
It is surprisingly difficult to keep in mind that evaluation is 
bottom up, and that arguments are evaluated before the function call
is evaluated. In some sense, you might feel that the evaluation of the 
arguments is part of evaluation of the function. It is not. Arguments
are evaluated before the function gets called.


<p>
Suppose we define the function <b><tt>f</tt></b>, which adds two numbers, and
traces itself, as:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; f(a,b):= \
In&gt; [\
In&gt; Local(result);\
In&gt; Echo("Enter f with arguments ",a,b);\
In&gt; result:=a+b;\
In&gt; Echo("Leave f with result ",result);\
In&gt; result;\
In&gt; ];
Out&gt; True;
</pre></tr>
</table>


<p>
Then the following interaction shows this principle:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; f(f(2,3),4)
Enter f with arguments 2 3 
Leave f with result 5 
Enter f with arguments 5 4 
Leave f with result 9 
Out&gt; 9;
</pre></tr>
</table>


<p>
The first Enter/Leave combination is for <b><tt>f(2,3)</tt></b>, and only then is
the outer call to <b><tt>f</tt></b> entered.


<p>
This has important consequences for the way <b><tt>Yacas</tt></b> simplifies
expressions: the expression trees are traversed bottom up, as 
the lowest parts of the expression trees are simplified first,
before being passed along up to the calling function. 


<p>

<a name="c2s2">

</a>
<h2>
<hr>2.2 <b><tt>Yacas</tt></b>-specific extensions for CAS implementations
</h2>
<b><tt>Yacas</tt></b> has a few language features specifically designed for use
when implementing a CAS.


<p>

<h3>
<hr>The transformation rules
</h3>
Working with transformation rules is explained in the introduction
and tutorial book. This section mainly deals with how <b><tt>Yacas</tt></b>
works with transformation rules under the hood.


<p>
A transformation rule consists of two parts: a condition that
an expression should match, and a result to be substituted for
the expression if the condition holds. The most common way
to specify a condition is a pattern to be matched to an expression.


<p>
A pattern is again simply an expression, stored in internal format:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; FullForm(a_IsInteger+b_IsInteger*(_x))
(+ (_ a IsInteger )(* (_ b IsInteger )(_ x )))
Out&gt; a _IsInteger+b _IsInteger*_x;
</pre></tr>
</table>


<p>
<b><tt>Yacas</tt></b> maintains structures of transformation rules, and tries
to match them to the expression being evaluated. It first tries
to match the structure of the pattern to the expression. In the above
case, it tries to match to <b><tt>a+b*x</tt></b>. If this matches, local variables
<b><tt>a</tt></b>, <b><tt>b</tt></b> and <b><tt>x</tt></b> are declared and assigned the sub-trees of the expression
being matched. Then the predicates are tried on each of them: in this
case, <b><tt>IsInteger(a)</tt></b> and <b><tt>IsInteger(b)</tt></b> should both return <b><tt>True</tt></b>.


<p>
Not shown in the above case, are post-predicates. They get evaluated
afterwards. This post-predicate must also evaluate to <b><tt>True</tt></b>.
If the structure of the expression matches the structure of the 
pattern, and all predicates evaluate to <b><tt>True</tt></b>, the pattern matches
and the transformation rule is applied, meaning the right hand side
is evaluated, with the local variables mentioned in the pattern
assigned. This evaluation means all transformation rules are re-applied
to the right-hand side of the expression.


<p>
Note that the arguments to a function are evaluated first, and only
then is the function itself called. So the arguments are evaluated,
and then the transformation rules applied on it. The main function
defines its parameters also, so these get assigned to local variables
also, before trying the patterns with their associated local variables.


<p>
Here is an example making the fact that the names in a pattern are
local variables more explicit:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; f1(_x,_a) &lt;-- x+a
Out&gt; True;
In&gt; f2(_x,_a) &lt;-- [Local(a); x+a;];
Out&gt; True;
In&gt; f1(1,2)
Out&gt; 3;
In&gt; f2(1,2)
Out&gt; a+1;
</pre></tr>
</table>


<p>

<h3>
<hr>Using different rules in different cases
</h3>
In a lot of cases, the algorithm to be invoked depends on the type
of the arguments. Or the result depends on the form of the input
expression. This results in the typical "case" or "switch" statement,
where the code to evaluate to determine the result depends on the 
form of the input expression, or the type of the arguments, or some other conditions.


