This file is indexed.

/usr/share/vtk/Medical/Cxx/Medical3.cxx is in vtk-examples 5.8.0-17.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    Medical3.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

// 
// This example reads a volume dataset, extracts two isosurfaces that
// represent the skin and bone, creates three orthogonal planes 
// (sagittal, axial, coronal), and displays them.
//
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkVolume16Reader.h>
#include <vtkPolyDataMapper.h>
#include <vtkActor.h>
#include <vtkOutlineFilter.h>
#include <vtkCamera.h>
#include <vtkStripper.h>
#include <vtkLookupTable.h>
#include <vtkImageDataGeometryFilter.h>
#include <vtkProperty.h>
#include <vtkPolyDataNormals.h>
#include <vtkContourFilter.h>
#include <vtkImageData.h>
#include <vtkImageMapToColors.h>
#include <vtkImageActor.h>
#include <vtkSmartPointer.h>

int main (int argc, char *argv[])
{
  if (argc < 2)
    {
    cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
    return EXIT_FAILURE;
    }

  // Create the renderer, the render window, and the interactor. The
  // renderer draws into the render window, the interactor enables
  // mouse- and keyboard-based interaction with the data within the
  // render window.
  //
  vtkSmartPointer<vtkRenderer> aRenderer = vtkSmartPointer<vtkRenderer>::New();
  vtkSmartPointer<vtkRenderWindow> renWin =
    vtkSmartPointer<vtkRenderWindow>::New();
  renWin->AddRenderer(aRenderer);
  vtkSmartPointer<vtkRenderWindowInteractor> iren =
    vtkSmartPointer<vtkRenderWindowInteractor>::New();
  iren->SetRenderWindow(renWin);

  // Set a background color for the renderer and set the size of the
  // render window (expressed in pixels).
  aRenderer->SetBackground(.2, .3, .4);
  renWin->SetSize(640, 480);
  
  // The following reader is used to read a series of 2D slices (images)
  // that compose the volume. The slice dimensions are set, and the
  // pixel spacing. The data Endianness must also be specified. The
  // reader uses the FilePrefix in combination with the slice number to
  // construct filenames using the format FilePrefix.%d. (In this case
  // the FilePrefix is the root name of the file: quarter.)
  vtkSmartPointer<vtkVolume16Reader> v16 =
    vtkSmartPointer<vtkVolume16Reader>::New();
  v16->SetDataDimensions(64,64);
  v16->SetImageRange(1, 93);
  v16->SetDataByteOrderToLittleEndian();
  v16->SetFilePrefix (argv[1]);
  v16->SetDataSpacing (3.2, 3.2, 1.5);
  v16->Update();

  // An isosurface, or contour value of 500 is known to correspond to
  // the skin of the patient. Once generated, a vtkPolyDataNormals
  // filter is is used to create normals for smooth surface shading
  // during rendering.  The triangle stripper is used to create triangle
  // strips from the isosurface; these render much faster on may
  // systems.
  vtkSmartPointer<vtkContourFilter> skinExtractor =
    vtkSmartPointer<vtkContourFilter>::New();
  skinExtractor->SetInputConnection( v16->GetOutputPort());
  skinExtractor->SetValue(0, 500);
  skinExtractor->Update();

  vtkSmartPointer<vtkPolyDataNormals> skinNormals =
    vtkSmartPointer<vtkPolyDataNormals>::New();
  skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
  skinNormals->SetFeatureAngle(60.0);
  skinNormals->Update();

  vtkSmartPointer<vtkStripper> skinStripper =
    vtkSmartPointer<vtkStripper>::New();
  skinStripper->SetInputConnection(skinNormals->GetOutputPort());
  skinStripper->Update();

  vtkSmartPointer<vtkPolyDataMapper> skinMapper =
    vtkSmartPointer<vtkPolyDataMapper>::New();
  skinMapper->SetInputConnection(skinStripper->GetOutputPort());
  skinMapper->ScalarVisibilityOff();

  vtkSmartPointer<vtkActor> skin =
    vtkSmartPointer<vtkActor>::New();
  skin->SetMapper(skinMapper);
  skin->GetProperty()->SetDiffuseColor(1, .49, .25);
  skin->GetProperty()->SetSpecular(.3);
  skin->GetProperty()->SetSpecularPower(20);

