/usr/share/vtk/Medical/Tcl/Medical3.tcl is in vtk-examples 5.8.0-17.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | package require vtk
package require vtkinteraction
#
# This example reads a volume dataset, extracts two isosurfaces that
# represent the skin and bone, creates three orthogonal planes (saggital,
# axial, coronal), and displays them.
#
# Create the renderer, the render window, and the interactor. The renderer
# draws into the render window, the interactor enables mouse- and
# keyboard-based interaction with the scene.
#
vtkRenderer aRenderer
vtkRenderWindow renWin
renWin AddRenderer aRenderer
vtkRenderWindowInteractor iren
iren SetRenderWindow renWin
# The following reader is used to read a series of 2D slices (images)
# that compose the volume. The slice dimensions are set, and the
# pixel spacing. The data Endianness must also be specified. The reader
# usese the FilePrefix in combination with the slice number to construct
# filenames using the format FilePrefix.%d. (In this case the FilePrefix
# is the root name of the file: quarter.)
vtkVolume16Reader v16
v16 SetDataDimensions 64 64
v16 SetDataByteOrderToLittleEndian
v16 SetFilePrefix "$VTK_DATA_ROOT/Data/headsq/quarter"
v16 SetImageRange 1 93
v16 SetDataSpacing 3.2 3.2 1.5
# An isosurface, or contour value of 500 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
vtkContourFilter skinExtractor
skinExtractor SetInputConnection [v16 GetOutputPort]
skinExtractor SetValue 0 500
vtkPolyDataNormals skinNormals
skinNormals SetInputConnection [skinExtractor GetOutputPort]
skinNormals SetFeatureAngle 60.0
vtkStripper skinStripper
skinStripper SetInputConnection [skinNormals GetOutputPort]
vtkPolyDataMapper skinMapper
skinMapper SetInputConnection [skinStripper GetOutputPort]
skinMapper ScalarVisibilityOff
vtkActor skin
skin SetMapper skinMapper
[skin GetProperty] SetDiffuseColor 1 .49 .25
[skin GetProperty] SetSpecular .3
[skin GetProperty] SetSpecularPower 20
# An isosurface, or contour value of 1150 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
vtkContourFilter boneExtractor
boneExtractor SetInputConnection [v16 GetOutputPort]
boneExtractor SetValue 0 1150
vtkPolyDataNormals boneNormals
boneNormals SetInputConnection [boneExtractor GetOutputPort]
boneNormals SetFeatureAngle 60.0
vtkStripper boneStripper
boneStripper SetInputConnection [boneNormals GetOutputPort]
vtkPolyDataMapper boneMapper
boneMapper SetInputConnection [boneStripper GetOutputPort]
boneMapper ScalarVisibilityOff
vtkActor bone
bone SetMapper boneMapper
[bone GetProperty] SetDiffuseColor 1 1 .9412
# An outline provides context around the data.
#
vtkOutlineFilter outlineData
outlineData SetInputConnection [v16 GetOutputPort]
vtkPolyDataMapper mapOutline
mapOutline SetInputConnection [outlineData GetOutputPort]
vtkActor outline
outline SetMapper mapOutline
[outline GetProperty] SetColor 0 0 0
# Now we are creating three orthogonal planes passing through the
# volume. Each plane uses a different texture map and therefore has
# diferent coloration.
# Start by creatin a black/white lookup table.
vtkLookupTable bwLut
bwLut SetTableRange 0 2000
bwLut SetSaturationRange 0 0
bwLut SetHueRange 0 0
bwLut SetValueRange 0 1
# Now create a lookup table that consists of the full hue circle (from HSV).
vtkLookupTable hueLut
hueLut SetTableRange 0 2000
hueLut SetHueRange 0 1
hueLut SetSaturationRange 1 1
hueLut SetValueRange 1 1
# Finally, create a lookup table with a single hue but having a range
# in the saturation of the hue.
vtkLookupTable satLut
satLut SetTableRange 0 2000
satLut SetHueRange .6 .6
satLut SetSaturationRange 0 1
satLut SetValueRange 1 1
# Create the first of the three planes. The filter vtkImageMapToColors
# maps the data through the corresponding lookup table created above.
# The vtkImageActor is a type of vtkProp and conveniently displays an image
# on a single quadrilateral plane. It does this using texture mapping and
# as a result is quite fast. (Note: the input image has to be unsigned
# char values, which the vtkImageMapToColors produces.) Note also that
# by specifying the DisplayExtent, the pipeline requests data of this
# extent and the vtkImageMapToColors only processes a slice of data.
vtkImageMapToColors saggitalColors
saggitalColors SetInputConnection [v16 GetOutputPort]
saggitalColors SetLookupTable bwLut
vtkImageActor saggital
saggital SetInput [saggitalColors GetOutput]
saggital SetDisplayExtent 32 32 0 63 0 92
# Create the second (axial) plane of the three planes. We use the same
# approach as before except that the extent differs.
vtkImageMapToColors axialColors
axialColors SetInputConnection [v16 GetOutputPort]
axialColors SetLookupTable hueLut
vtkImageActor axial
axial SetInput [axialColors GetOutput]
axial SetDisplayExtent 0 63 0 63 46 46
# Create the third (coronal) plane of the three planes. We use the same
# approach as before except that the extent differs.
vtkImageMapToColors coronalColors
coronalColors SetInputConnection [v16 GetOutputPort]
coronalColors SetLookupTable satLut
vtkImageActor coronal
coronal SetInput [coronalColors GetOutput]
coronal SetDisplayExtent 0 63 32 32 0 92
# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
vtkCamera aCamera
aCamera SetViewUp 0 0 -1
aCamera SetPosition 0 1 0
aCamera SetFocalPoint 0 0 0
aCamera ComputeViewPlaneNormal
# Actors are added to the renderer.
aRenderer AddActor outline
aRenderer AddActor saggital
aRenderer AddActor axial
aRenderer AddActor coronal
aRenderer AddActor axial
aRenderer AddActor coronal
aRenderer AddActor skin
aRenderer AddActor bone
# Turn off bone for this example.
bone VisibilityOff
# Set skin to semi-transparent.
[skin GetProperty] SetOpacity 0.5
# An initial camera view is created. The Dolly() method moves
# the camera towards the FocalPoint, thereby enlarging the image.
aRenderer SetActiveCamera aCamera
aRenderer ResetCamera
aCamera Dolly 1.5
# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
aRenderer SetBackground 1 1 1
renWin SetSize 640 480
# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
aRenderer ResetCameraClippingRange
# Set up a callback (using command/observer) to bring up the Tcl
# command GUI when the keypress-u (UserEvent) key is pressed.
iren AddObserver UserEvent {wm deiconify .vtkInteract}
# Interact with data. The Tcl/Tk event loop is started automatically.
iren Initialize
wm withdraw .
|