This file is indexed.

/usr/share/w3af/extlib/nltk/grammar.py is in w3af-console 1.0-rc3svn3489-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
# -*- coding: utf-8 -*-
# Natural Language Toolkit: Context Free Grammars
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Steven Bird <sb@csse.unimelb.edu.au>
#         Edward Loper <edloper@seas.upenn.edu>
#         Jason Narad <jason.narad@gmail.com>
#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
#

"""
Basic data classes for representing context free grammars.  A
X{grammar} specifies which trees can represent the structure of a
given text.  Each of these trees is called a X{parse tree} for the
text (or simply a X{parse}).  In a X{context free} grammar, the set of
parse trees for any piece of a text can depend only on that piece, and
not on the rest of the text (i.e., the piece's context).  Context free
grammars are often used to find possible syntactic structures for
sentences.  In this context, the leaves of a parse tree are word
tokens; and the node values are phrasal categories, such as C{NP}
and C{VP}.

The L{ContextFreeGrammar} class is used to encode context free grammars.  Each
C{ContextFreeGrammar} consists of a start symbol and a set of productions.
The X{start symbol} specifies the root node value for parse trees.  For example,
the start symbol for syntactic parsing is usually C{S}.  Start
symbols are encoded using the C{Nonterminal} class, which is discussed
below.

A Grammar's X{productions} specify what parent-child relationships a parse
tree can contain.  Each production specifies that a particular
node can be the parent of a particular set of children.  For example,
the production C{<S> -> <NP> <VP>} specifies that an C{S} node can
be the parent of an C{NP} node and a C{VP} node.

Grammar productions are implemented by the C{Production} class.
Each C{Production} consists of a left hand side and a right hand
side.  The X{left hand side} is a C{Nonterminal} that specifies the
node type for a potential parent; and the X{right hand side} is a list
that specifies allowable children for that parent.  This lists
consists of C{Nonterminals} and text types: each C{Nonterminal}
indicates that the corresponding child may be a C{TreeToken} with the
specified node type; and each text type indicates that the
corresponding child may be a C{Token} with the with that type.

The C{Nonterminal} class is used to distinguish node values from leaf
values.  This prevents the grammar from accidentally using a leaf
value (such as the English word "A") as the node of a subtree.  Within
a C{ContextFreeGrammar}, all node values are wrapped in the C{Nonterminal} class.
Note, however, that the trees that are specified by the grammar do
B{not} include these C{Nonterminal} wrappers.

Grammars can also be given a more procedural interpretation.  According to
this interpretation, a Grammar specifies any tree structure M{tree} that
can be produced by the following procedure:

    - Set M{tree} to the start symbol
    - Repeat until M{tree} contains no more nonterminal leaves:
      - Choose a production M{prod} with whose left hand side
        M{lhs} is a nonterminal leaf of M{tree}.
      - Replace the nonterminal leaf with a subtree, whose node
        value is the value wrapped by the nonterminal M{lhs}, and
        whose children are the right hand side of M{prod}.

The operation of replacing the left hand side (M{lhs}) of a production
with the right hand side (M{rhs}) in a tree (M{tree}) is known as
X{expanding} M{lhs} to M{rhs} in M{tree}.
"""

import re

from nltk.internals import deprecated

from probability import ImmutableProbabilisticMixIn
from featstruct import FeatStruct, FeatDict, FeatStructParser, SLASH, TYPE

#################################################################
# Nonterminal
#################################################################

class Nonterminal(object):
    """
    A non-terminal symbol for a context free grammar.  C{Nonterminal}
    is a wrapper class for node values; it is used by
    C{Production}s to distinguish node values from leaf values.
    The node value that is wrapped by a C{Nonterminal} is known as its
    X{symbol}.  Symbols are typically strings representing phrasal
    categories (such as C{"NP"} or C{"VP"}).  However, more complex
    symbol types are sometimes used (e.g., for lexicalized grammars).
    Since symbols are node values, they must be immutable and
    hashable.  Two C{Nonterminal}s are considered equal if their
    symbols are equal.

    @see: L{ContextFreeGrammar}
    @see: L{Production}
    @type _symbol: (any)
    @ivar _symbol: The node value corresponding to this
        C{Nonterminal}.  This value must be immutable and hashable. 
    """
    def __init__(self, symbol):
        """
        Construct a new non-terminal from the given symbol.

