This file is indexed.

/usr/share/vtk/Annotation/Python/xyPlot.py is in vtk-examples 5.8.0-17.5.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python

# This example demonstrates the use of vtkXYPlotActor to display three
# probe lines using three different techniques.  In this example, we
# are loading data using the vtkPLOT3DReader.  We are using the
# vtkProbeFilter to extract the underlying point data along three
# probe lines.

import vtk
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()

# Create a PLOT3D reader and load the data.
pl3d = vtk.vtkPLOT3DReader()
pl3d.SetXYZFileName(VTK_DATA_ROOT + "/Data/combxyz.bin")
pl3d.SetQFileName(VTK_DATA_ROOT + "/Data/combq.bin")
pl3d.SetScalarFunctionNumber(100)
pl3d.SetVectorFunctionNumber(202)
pl3d.Update()

# Create three the line source to use for the probe lines.
line = vtk.vtkLineSource()
line.SetResolution(30)

# Move the line into place and create the probe filter.  For
# vtkProbeFilter, the probe line is the input, and the underlying data
# set is the source.
transL1 = vtk.vtkTransform()
transL1.Translate(3.7, 0.0, 28.37)
transL1.Scale(5, 5, 5)
transL1.RotateY(90)
tf = vtk.vtkTransformPolyDataFilter()
tf.SetInputConnection(line.GetOutputPort())
tf.SetTransform(transL1)
probe = vtk.vtkProbeFilter()
probe.SetInputConnection(tf.GetOutputPort())
probe.SetSource(pl3d.GetOutput())

# Move the line again and create another probe filter.
transL2 = vtk.vtkTransform()
transL2.Translate(9.2, 0.0, 31.20)
transL2.Scale(5, 5, 5)
transL2.RotateY(90)
tf2 = vtk.vtkTransformPolyDataFilter()
tf2.SetInputConnection(line.GetOutputPort())
tf2.SetTransform(transL2)
probe2 = vtk.vtkProbeFilter()
probe2.SetInputConnection(tf2.GetOutputPort())
probe2.SetSource(pl3d.GetOutput())

# Move the line again and create a third probe filter.
transL3 = vtk.vtkTransform()
transL3.Translate(13.27, 0.0, 33.40)
transL3.Scale(4.5, 4.5, 4.5)
transL3.RotateY(90)
tf3 = vtk.vtkTransformPolyDataFilter()
tf3.SetInputConnection(line.GetOutputPort())
tf3.SetTransform(transL3)
probe3 = vtk.vtkProbeFilter()
probe3.SetInputConnection(tf3.GetOutputPort())
probe3.SetSource(pl3d.GetOutput())

# Create a vtkAppendPolyData to merge the output of the three probe
# filters into one data set.
appendF = vtk.vtkAppendPolyData()
appendF.AddInput(probe.GetPolyDataOutput())
appendF.AddInput(probe2.GetPolyDataOutput())
appendF.AddInput(probe3.GetPolyDataOutput())

# Create a tube filter to represent the lines as tubes.  Set up the
# associated mapper and actor.
tuber = vtk.vtkTubeFilter()
tuber.SetInputConnection(appendF.GetOutputPort())
tuber.SetRadius(0.1)
lineMapper = vtk.vtkPolyDataMapper()
lineMapper.SetInputConnection(tuber.GetOutputPort())
lineActor = vtk.vtkActor()
lineActor.SetMapper(lineMapper)

# Create an xy-plot using the output of the 3 probe filters as input.
# The x-values we are plotting are arc length.
xyplot = vtk.vtkXYPlotActor()
xyplot.AddInput(probe.GetOutput())
xyplot.AddInput(probe2.GetOutput())
xyplot.AddInput(probe3.GetOutput())
xyplot.GetPositionCoordinate().SetValue(0.0, 0.67, 0)
xyplot.GetPosition2Coordinate().SetValue(1.0, 0.33, 0) #relative to Position
xyplot.SetXValuesToArcLength()
xyplot.SetNumberOfXLabels(6)
xyplot.SetTitle("Pressure vs. Arc Length (Zoomed View)")
xyplot.SetXTitle("")
xyplot.SetYTitle("P")
xyplot.SetXRange(.1, .35)
xyplot.SetYRange(.2, .4)
xyplot.GetProperty().SetColor(0, 0, 0)
xyplot.GetProperty().SetLineWidth(2)
# Set text prop color (same color for backward compat with test)
# Assign same object to all text props
tprop = xyplot.GetTitleTextProperty()
tprop.SetColor(xyplot.GetProperty().GetColor())
xyplot.SetAxisTitleTextProperty(tprop)
xyplot.SetAxisLabelTextProperty(tprop)

