/usr/share/vtk/Medical/Cxx/Medical3.cxx is in vtk-examples 5.8.0-17.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | /*=========================================================================
Program: Visualization Toolkit
Module: Medical3.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
//
// This example reads a volume dataset, extracts two isosurfaces that
// represent the skin and bone, creates three orthogonal planes
// (sagittal, axial, coronal), and displays them.
//
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkVolume16Reader.h>
#include <vtkPolyDataMapper.h>
#include <vtkActor.h>
#include <vtkOutlineFilter.h>
#include <vtkCamera.h>
#include <vtkStripper.h>
#include <vtkLookupTable.h>
#include <vtkImageDataGeometryFilter.h>
#include <vtkProperty.h>
#include <vtkPolyDataNormals.h>
#include <vtkContourFilter.h>
#include <vtkImageData.h>
#include <vtkImageMapToColors.h>
#include <vtkImageActor.h>
#include <vtkSmartPointer.h>
int main (int argc, char *argv[])
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
return EXIT_FAILURE;
}
// Create the renderer, the render window, and the interactor. The
// renderer draws into the render window, the interactor enables
// mouse- and keyboard-based interaction with the data within the
// render window.
//
vtkSmartPointer<vtkRenderer> aRenderer = vtkSmartPointer<vtkRenderer>::New();
vtkSmartPointer<vtkRenderWindow> renWin =
vtkSmartPointer<vtkRenderWindow>::New();
renWin->AddRenderer(aRenderer);
vtkSmartPointer<vtkRenderWindowInteractor> iren =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
iren->SetRenderWindow(renWin);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
aRenderer->SetBackground(.2, .3, .4);
renWin->SetSize(640, 480);
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The
// reader uses the FilePrefix in combination with the slice number to
// construct filenames using the format FilePrefix.%d. (In this case
// the FilePrefix is the root name of the file: quarter.)
vtkSmartPointer<vtkVolume16Reader> v16 =
vtkSmartPointer<vtkVolume16Reader>::New();
v16->SetDataDimensions(64,64);
v16->SetImageRange(1, 93);
v16->SetDataByteOrderToLittleEndian();
v16->SetFilePrefix (argv[1]);
v16->SetDataSpacing (3.2, 3.2, 1.5);
v16->Update();
// An isosurface, or contour value of 500 is known to correspond to
// the skin of the patient. Once generated, a vtkPolyDataNormals
// filter is is used to create normals for smooth surface shading
// during rendering. The triangle stripper is used to create triangle
// strips from the isosurface; these render much faster on may
// systems.
vtkSmartPointer<vtkContourFilter> skinExtractor =
vtkSmartPointer<vtkContourFilter>::New();
skinExtractor->SetInputConnection( v16->GetOutputPort());
skinExtractor->SetValue(0, 500);
skinExtractor->Update();
vtkSmartPointer<vtkPolyDataNormals> skinNormals =
vtkSmartPointer<vtkPolyDataNormals>::New();
skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
skinNormals->SetFeatureAngle(60.0);
skinNormals->Update();
vtkSmartPointer<vtkStripper> skinStripper =
vtkSmartPointer<vtkStripper>::New();
skinStripper->SetInputConnection(skinNormals->GetOutputPort());
skinStripper->Update();
vtkSmartPointer<vtkPolyDataMapper> skinMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
skinMapper->SetInputConnection(skinStripper->GetOutputPort());
skinMapper->ScalarVisibilityOff();
vtkSmartPointer<vtkActor> skin =
vtkSmartPointer<vtkActor>::New();
skin->SetMapper(skinMapper);
skin->GetProperty()->SetDiffuseColor(1, .49, .25);
skin->GetProperty()->SetSpecular(.3);
skin->GetProperty()->SetSpecularPower(20);
// An isosurface, or contour value of 1150 is known to correspond to
// the skin of the patient. Once generated, a vtkPolyDataNormals
// filter is is used to create normals for smooth surface shading
// during rendering. The triangle stripper is used to create triangle
// strips from the isosurface; these render much faster on may
// systems.
vtkSmartPointer<vtkContourFilter> boneExtractor =
vtkSmartPointer<vtkContourFilter>::New();
boneExtractor->SetInputConnection(v16->GetOutputPort());
boneExtractor->SetValue(0, 1150);
vtkSmartPointer<vtkPolyDataNormals> boneNormals =
vtkSmartPointer<vtkPolyDataNormals>::New();
boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
boneNormals->SetFeatureAngle(60.0);
vtkSmartPointer<vtkStripper> boneStripper =
vtkSmartPointer<vtkStripper>::New();
boneStripper->SetInputConnection(boneNormals->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> boneMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
boneMapper->SetInputConnection(boneStripper->GetOutputPort());
boneMapper->ScalarVisibilityOff();
vtkSmartPointer<vtkActor> bone =
vtkSmartPointer<vtkActor>::New();
bone->SetMapper(boneMapper);
bone->GetProperty()->SetDiffuseColor(1, 1, .9412);
// An outline provides context around the data.