        @type symbol: (any)
        @param symbol: The node value corresponding to this
            C{Nonterminal}.  This value must be immutable and
            hashable. 
        """
        self._symbol = symbol
        self._hash = hash(symbol)

    def symbol(self):
        """
        @return: The node value corresponding to this C{Nonterminal}. 
        @rtype: (any)
        """
        return self._symbol

    def __eq__(self, other):
        """
        @return: True if this non-terminal is equal to C{other}.  In
            particular, return true iff C{other} is a C{Nonterminal}
            and this non-terminal's symbol is equal to C{other}'s
            symbol.
        @rtype: C{boolean}
        """
        try:
            return ((self._symbol == other._symbol) \
                    and isinstance(other, self.__class__))
        except AttributeError:
            return False

    def __ne__(self, other):
        """
        @return: True if this non-terminal is not equal to C{other}.  In
            particular, return true iff C{other} is not a C{Nonterminal}
            or this non-terminal's symbol is not equal to C{other}'s
            symbol.
        @rtype: C{boolean}
        """
        return not (self==other)

    def __cmp__(self, other):
        try: 
            return cmp(self._symbol, other._symbol)
        except: 
            return -1

    def __hash__(self):
        return self._hash

    def __repr__(self):
        """
        @return: A string representation for this C{Nonterminal}.
        @rtype: C{string}
        """
        if isinstance(self._symbol, basestring):
            return '%s' % (self._symbol,)
        else:
            return '%r' % (self._symbol,)

    def __str__(self):
        """
        @return: A string representation for this C{Nonterminal}.
        @rtype: C{string}
        """
        if isinstance(self._symbol, basestring):
            return '%s' % (self._symbol,)
        else:
            return '%r' % (self._symbol,)

    def __div__(self, rhs):
        """
        @return: A new nonterminal whose symbol is C{M{A}/M{B}}, where
            C{M{A}} is the symbol for this nonterminal, and C{M{B}}
            is the symbol for rhs.
        @rtype: L{Nonterminal}
        @param rhs: The nonterminal used to form the right hand side
            of the new nonterminal.
        @type rhs: L{Nonterminal}
        """
        return Nonterminal('%s/%s' % (self._symbol, rhs._symbol))

def nonterminals(symbols):
    """
    Given a string containing a list of symbol names, return a list of
    C{Nonterminals} constructed from those symbols.  

    @param symbols: The symbol name string.  This string can be
        delimited by either spaces or commas.
    @type symbols: C{string}
    @return: A list of C{Nonterminals} constructed from the symbol
        names given in C{symbols}.  The C{Nonterminals} are sorted
        in the same order as the symbols names.
    @rtype: C{list} of L{Nonterminal}
    """
    if ',' in symbols: symbol_list = symbols.split(',')
    else: symbol_list = symbols.split()
    return [Nonterminal(s.strip()) for s in symbol_list]

#################################################################
# Productions
#################################################################

class Production(object):
    """
    A grammar production.  Each production maps a single symbol
    on the X{left-hand side} to a sequence of symbols on the
    X{right-hand side}.  (In the case of context-free productions,
    the left-hand side must be a C{Nonterminal}, and the right-hand
    side is a sequence of terminals and C{Nonterminals}.)
    X{terminals} can be any immutable hashable object that is
    not a C{Nonterminal}.  Typically, terminals are strings
    representing words, such as C{"dog"} or C{"under"}.

    @see: L{ContextFreeGrammar}
    @see: L{DependencyGrammar}
    @see: L{Nonterminal}
    @type _lhs: L{Nonterminal}
    @ivar _lhs: The left-hand side of the production.
    @type _rhs: C{tuple} of (C{Nonterminal} and (terminal))
    @ivar _rhs: The right-hand side of the production.
    """

    def __init__(self, lhs, rhs):
        """
        Construct a new C{Production}.

        @param lhs: The left-hand side of the new C{Production}.
        @type lhs: L{Nonterminal}
        @param rhs: The right-hand side of the new C{Production}.
        @type rhs: sequence of (C{Nonterminal} and (terminal))
        """
        if isinstance(rhs, (str, unicode)):
            raise TypeError('production right hand side should be a list, '
                            'not a string')
        self._lhs = lhs
        self._rhs = tuple(rhs)
        self._hash = hash((self._lhs, self._rhs))

    def lhs(self):
        """
        @return: the left-hand side of this C{Production}.
        @rtype: L{Nonterminal}
        """
        return self._lhs

    def rhs(self):
        """
        @return: the right-hand side of this C{Production}.
        @rtype: sequence of (C{Nonterminal} and (terminal))
        """
        return self._rhs