# Create an xy-plot using the output of the 3 probe filters as input.
# The x-values we are plotting are normalized arc length.
xyplot2 = vtk.vtkXYPlotActor()
xyplot2.AddInput(probe.GetOutput())
xyplot2.AddInput(probe2.GetOutput())
xyplot2.AddInput(probe3.GetOutput())
xyplot2.GetPositionCoordinate().SetValue(0.00, 0.33, 0)
xyplot2.GetPosition2Coordinate().SetValue(1.0, 0.33, 0) #relative to Position
xyplot2.SetXValuesToNormalizedArcLength()
xyplot2.SetNumberOfXLabels(6)
xyplot2.SetTitle("Pressure vs. Normalized Arc Length")
xyplot2.SetXTitle("")
xyplot2.SetYTitle("P")
xyplot2.PlotPointsOn()
xyplot2.PlotLinesOff()
xyplot2.GetProperty().SetColor(1, 0, 0)
xyplot2.GetProperty().SetPointSize(2)
# Set text prop color (same color for backward compat with test)
# Assign same object to all text props
tprop = xyplot2.GetTitleTextProperty()
tprop.SetColor(xyplot2.GetProperty().GetColor())
xyplot2.SetAxisTitleTextProperty(tprop)
xyplot2.SetAxisLabelTextProperty(tprop)

# Create an xy-plot using the output of the 3 probe filters as input.
# The x-values we are plotting are the underlying point data values.
xyplot3 = vtk.vtkXYPlotActor()
xyplot3.AddInput(probe.GetOutput())
xyplot3.AddInput(probe2.GetOutput())
xyplot3.AddInput(probe3.GetOutput())
xyplot3.GetPositionCoordinate().SetValue(0.0, 0.0, 0)
xyplot3.GetPosition2Coordinate().SetValue(1.0, 0.33, 0) #relative to Position
xyplot3.SetXValuesToIndex()
xyplot3.SetNumberOfXLabels(6)
xyplot3.SetTitle("Pressure vs. Point Id")
xyplot3.SetXTitle("Probe Length")
xyplot3.SetYTitle("P")
xyplot3.PlotPointsOn()
xyplot3.GetProperty().SetColor(0, 0, 1)
xyplot3.GetProperty().SetPointSize(3)
# Set text prop color (same color for backward compat with test)
# Assign same object to all text props
tprop = xyplot3.GetTitleTextProperty()
tprop.SetColor(xyplot3.GetProperty().GetColor())
xyplot3.SetAxisTitleTextProperty(tprop)
xyplot3.SetAxisLabelTextProperty(tprop)

# Draw an outline of the PLOT3D data set.
outline = vtk.vtkStructuredGridOutlineFilter()
outline.SetInputConnection(pl3d.GetOutputPort())
outlineMapper = vtk.vtkPolyDataMapper()
outlineMapper.SetInputConnection(outline.GetOutputPort())
outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)
outlineActor.GetProperty().SetColor(0, 0, 0)

# Create the Renderers, RenderWindow, and RenderWindowInteractor.
ren = vtk.vtkRenderer()
ren2 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
renWin.AddRenderer(ren2)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)

# Set the background, viewport (necessary because we want to have the
# renderers draw to different parts of the render window) of the first
# renderer.  Add the outline and line actors to the renderer.
ren.SetBackground(0.6784, 0.8471, 0.9020)
ren.SetViewport(0, 0, .5, 1)
ren.AddActor(outlineActor)
ren.AddActor(lineActor)

# Set the background and viewport of the second renderer.  Add the
# xy-plot actors to the renderer.  Set the size of the render window.
ren2.SetBackground(1, 1, 1)
ren2.SetViewport(0.5, 0.0, 1.0, 1.0)
ren2.AddActor2D(xyplot)
ren2.AddActor2D(xyplot2)
ren2.AddActor2D(xyplot3)
renWin.SetSize(500, 250)

# Set up the camera parameters.
cam1 = ren.GetActiveCamera()
cam1.SetClippingRange(3.95297, 100)
cam1.SetFocalPoint(8.88908, 0.595038, 29.3342)
cam1.SetPosition(-12.3332, 31.7479, 41.2387)
cam1.SetViewUp(0.060772, -0.319905, 0.945498)

iren.Initialize()
renWin.Render()
iren.Start()