//
vtkSmartPointer<vtkOutlineFilter> outlineData =
vtkSmartPointer<vtkOutlineFilter>::New();
outlineData->SetInputConnection(v16->GetOutputPort());
outlineData->Update();
vtkSmartPointer<vtkPolyDataMapper> mapOutline =
vtkSmartPointer<vtkPolyDataMapper>::New();
mapOutline->SetInputConnection(outlineData->GetOutputPort());
vtkSmartPointer<vtkActor> outline =
vtkSmartPointer<vtkActor>::New();
outline->SetMapper(mapOutline);
outline->GetProperty()->SetColor(0,0,0);
// Now we are creating three orthogonal planes passing through the
// volume. Each plane uses a different texture map and therefore has
// different coloration.
// Start by creating a black/white lookup table.
vtkSmartPointer<vtkLookupTable> bwLut =
vtkSmartPointer<vtkLookupTable>::New();
bwLut->SetTableRange (0, 2000);
bwLut->SetSaturationRange (0, 0);
bwLut->SetHueRange (0, 0);
bwLut->SetValueRange (0, 1);
bwLut->Build(); //effective built
// Now create a lookup table that consists of the full hue circle
// (from HSV).
vtkSmartPointer<vtkLookupTable> hueLut =
vtkSmartPointer<vtkLookupTable>::New();
hueLut->SetTableRange (0, 2000);
hueLut->SetHueRange (0, 1);
hueLut->SetSaturationRange (1, 1);
hueLut->SetValueRange (1, 1);
hueLut->Build(); //effective built
// Finally, create a lookup table with a single hue but having a range
// in the saturation of the hue.
vtkSmartPointer<vtkLookupTable> satLut =
vtkSmartPointer<vtkLookupTable>::New();
satLut->SetTableRange (0, 2000);
satLut->SetHueRange (.6, .6);
satLut->SetSaturationRange (0, 1);
satLut->SetValueRange (1, 1);
satLut->Build(); //effective built
// Create the first of the three planes. The filter vtkImageMapToColors
// maps the data through the corresponding lookup table created above. The
// vtkImageActor is a type of vtkProp and conveniently displays an image on
// a single quadrilateral plane. It does this using texture mapping and as
// a result is quite fast. (Note: the input image has to be unsigned char
// values, which the vtkImageMapToColors produces.) Note also that by
// specifying the DisplayExtent, the pipeline requests data of this extent
// and the vtkImageMapToColors only processes a slice of data.
vtkSmartPointer<vtkImageMapToColors> sagittalColors =
vtkSmartPointer<vtkImageMapToColors>::New();
sagittalColors->SetInputConnection(v16->GetOutputPort());
sagittalColors->SetLookupTable(bwLut);
sagittalColors->Update();
vtkSmartPointer<vtkImageActor> sagittal =
vtkSmartPointer<vtkImageActor>::New();
sagittal->SetInput(sagittalColors->GetOutput());
sagittal->SetDisplayExtent(32,32, 0,63, 0,92);
// Create the second (axial) plane of the three planes. We use the
// same approach as before except that the extent differs.
vtkSmartPointer<vtkImageMapToColors> axialColors =
vtkSmartPointer<vtkImageMapToColors>::New();
axialColors->SetInputConnection(v16->GetOutputPort());
axialColors->SetLookupTable(hueLut);
axialColors->Update();
vtkSmartPointer<vtkImageActor> axial =
vtkSmartPointer<vtkImageActor>::New();
axial->SetInput(axialColors->GetOutput());
axial->SetDisplayExtent(0,63, 0,63, 46,46);
// Create the third (coronal) plane of the three planes. We use
// the same approach as before except that the extent differs.
vtkSmartPointer<vtkImageMapToColors> coronalColors =
vtkSmartPointer<vtkImageMapToColors>::New();
coronalColors->SetInputConnection(v16->GetOutputPort());
coronalColors->SetLookupTable(satLut);
coronalColors->Update();
vtkSmartPointer<vtkImageActor> coronal =
vtkSmartPointer<vtkImageActor>::New();
coronal->SetInput(coronalColors->GetOutput());
coronal->SetDisplayExtent(0,63, 32,32, 0,92);
// It is convenient to create an initial view of the data. The
// FocalPoint and Position form a vector direction. Later on
// (ResetCamera() method) this vector is used to position the camera
// to look at the data in this direction.
vtkSmartPointer<vtkCamera> aCamera =
vtkSmartPointer<vtkCamera>::New();
aCamera->SetViewUp (0, 0, -1);
aCamera->SetPosition (0, 1, 0);
aCamera->SetFocalPoint (0, 0, 0);
aCamera->ComputeViewPlaneNormal();
aCamera->Azimuth(30.0);
aCamera->Elevation(30.0);
// Actors are added to the renderer.
aRenderer->AddActor(outline);
aRenderer->AddActor(sagittal);
aRenderer->AddActor(axial);
aRenderer->AddActor(coronal);
aRenderer->AddActor(skin);
aRenderer->AddActor(bone);
// Turn off bone for this example.
bone->VisibilityOff();
// Set skin to semi-transparent.
skin->GetProperty()->SetOpacity(0.5);
// An initial camera view is created. The Dolly() method moves
// the camera towards the FocalPoint, thereby enlarging the image.
aRenderer->SetActiveCamera(aCamera);
// Calling Render() directly on a vtkRenderer is strictly forbidden.
// Only calling Render() on the vtkRenderWindow is a valid call.
renWin->Render();
aRenderer->ResetCamera ();
aCamera->Dolly(1.5);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
aRenderer->ResetCameraClippingRange ();
// interact with data
iren->Initialize();
iren->Start();
return EXIT_SUCCESS;
}
|