    def __str__(self):
        """
        @return: A verbose string representation of the
            C{Production}.
        @rtype: C{string}
        """
        str = '%s ->' % (self._lhs,)
        for elt in self._rhs:
            if isinstance(elt, Nonterminal):
                str += ' %s' % (elt,)
            else:
                str += ' %r' % (elt,)
        return str

    def __repr__(self):
        """
        @return: A concise string representation of the
            C{Production}. 
        @rtype: C{string}
        """
        return '%s' % self

    def __eq__(self, other):
        """
        @return: true if this C{Production} is equal to C{other}.
        @rtype: C{boolean}
        """
        return (isinstance(other, self.__class__) and
                self._lhs == other._lhs and
                self._rhs == other._rhs)
                 
    def __ne__(self, other):
        return not (self == other)

    def __cmp__(self, other):
        if not isinstance(other, self.__class__): return -1
        return cmp((self._lhs, self._rhs), (other._lhs, other._rhs))

    def __hash__(self):
        """
        @return: A hash value for the C{Production}.
        @rtype: C{int}
        """
        return self._hash


class DependencyProduction(Production):
    """
    A dependency grammar production.  Each production maps a single
    head word to an unordered list of one or more modifier words.
    """
    def __str__(self):
        """
        @return: A verbose string representation of the 
            C{DependencyProduction}.
        @rtype: C{string}
        """
        str = '\'%s\' ->' % (self._lhs,)
        for elt in self._rhs:
                str += ' \'%s\'' % (elt,)
        return str



class WeightedProduction(Production, ImmutableProbabilisticMixIn):
    """
    A probabilistic context free grammar production.
    PCFG C{WeightedProduction}s are essentially just C{Production}s that
    have probabilities associated with them.  These probabilities are
    used to record how likely it is that a given production will
    be used.  In particular, the probability of a C{WeightedProduction}
    records the likelihood that its right-hand side is the correct
    instantiation for any given occurance of its left-hand side.

    @see: L{Production}
    """
    def __init__(self, lhs, rhs, **prob):
        """
        Construct a new C{WeightedProduction}.

        @param lhs: The left-hand side of the new C{WeightedProduction}.
        @type lhs: L{Nonterminal}
        @param rhs: The right-hand side of the new C{WeightedProduction}.
        @type rhs: sequence of (C{Nonterminal} and (terminal))
        @param prob: Probability parameters of the new C{WeightedProduction}.
        """
        ImmutableProbabilisticMixIn.__init__(self, **prob)
        Production.__init__(self, lhs, rhs)

    def __str__(self):
        return Production.__str__(self) + ' [%s]' % self.prob()

    def __eq__(self, other):
        return (isinstance(other, self.__class__) and
                self._lhs == other._lhs and
                self._rhs == other._rhs and
                self.prob() == other.prob())

    def __ne__(self, other):
        return not (self == other)

    def __hash__(self):
        return hash((self._lhs, self._rhs, self.prob()))


#################################################################
# Grammars
#################################################################

class ContextFreeGrammar(object):
    """
    A context-free grammar.  A Grammar consists of a start state and a set
    of productions.  The set of terminals and nonterminals is
    implicitly specified by the productions.

    If you need efficient key-based access to productions, you
    can use a subclass to implement it.
    """
    def __init__(self, start, productions):
        """
        Create a new context-free grammar, from the given start state
        and set of C{Production}s.
        
        @param start: The start symbol
        @type start: L{Nonterminal}
        @param productions: The list of productions that defines the grammar
        @type productions: C{list} of L{Production}
        """
        self._start = start
        self._productions = productions
        self._lhs_index = {}
        self._rhs_index = {}
        for prod in self._productions:
            if prod._lhs not in self._lhs_index:
                self._lhs_index[prod._lhs] = []
            if prod._rhs and prod._rhs[0] not in self._rhs_index:
                self._rhs_index[prod._rhs[0]] = []
            self._lhs_index[prod._lhs].append(prod)
            if prod._rhs:
                self._rhs_index[prod._rhs[0]].append(prod)
        
    def start(self):
        return self._start

    # tricky to balance readability and efficiency here!
    # can't use set operations as they don't preserve ordering
    def productions(self, lhs=None, rhs=None):
        # no constraints so return everything
        if not lhs and not rhs:
            return self._productions