<p>
<b><tt>Yacas</tt></b> allows to define several transformation rules
for one and the same function, if the rules are to be applied under different conditions.


<p>
Suppose the function
<b><tt>f</tt></b> is defined, a factorial function:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
10 # f(0) &lt;-- 1;
20 # f(n_IsPositiveInteger) &lt;-- n*f(n-1);
</pre></tr>
</table>


<p>
Then interaction can look like:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; f(3)
Out&gt; 6;
In&gt; f(a)
Out&gt; f(a);
</pre></tr>
</table>


<p>
If the left hand side is matched by the expression being considered,
then the right hand side is evaluated. A subtle but important thing
to note is that this means that the whole body of transformation rules
is thus re-applied to the right-hand side of the <b><tt>&lt;--</tt></b> operator.


<p>
Evaluation goes bottom-up, evaluating (simplifying) the lowest parts
of a tree first, but for a tree that matches a transformation rule,
the substitution essentially means return the result of evaluating the
right-hand side. Transformation rules are re-applied, on the right hand
side of the transformation rule, and the original expression can be thought
of as been substituted by the result of evaluating this right-hand side,
which is supposed to be a "simpler" expression, or a result closer to what
the user wants.


<p>
Internally, the function <b><tt>f</tt></b> is built up to resemble the following
pseudo-code:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
f(n)
{
   if (n = 1)
     return 1;
   else if (IsPositiveInteger(n))
     return n*f(n-1);
   else return f(n) unevaluated;
}
</pre></tr>
</table>


<p>
The transformation rules are thus combined into one big 
statement that gets executed, with each transformation 
rule being a if-clause in the statement to be evaluated.
Transformation rules can be spread over different files,
and combined in functional groups. This adds to the readability.
The alternative is to write the full body of each function as
one big routine, which becomes harder to maintain as the function
becomes larger and larger, and hard or impossible to extend.


<p>
One nice feature is that functionality is easy to extend without
modifying the original source code:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Ln(x*y)
Out&gt; Ln(x*y);
In&gt; Ln(_x*_y) &lt;-- Ln(x) + Ln(y)
Out&gt; True;
In&gt; Ln(x*y)
Out&gt; Ln(x)+Ln(y);
</pre></tr>
</table>


<p>
This is generally not advisable, due to the fact that it alters
the behavior of the entire system. But it can be useful in some
instances. For instance, when introducing a new function <b><tt>f(x)</tt></b>,
one can decide to define a derivative explicitly, and a way
to simplify it numerically:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; f(_x)_InNumericMode() &lt;-- Exp(x)
Out&gt; True;
In&gt; (Deriv(_x)f(_y)) &lt;-- f(y)*(Deriv(x)y);
Out&gt; True;
In&gt; f(2)
Out&gt; f(2);
In&gt; N(f(2))
Out&gt; 7.3890560989;
In&gt; Exp(2)
Out&gt; Exp(2);
In&gt; N(Exp(2))
Out&gt; 7.3890560989;
In&gt; D(x)f(a*x)
Out&gt; f(a*x)*a;
</pre></tr>
</table>


<p>

<h3>
<hr>The "Evaluation is Simplification" hack
</h3>
One of the ideas behind the <b><tt>Yacas</tt></b> scripting language is that evaluation
is used for simplifying expressions.
One consequence of this is that
objects can be returned unevaluated when they can not be simplified
further. This happens to variables that are not assigned, functions that
are not defined, or function invocations where the arguments passed
in as parameters are not actually handled by any code in the scripts.
An integral that can not be performed by <b><tt>Yacas</tt></b> should be returned 
unevaluated:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; 2+3
Out&gt; 5;
In&gt; a+b
Out&gt; a+b;
In&gt; Sin(a)
Out&gt; Sin(a);
In&gt; Sin(0)
Out&gt; 0;
In&gt; Integrate(x)Ln(x)
Out&gt; x*Ln(x)-x;
In&gt; Integrate(x)Ln(Sin(x))
Out&gt; Integrate(x)Ln(Sin(x));
In&gt; a!
Out&gt; a!;
In&gt; 3!
Out&gt; 6;
</pre></tr>
</table>


<p>
Other languages usually do not allow evaluation of unbound variables,
or undefined functions. In <b><tt>Yacas</tt></b>, these are interpreted as some yet
undefined global variables or functions, and returned unevaluated.