  // An isosurface, or contour value of 1150 is known to correspond to
  // the skin of the patient. Once generated, a vtkPolyDataNormals
  // filter is is used to create normals for smooth surface shading
  // during rendering.  The triangle stripper is used to create triangle
  // strips from the isosurface; these render much faster on may
  // systems.
  vtkSmartPointer<vtkContourFilter> boneExtractor =
    vtkSmartPointer<vtkContourFilter>::New();
  boneExtractor->SetInputConnection(v16->GetOutputPort());
  boneExtractor->SetValue(0, 1150);

  vtkSmartPointer<vtkPolyDataNormals> boneNormals =
    vtkSmartPointer<vtkPolyDataNormals>::New();
  boneNormals->SetInputConnection(boneExtractor->GetOutputPort());
  boneNormals->SetFeatureAngle(60.0);

  vtkSmartPointer<vtkStripper> boneStripper =
    vtkSmartPointer<vtkStripper>::New();
  boneStripper->SetInputConnection(boneNormals->GetOutputPort());

  vtkSmartPointer<vtkPolyDataMapper> boneMapper =
    vtkSmartPointer<vtkPolyDataMapper>::New();
  boneMapper->SetInputConnection(boneStripper->GetOutputPort());
  boneMapper->ScalarVisibilityOff();

  vtkSmartPointer<vtkActor> bone =
    vtkSmartPointer<vtkActor>::New();
  bone->SetMapper(boneMapper);
  bone->GetProperty()->SetDiffuseColor(1, 1, .9412);

  // An outline provides context around the data.
  //
  vtkSmartPointer<vtkOutlineFilter> outlineData =
    vtkSmartPointer<vtkOutlineFilter>::New();
  outlineData->SetInputConnection(v16->GetOutputPort());
  outlineData->Update();

  vtkSmartPointer<vtkPolyDataMapper> mapOutline =
    vtkSmartPointer<vtkPolyDataMapper>::New();
  mapOutline->SetInputConnection(outlineData->GetOutputPort());

  vtkSmartPointer<vtkActor> outline =
    vtkSmartPointer<vtkActor>::New();
  outline->SetMapper(mapOutline);
  outline->GetProperty()->SetColor(0,0,0);

  // Now we are creating three orthogonal planes passing through the
  // volume. Each plane uses a different texture map and therefore has
  // different coloration.

  // Start by creating a black/white lookup table.
  vtkSmartPointer<vtkLookupTable> bwLut =
    vtkSmartPointer<vtkLookupTable>::New();
  bwLut->SetTableRange (0, 2000);
  bwLut->SetSaturationRange (0, 0);
  bwLut->SetHueRange (0, 0);
  bwLut->SetValueRange (0, 1);
  bwLut->Build(); //effective built

  // Now create a lookup table that consists of the full hue circle
  // (from HSV).
  vtkSmartPointer<vtkLookupTable> hueLut =
    vtkSmartPointer<vtkLookupTable>::New();
  hueLut->SetTableRange (0, 2000);
  hueLut->SetHueRange (0, 1);
  hueLut->SetSaturationRange (1, 1);
  hueLut->SetValueRange (1, 1);
  hueLut->Build(); //effective built

  // Finally, create a lookup table with a single hue but having a range
  // in the saturation of the hue.
  vtkSmartPointer<vtkLookupTable> satLut =
    vtkSmartPointer<vtkLookupTable>::New();
  satLut->SetTableRange (0, 2000);
  satLut->SetHueRange (.6, .6);
  satLut->SetSaturationRange (0, 1);
  satLut->SetValueRange (1, 1);
  satLut->Build(); //effective built