        # only lhs specified so look up its index
        elif lhs and not rhs:
            return self._lhs_index.get(lhs, [])

        # only rhs specified so look up its index
        elif rhs and not lhs:
            return self._rhs_index.get(rhs, [])

        # intersect
        else:
            return [prod for prod in self._lhs_index.get(lhs,[])
                    if prod in self._rhs_index.get(rhs,[])]

    def check_coverage(self, tokens):
        """
        Check whether the grammar rules cover the given list of tokens.
        If not, then raise an exception.
        """
        missing = [tok for tok in tokens
                   if len(self.productions(rhs=tok))==0]
        if missing:
            missing = ', '.join('%r' % (w,) for w in missing)
            raise ValueError("Grammar does not cover some of the "
                             "input words: %r." % missing)

    # [xx] does this still get used anywhere, or does check_coverage
    # replace it?
    def covers(self, tokens):
        """
        Check whether the grammar rules cover the given list of tokens.

        @param tokens: the given list of tokens.
        @type tokens: a C{list} of C{string} objects.
        @return: True/False
        """
        for token in tokens:
            if len(self.productions(rhs=token)) == 0:
                return False
        return True

    def __repr__(self):
        return '<Grammar with %d productions>' % len(self._productions)

    def __str__(self):
        str = 'Grammar with %d productions' % len(self._productions)
        str += ' (start state = %s)' % self._start
        for production in self._productions:
            str += '\n    %s' % production
        return str

class Grammar(ContextFreeGrammar):
    @deprecated("Use nltk.ContextFreeGrammar instead.")
    def __init__(self, *args, **kwargs):
        ContextFreeGrammar.__init__(self, *args, **kwargs)
        

class DependencyGrammar(object):
    """
    A dependency grammar.  A DependencyGrammar consists of a set of
    productions.  Each production specifies a head/modifier relationship
    between a pair of words.
    """
    def __init__(self, productions):
        """
        Create a new dependency grammar, from the set of C{Production}s.
        
        @param productions: The list of productions that defines the grammar
        @type productions: C{list} of L{Production}
        """
        self._productions = productions

    def contains(self, head, mod):
        """
        @param head: A head word.
        @type head: C{string}.
        @param mod: A mod word, to test as a modifier of 'head'.
        @type mod: C{string}.

        @return: true if this C{DependencyGrammar} contains a 
            C{DependencyProduction} mapping 'head' to 'mod'.
        @rtype: C{boolean}.
        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if(production._lhs == head and possibleMod == mod):
                    return True
        return False

    def __contains__(self, head, mod):
        """
        @param head: A head word.
        @type head: C{string}.
        @param mod: A mod word, to test as a modifier of 'head'.
        @type mod: C{string}.

        @return: true if this C{DependencyGrammar} contains a 
            C{DependencyProduction} mapping 'head' to 'mod'.
        @rtype: C{boolean}.
        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if(production._lhs == head and possibleMod == mod):
                    return True
        return False

    #   # should be rewritten, the set comp won't work in all comparisons
    # def contains_exactly(self, head, modlist):
    #   for production in self._productions:
    #       if(len(production._rhs) == len(modlist)):
    #           if(production._lhs == head):
    #               set1 = Set(production._rhs)
    #               set2 = Set(modlist)
    #               if(set1 == set2):
    #                   return True
    #   return False


    def __str__(self):
        """
        @return: A verbose string representation of the
            C{DependencyGrammar}
        @rtype: C{string}
        """
        str = 'Dependency grammar with %d productions' % len(self._productions)
        for production in self._productions:
            str += '\n  %s' % production
        return str
            
    def __repr__(self):
        """
        @return: A concise string representation of the
            C{DependencyGrammar}
        """
        return 'Dependency grammar with %d productions' % len(self._productions)
    

class StatisticalDependencyGrammar(object):
    """

    """

    def __init__(self, productions, events, tags):
        self._productions = productions
        self._events = events
        self._tags = tags

    def contains(self, head, mod):
        """
        @param head: A head word.
        @type head: C{string}.
        @param mod: A mod word, to test as a modifier of 'head'.
        @type mod: C{string}.

        @return: true if this C{DependencyGrammar} contains a 
            C{DependencyProduction} mapping 'head' to 'mod'.
        @rtype: C{boolean}.
        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if(production._lhs == head and possibleMod == mod):
                    return True
        return False

    def __str__(self):
        """
        @return: A verbose string representation of the
            C{StatisticalDependencyGrammar}
        @rtype: C{string}
        """
        str = 'Statistical dependency grammar with %d productions' % len(self._productions)
        for production in self._productions:
            str += '\n  %s' % production
        str += '\nEvents:'
        for event in self._events:
            str += '\n  %d:%s' % (self._events[event], event)
        str += '\nTags:'
        for tag_word in self._tags:
            str += '\n %s:\t(%s)' % (tag_word, self._tags[tag_word])
        return str

    def __repr__(self):
        """
        @return: A concise string representation of the
            C{StatisticalDependencyGrammar}
        """
        return 'Statistical Dependency grammar with %d productions' % len(self._productions)


class WeightedGrammar(ContextFreeGrammar):
    """
    A probabilistic context-free grammar.  A Weighted Grammar consists
    of a start state and a set of weighted productions.  The set of
    terminals and nonterminals is implicitly specified by the
    productions.