<p>

<a name="c2s3">

</a>
<h2>
<hr>2.3 Destructive operations
</h2>
<b><tt>Yacas</tt></b> tries to keep as few copies of objects in memory as
possible. Thus when assigning the value of one variable to another,
a reference is copied, and both variables refer to the same memory,
physically. This is relevant for programming; for example, one
should use <b><tt>FlatCopy</tt></b> to actually make a new copy of an object.
Another feature relevant to reference semantics is "destructive 
operations"; these are functions that modify their arguments rather than work on a copy. Destructive operations on lists are generally recognized 
because their name starts with "Destructive",
e.g. <b><tt>DestructiveDelete</tt></b>. One other destructive
operation is assignment of a list element through <b><tt>list[index] := ...</tt></b>.


<p>
Some examples to illustrate destructive operations on lists:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x1:={a,b,c}
Out&gt; {a,b,c};
</pre></tr>
</table>
A list <b><tt>x1</tt></b> is created.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; FullForm(x1)
(List a b c )
Out&gt; {a,b,c};
In&gt; x2:=z:x1
Out&gt; {z,a,b,c};
</pre></tr>
</table>
A new list <b><tt>x2</tt></b> is <b><tt>z</tt></b> appended to <b><tt>x1</tt></b>. The <b><tt>:</tt></b> operation creates a copy of <b><tt>x1</tt></b> before appending, so <b><tt>x1</tt></b> is unchanged by this.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; FullForm(x2)
(List z a b c )
Out&gt; {z,a,b,c};
In&gt; x2[1]:=y
Out&gt; True;
</pre></tr>
</table>
We have modified the first element of <b><tt>x2</tt></b>, but <b><tt>x1</tt></b> is still the same.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x2
Out&gt; {y,a,b,c};
In&gt; x1
Out&gt; {a,b,c};
In&gt; x2[2]:=A
Out&gt; True;
</pre></tr>
</table>
We have modified the second element of <b><tt>x2</tt></b>, but <b><tt>x1</tt></b> is still the same.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x2
Out&gt; {y,A,b,c};
In&gt; x1
Out&gt; {a,b,c};
In&gt; x2:=x1
Out&gt; {A,b,c};
</pre></tr>
</table>
Now <b><tt>x2</tt></b> and <b><tt>x1</tt></b> refer to the same list.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x2[1]:=A
Out&gt; True;
</pre></tr>
</table>
We have modified the first element of <b><tt>x2</tt></b>, and <b><tt>x1</tt></b> is also modified.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x2
Out&gt; {A,b,c};
In&gt; x1
Out&gt; {A,b,c};
</pre></tr>
</table>


<p>
A programmer should always be cautious when dealing with 
destructive operations. Sometimes it is not desirable to 
change the original expression.
The language deals with it this way because of performance considerations.
Operations can be made non-destructive by using <b><tt>FlatCopy</tt></b>:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x1:={a,b,c}
Out&gt; {a,b,c};
In&gt; DestructiveReverse(x1)
Out&gt; {c,b,a};
In&gt; x1
Out&gt; {a};
In&gt; x1:={a,b,c}
Out&gt; {a,b,c};
In&gt; DestructiveReverse(FlatCopy(x1))
Out&gt; {c,b,a};
In&gt; x1
Out&gt; {a,b,c};
</pre></tr>
</table>


<p>
<b><tt>FlatCopy</tt></b> copies the elements of an expression only at the top level of nesting.
This means that if a list contains sub-lists, they are not copied, but
references to them are copied instead:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; dict1:={}
Out&gt; {};
In&gt; dict1["name"]:="John";
Out&gt; True;
In&gt; dict2:=FlatCopy(dict1)
Out&gt; {{"name","John"}};
In&gt; dict2["name"]:="Mark";
Out&gt; True;
In&gt; dict1
Out&gt; {{"name","Mark"}};
</pre></tr>
</table>


<p>
A workaround for this is to use <b><tt>Subst</tt></b> to copy the entire tree:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; dict1:={}
Out&gt; {};
In&gt; dict1["name"]:="John";
Out&gt; True;
In&gt; dict2:=Subst(a,a)(dict1)
Out&gt; {{"name","John"}};
In&gt; dict2["name"]:="Mark";
Out&gt; True;
In&gt; dict1
Out&gt; {{"name","John"}};
In&gt; dict2
Out&gt; {{"name","Mark"}};
</pre></tr>
</table>


<p>


<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-2425144-1";
urchinTracker();
</script>
</body>

</html>