  // Create the first of the three planes. The filter vtkImageMapToColors
  // maps the data through the corresponding lookup table created above.  The
  // vtkImageActor is a type of vtkProp and conveniently displays an image on
  // a single quadrilateral plane. It does this using texture mapping and as
  // a result is quite fast. (Note: the input image has to be unsigned char
  // values, which the vtkImageMapToColors produces.) Note also that by
  // specifying the DisplayExtent, the pipeline requests data of this extent
  // and the vtkImageMapToColors only processes a slice of data.
  vtkSmartPointer<vtkImageMapToColors> sagittalColors =
    vtkSmartPointer<vtkImageMapToColors>::New();
  sagittalColors->SetInputConnection(v16->GetOutputPort());
  sagittalColors->SetLookupTable(bwLut);
  sagittalColors->Update();

  vtkSmartPointer<vtkImageActor> sagittal =
    vtkSmartPointer<vtkImageActor>::New();
  sagittal->SetInput(sagittalColors->GetOutput());
  sagittal->SetDisplayExtent(32,32, 0,63, 0,92);

  // Create the second (axial) plane of the three planes. We use the
  // same approach as before except that the extent differs.
  vtkSmartPointer<vtkImageMapToColors> axialColors =
    vtkSmartPointer<vtkImageMapToColors>::New();
  axialColors->SetInputConnection(v16->GetOutputPort());
  axialColors->SetLookupTable(hueLut);
  axialColors->Update();

  vtkSmartPointer<vtkImageActor> axial =
    vtkSmartPointer<vtkImageActor>::New();
  axial->SetInput(axialColors->GetOutput());
  axial->SetDisplayExtent(0,63, 0,63, 46,46);

  // Create the third (coronal) plane of the three planes. We use 
  // the same approach as before except that the extent differs.
  vtkSmartPointer<vtkImageMapToColors> coronalColors =
    vtkSmartPointer<vtkImageMapToColors>::New();
  coronalColors->SetInputConnection(v16->GetOutputPort());
  coronalColors->SetLookupTable(satLut);
  coronalColors->Update();

  vtkSmartPointer<vtkImageActor> coronal =
    vtkSmartPointer<vtkImageActor>::New();
  coronal->SetInput(coronalColors->GetOutput());
  coronal->SetDisplayExtent(0,63, 32,32, 0,92);

  // It is convenient to create an initial view of the data. The
  // FocalPoint and Position form a vector direction. Later on
  // (ResetCamera() method) this vector is used to position the camera
  // to look at the data in this direction.
  vtkSmartPointer<vtkCamera> aCamera =
    vtkSmartPointer<vtkCamera>::New();
  aCamera->SetViewUp (0, 0, -1);
  aCamera->SetPosition (0, 1, 0);
  aCamera->SetFocalPoint (0, 0, 0);
  aCamera->ComputeViewPlaneNormal();
  aCamera->Azimuth(30.0);
  aCamera->Elevation(30.0);

  // Actors are added to the renderer. 
  aRenderer->AddActor(outline);
  aRenderer->AddActor(sagittal);
  aRenderer->AddActor(axial);
  aRenderer->AddActor(coronal);
  aRenderer->AddActor(skin);
  aRenderer->AddActor(bone);

  // Turn off bone for this example.
  bone->VisibilityOff();

  // Set skin to semi-transparent.
  skin->GetProperty()->SetOpacity(0.5);

  // An initial camera view is created.  The Dolly() method moves 
  // the camera towards the FocalPoint, thereby enlarging the image.
  aRenderer->SetActiveCamera(aCamera);
  
  // Calling Render() directly on a vtkRenderer is strictly forbidden.
  // Only calling Render() on the vtkRenderWindow is a valid call.
  renWin->Render();
  
  aRenderer->ResetCamera ();
  aCamera->Dolly(1.5);
  
  // Note that when camera movement occurs (as it does in the Dolly()
  // method), the clipping planes often need adjusting. Clipping planes
  // consist of two planes: near and far along the view direction. The 
  // near plane clips out objects in front of the plane; the far plane
  // clips out objects behind the plane. This way only what is drawn
  // between the planes is actually rendered.
  aRenderer->ResetCameraClippingRange ();

  // interact with data
  iren->Initialize();
  iren->Start(); 

  return EXIT_SUCCESS;
}