    PCFG productions should be C{WeightedProduction}s.
    C{WeightedGrammar}s impose the constraint that the set of
    productions with any given left-hand-side must have probabilities
    that sum to 1.

    If you need efficient key-based access to productions, you can use
    a subclass to implement it.

    @type EPSILON: C{float}
    @cvar EPSILON: The acceptable margin of error for checking that
        productions with a given left-hand side have probabilities
        that sum to 1.
    """
    EPSILON = 0.01

    def __init__(self, start, productions):
        """
        Create a new context-free grammar, from the given start state
        and set of C{WeightedProduction}s.

        @param start: The start symbol
        @type start: L{Nonterminal}
        @param productions: The list of productions that defines the grammar
        @type productions: C{list} of C{Production}
        @raise ValueError: if the set of productions with any left-hand-side
            do not have probabilities that sum to a value within
            EPSILON of 1.
        """
        ContextFreeGrammar.__init__(self, start, productions)

        # Make sure that the probabilities sum to one.
        probs = {}
        for production in productions:
            probs[production.lhs()] = (probs.get(production.lhs(), 0) +
                                       production.prob())
        for (lhs, p) in probs.items():
            if not ((1-WeightedGrammar.EPSILON) < p <
                    (1+WeightedGrammar.EPSILON)):
                raise ValueError("Productions for %r do not sum to 1" % lhs)

# Contributed by Nathan Bodenstab <bodenstab@cslu.ogi.edu>

def induce_pcfg(start, productions):
    """
    Induce a PCFG grammar from a list of productions.

    The probability of a production A -> B C in a PCFG is:

    |                count(A -> B C)
    |  P(B, C | A) = ---------------       where * is any right hand side
    |                 count(A -> *)

    @param start: The start symbol
    @type start: L{Nonterminal}
    @param productions: The list of productions that defines the grammar
    @type productions: C{list} of L{Production}
    """

    # Production count: the number of times a given production occurs
    pcount = {}
    
    # LHS-count: counts the number of times a given lhs occurs
    lcount = {} 

    for prod in productions:
        lcount[prod.lhs()] = lcount.get(prod.lhs(), 0) + 1
        pcount[prod]       = pcount.get(prod,       0) + 1

    prods = [WeightedProduction(p.lhs(), p.rhs(),
                                prob=float(pcount[p]) / lcount[p.lhs()])
             for p in pcount]
    return WeightedGrammar(start, prods)




#################################################################
# Parsing Grammars
#################################################################

def parse_cfg_production(s):
    """
    Returns a list of productions
    """
    return parse_production(s, standard_nonterm_parser)

def parse_cfg(s):
    start, productions = parse_grammar(s, standard_nonterm_parser)
    return ContextFreeGrammar(start, productions)

# Parsing PCFGs

def parse_pcfg_production(s):
    """
    Returns a list of PCFG productions
    """
    return parse_production(s, standard_nonterm_parser, probabilistic=True)

def parse_pcfg(s):
    start, productions = parse_grammar(s, standard_nonterm_parser, 
                                       probabilistic=True)
    return WeightedGrammar(start, productions)

# Parsing generic grammars

def parse_production(line, nonterm_parser, probabilistic=False):
    pos = 0
    
    # Parse the left-hand side.
    lhs, pos = nonterm_parser(line, pos)

    # Skip over the arrow.
    m = re.compile('\s*->\s*').match(line, pos)
    if not m: raise ValueError('Expected an arrow')
    pos = m.end()

    # Parse the right hand side.
    probabilities = [0.0]
    found_terminal = found_non_terminal = False
    rhsides = [[]]
    while pos < len(line):
        # Probability.
        m = re.compile('(\[[\d\.]+\])\s*').match(line, pos) 
        if probabilistic and m:
            pos = m.end()
            probabilities[-1] = float(m.group(1)[1:-1])
            if probabilities[-1] > 1.0:
                raise ValueError('Production probability %f, '
                                 'should not be greater than 1.0' %
                                 (probabilities[-1],))

        # String -- add terminal.
        elif line[pos] in "\'\"":
            m = re.compile('("[^"]+"|'+"'[^']+')\s*").match(line, pos)
            if not m: raise ValueError('Unterminated string')
            if found_terminal:
                raise ValueError('Bad right-hand-side: do not use '
                                 'a sequence of terminals')
            found_terminal = True
            rhsides[-1].append(m.group(1)[1:-1])
            pos = m.end()

        # Vertical bar -- start new rhside.
        elif line[pos] == '|':
            probabilities.append(0.0)
            found_terminal = found_non_terminal = False
            rhsides.append([])
            pos = re.compile('\\|\s*').match(line,pos).end()

        # Anything else -- nonterminal.
        else:
            nonterm, pos = nonterm_parser(line, pos)
            rhsides[-1].append(nonterm)
            found_non_terminal = True
            
        if found_terminal and found_non_terminal:
            raise ValueError('Bad right-hand-side: do not mix '
                             'terminals and non-terminals')

    if probabilistic:
        return [WeightedProduction(lhs, rhs, prob=probability) 
                for (rhs, probability) in zip(rhsides, probabilities)]
    else:
        return [Production(lhs, rhs) for rhs in rhsides]


def parse_grammar(input, nonterm_parser, probabilistic=False):
    """
    Return a starting category and a list of C{Production}s.
    
    @param input: a grammar, either in the form of a string or else 
    as a list of strings.
    @param nonterm_parser: a function for parsing nonterminals.
    It should take a C{(string,position)} as argument and return
    a C{(nonterminal,position)} as result. 
    """
    if isinstance(input, str):
        lines = input.split('\n')
    else:
        lines = input

    start = None
    productions = []
    continue_line = ''
    for linenum, line in enumerate(lines):
        line = continue_line + line.strip()
        if line.startswith('#') or line=='': continue
        if line.endswith('\\'):
            continue_line = line[:-1].rstrip()+' '
            continue
        continue_line = ''
        try:
            if line[0] == '%':
                directive, args = line[1:].split(None, 1)
                if directive == 'start':
                    start, pos = nonterm_parser(args, 0)
                    if pos != len(args):
                        raise ValueError('Bad argument to start directive')
                else:
                    raise ValueError('Bad directive')
            else:
                # expand out the disjunctions on the RHS
                productions += parse_production(line, nonterm_parser, probabilistic)
        except ValueError, e:
            raise ValueError('Unable to parse line %s: %s\n%s' %
                             (linenum+1, line, e))

    if not productions:
        raise ValueError, 'No productions found!'
    if not start:
        start = productions[0].lhs()
    return (start, productions)

def standard_nonterm_parser(string, pos):
    m = re.compile('([\w/]+)\s*').match(string, pos)
    if not m: raise ValueError('Expected a nonterminal, found: ' 
                               + string[pos:])
    return (Nonterminal(m.group(1)), m.end())

@deprecated("Use nltk.parse_fcfg() instead.")
def parse_featcfg(input): 
    return parse_fcfg(input)


# Parsing Feature-based CFGs

class FeatStructNonterminal(FeatDict, Nonterminal):
    """A feature structure that's also a nonterminal.  It acts as its
    own symbol, and automatically freezes itself when hashed."""
    def __hash__(self):
        self.freeze()
        return FeatStruct.__hash__(self)
    def symbol(self):
        return self

def parse_fcfg_production(input, fstruct_parser):
    return parse_production(input, fstruct_parser)

def parse_fcfg(input, features=None, logic_parser=None, fstruct_parser=None):
    """
    Return a feature structure grammar.
    
    @param input: a grammar, either in the form of a string or else 
    as a list of strings.
    @param features: a tuple of features (default: SLASH, TYPE)
    @param logic_parser: a parser for lambda-expressions 
                         (default: LogicParser())
    @param fstruct_parser: a feature structure parser 
                           (only if features and logic_parser is None)
    """
    if features is None:
        features = (SLASH, TYPE)
    
    if fstruct_parser is None:
        fstruct_parser = FeatStructParser(features, FeatStructNonterminal, 
                                          logic_parser=logic_parser)
    elif logic_parser is not None:
        raise Exception('\'logic_parser\' and \'fstruct_parser\' must '
                        'not both be set')

    start, productions = parse_grammar(input, fstruct_parser.partial_parse)
    return ContextFreeGrammar(start, productions)


#################################################################
# Parsing Dependency Grammars
#################################################################

_PARSE_DG_RE = re.compile(r'''^\s*                # leading whitespace
                              ('[^']+')\s*        # single-quoted lhs
                              (?:[-=]+>)\s*        # arrow
                              (?:(                 # rhs:
                                   "[^"]+"         # doubled-quoted terminal
                                 | '[^']+'         # single-quoted terminal
                                 | \|              # disjunction
                                 )
                                 \s*)              # trailing space
                                 *$''',            # zero or more copies
                             re.VERBOSE)
_SPLIT_DG_RE = re.compile(r'''('[^']'|[-=]+>|"[^"]+"|'[^']+'|\|)''')

def parse_dependency_grammar(s):
    productions = []
    for linenum, line in enumerate(s.split('\n')):
        line = line.strip()
        if line.startswith('#') or line=='': continue
        try: productions += parse_dependency_production(line)
        except ValueError:
            raise ValueError, 'Unable to parse line %s: %s' % (linenum, line)
    if len(productions) == 0:
        raise ValueError, 'No productions found!'
    return DependencyGrammar(productions)

def parse_dependency_production(s):
    if not _PARSE_DG_RE.match(s):
        raise ValueError, 'Bad production string'
    pieces = _SPLIT_DG_RE.split(s)
    pieces = [p for i,p in enumerate(pieces) if i%2==1]
    lhside = pieces[0].strip('\'\"')
    rhsides = [[]]
    for piece in pieces[2:]:
        if piece == '|':
            rhsides.append([])
        else:
            rhsides[-1].append(piece.strip('\'\"'))
    return [DependencyProduction(lhside, rhside) for rhside in rhsides]

#################################################################
# Demonstration
#################################################################

def cfg_demo():
    """
    A demonstration showing how C{ContextFreeGrammar}s can be created and used.
    """

    from nltk import nonterminals, Production, parse_cfg

    # Create some nonterminals
    S, NP, VP, PP = nonterminals('S, NP, VP, PP')
    N, V, P, Det = nonterminals('N, V, P, Det')
    VP_slash_NP = VP/NP

    print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP]
    print '    S.symbol() =>', `S.symbol()`
    print

    print Production(S, [NP])

    # Create some Grammar Productions
    grammar = parse_cfg("""
      S -> NP VP
      PP -> P NP
      NP -> Det N | NP PP
      VP -> V NP | VP PP
      Det -> 'a' | 'the'
      N -> 'dog' | 'cat'
      V -> 'chased' | 'sat'
      P -> 'on' | 'in'
    """)

    print 'A Grammar:', `grammar`
    print '    grammar.start()       =>', `grammar.start()`
    print '    grammar.productions() =>',
    # Use string.replace(...) is to line-wrap the output.
    print `grammar.productions()`.replace(',', ',\n'+' '*25)
    print
    
    print 'Coverage of input words by a grammar:'
    print grammar.covers(['a','dog'])
    print grammar.covers(['a','toy'])

toy_pcfg1 = parse_pcfg("""
    S -> NP VP [1.0]
    NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
    Det -> 'the' [0.8] | 'my' [0.2]
    N -> 'man' [0.5] | 'telescope' [0.5]
    VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
    V -> 'ate' [0.35] | 'saw' [0.65]
    PP -> P NP [1.0]
    P -> 'with' [0.61] | 'under' [0.39]
    """)

toy_pcfg2 = parse_pcfg("""
    S    -> NP VP         [1.0]
    VP   -> V NP          [.59]
    VP   -> V             [.40]
    VP   -> VP PP         [.01]
    NP   -> Det N         [.41]
    NP   -> Name          [.28]
    NP   -> NP PP         [.31]
    PP   -> P NP          [1.0]
    V    -> 'saw'         [.21]
    V    -> 'ate'         [.51]
    V    -> 'ran'         [.28]
    N    -> 'boy'         [.11]
    N    -> 'cookie'      [.12]
    N    -> 'table'       [.13]
    N    -> 'telescope'   [.14]
    N    -> 'hill'        [.5]
    Name -> 'Jack'        [.52]
    Name -> 'Bob'         [.48]
    P    -> 'with'        [.61]
    P    -> 'under'       [.39]
    Det  -> 'the'         [.41]
    Det  -> 'a'           [.31]
    Det  -> 'my'          [.28]
    """)

def pcfg_demo():
    """
    A demonstration showing how C{WeightedGrammar}s can be created and used.
    """

    from nltk.corpus import treebank
    from nltk import treetransforms
    from nltk import induce_pcfg
    from nltk.parse import pchart

    pcfg_prods = toy_pcfg1.productions()

    pcfg_prod = pcfg_prods[2]
    print 'A PCFG production:', `pcfg_prod`
    print '    pcfg_prod.lhs()  =>', `pcfg_prod.lhs()`
    print '    pcfg_prod.rhs()  =>', `pcfg_prod.rhs()`
    print '    pcfg_prod.prob() =>', `pcfg_prod.prob()`
    print

    grammar = toy_pcfg2
    print 'A PCFG grammar:', `grammar`
    print '    grammar.start()       =>', `grammar.start()`
    print '    grammar.productions() =>',
    # Use string.replace(...) is to line-wrap the output.
    print `grammar.productions()`.replace(',', ',\n'+' '*26)
    print

    print 'Coverage of input words by a grammar:'
    print grammar.covers(['a','boy'])
    print grammar.covers(['a','girl'])

    # extract productions from three trees and induce the PCFG
    print "Induce PCFG grammar from treebank data:"

    productions = []
    for item in treebank.items[:2]:
        for tree in treebank.parsed_sents(item):
            # perform optional tree transformations, e.g.:
            tree.collapse_unary(collapsePOS = False)
            tree.chomsky_normal_form(horzMarkov = 2)

            productions += tree.productions()

    S = Nonterminal('S')
    grammar = induce_pcfg(S, productions)
    print grammar
    print

    print "Parse sentence using induced grammar:"

    parser = pchart.InsideChartParser(grammar)
    parser.trace(3)

    # doesn't work as tokens are different:
    #sent = treebank.tokenized('wsj_0001.mrg')[0]

    sent = treebank.parsed_sents('wsj_0001.mrg')[0].leaves()
    print sent
    for parse in parser.nbest_parse(sent):
        print parse

def fcfg_demo():
    import nltk.data
    g = nltk.data.load('grammars/book_grammars/feat0.fcfg')
    print g
    print 
    
def dg_demo():
    """
    A demonstration showing the creation and inspection of a 
    C{DependencyGrammar}.
    """
    grammar = parse_dependency_grammar("""
    'scratch' -> 'cats' | 'walls'
    'walls' -> 'the'
    'cats' -> 'the'
    """)
    print grammar
    
def sdg_demo():
    """
    A demonstration of how to read a string representation of 
    a CoNLL format dependency tree.
    """
    dg = DependencyGraph("""
    1   Ze                ze                Pron  Pron  per|3|evofmv|nom                 2   su      _  _
    2   had               heb               V     V     trans|ovt|1of2of3|ev             0   ROOT    _  _
    3   met               met               Prep  Prep  voor                             8   mod     _  _
    4   haar              haar              Pron  Pron  bez|3|ev|neut|attr               5   det     _  _
    5   moeder            moeder            N     N     soort|ev|neut                    3   obj1    _  _
    6   kunnen            kan               V     V     hulp|ott|1of2of3|mv              2   vc      _  _
    7   gaan              ga                V     V     hulp|inf                         6   vc      _  _
    8   winkelen          winkel            V     V     intrans|inf                      11  cnj     _  _
    9   ,                 ,                 Punc  Punc  komma                            8   punct   _  _
    10  zwemmen           zwem              V     V     intrans|inf                      11  cnj     _  _
    11  of                of                Conj  Conj  neven                            7   vc      _  _
    12  terrassen         terras            N     N     soort|mv|neut                    11  cnj     _  _
    13  .                 .                 Punc  Punc  punt                             12  punct   _  _
    """)
    tree = dg.tree()
    print tree.pprint()

def demo():
    cfg_demo()
    pcfg_demo()
    fcfg_demo()
    dg_demo()
    sdg_demo()

if __name__ == '__main__':
    demo()

__all__ = ['Nonterminal', 'nonterminals',
           'Production', 'DependencyProduction', 'WeightedProduction',
           'ContextFreeGrammar', 'WeightedGrammar', 'DependencyGrammar',
           'StatisticalDependencyGrammar', 
           'induce_pcfg', 'parse_cfg', 'parse_cfg_production',
           'parse_pcfg', 'parse_pcfg_production',
           'parse_fcfg', 'parse_fcfg_production',
           'parse_grammar', 'parse_production',
           'parse_dependency_grammar', 'parse_dependency_production',
           'demo', 'cfg_demo', 'pcfg_demo', 'dg_demo', 'sdg_demo',
           'toy_pcfg1', 'toy_pcfg2']