This file is indexed.

/usr/share/tcltk/tcllib1.16/struct/graphops.tcl is in tcllib 1.16-dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
# graphops.tcl --
#
#	Operations on and algorithms for graph data structures.
#
# Copyright (c) 2008 Alejandro Paz <vidriloco@gmail.com>, algorithm implementation
# Copyright (c) 2008 Andreas Kupries, integration with Tcllib's struct::graph
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: graphops.tcl,v 1.19 2009/09/24 19:30:10 andreas_kupries Exp $

# ### ### ### ######### ######### #########
## Requisites

package require Tcl 8.5

package require struct::disjointset ; # Used by kruskal
package require struct::prioqueue   ; # Used by kruskal, prim
package require struct::queue       ; # Used by isBipartite?, connectedComponent(Of)
package require struct::stack       ; # Used by tarjan
package require struct::graph       ; # isBridge, isCutVertex
package require struct::tree        ; # Used by BFS

# ### ### ### ######### ######### #########
##

namespace eval ::struct::graph::op {}

# ### ### ### ######### ######### #########
##

# This command constructs an adjacency matrix representation of the
# graph argument.

# Reference: http://en.wikipedia.org/wiki/Adjacency_matrix
#
# Note: The reference defines the matrix in such a way that some of
#       the limitations of the code here are not present. I.e. the
#       definition at wikipedia deals properly with arc directionality
#       and parallelism.
#
# TODO: Rework the code so that the result is in line with the reference.
#       Add features to handle weights as well.

proc ::struct::graph::op::toAdjacencyMatrix {g} {
    set nodeList [lsort -dict [$g nodes]]
    # Note the lsort. This is used to impose some order on the matrix,
    # for comparability of results. Otherwise different versions of
    # Tcl and struct::graph (critcl) may generate different, yet
    # equivalent matrices, dependent on things like the order a hash
    # search is done, or nodes have been added to the graph, or ...

    # Fill an array for index tracking later. Note how we start from
    # index 1. This allows us avoid multiple expr+1 later on when
    # iterating over the nodes and converting the names to matrix
    # indices. See (*).

    set i 1
    foreach n  $nodeList {
	set nodeDict($n) $i
	incr i
    }

    set matrix {}
    lappend matrix [linsert $nodeList 0 {}]

    # Setting up a template row with all of it's elements set to zero.

    set baseRow 0
    foreach n $nodeList {
	lappend baseRow 0
    }

    foreach node $nodeList {

	# The first element in every row is the name of its
	# corresponding node. Using lreplace to overwrite the initial
	# data in the template we get a copy apart from the template,
	# which we can then modify further.

	set currentRow [lreplace $baseRow 0 0 $node]

	# Iterate over the neighbours, also known as 'adjacent'
	# rows. The exact set of neighbours depends on the mode.

	foreach neighbour [$g nodes -adj $node] {
	    # Set value for neighbour on this node list
	    set at $nodeDict($neighbour)

	    # (*) Here we avoid +1 due to starting from index 1 in the
	    #     initialization of nodeDict.
	    set currentRow [lreplace $currentRow $at $at 1]
	}
	lappend matrix $currentRow
    }

    # The resulting matrix is a list of lists, size (n+1)^2 where n =
    # number of nodes. First row and column (index 0) are node
    # names. The other entries are boolean flags. True when an arc is
    # present, False otherwise. The matrix represents an
    # un-directional form of the graph with parallel arcs collapsed.

    return $matrix
}

#Adjacency List
#-------------------------------------------------------------------------------------
#Procedure creates for graph G, it's representation as Adjacency List.
#
#In comparison to Adjacency Matrix it doesn't force using array with quite big
#size - V^2, where V is a number of vertices ( instead, memory we need is about O(E) ).
#It's especially important when concerning rare graphs ( graphs with amount of vertices
#far bigger than amount of edges ). In practise, it turns out that generally,
#Adjacency List is more effective. Moreover, going through the set of edges take
#less time ( O(E) instead of O(E^2) ) and adding new edges is rapid.
#On the other hand, checking if particular edge exists in graph G takes longer
#( checking if edge {v1,v2} belongs to E(G) in proportion to min{deg(v1,v2)} ).
#Deleting an edge is also longer - in proportion to max{ deg(v1), deg(v2) }.
#
#Input:
# graph G ( directed or undirected ). Default is undirected.
#
#Output:
# Adjacency List for graph G, represented by dictionary containing lists of adjacent nodes
#for each node in G (key).
#
#Options:
# -weights - adds to returning dictionary arc weights for each connection between nodes, so
#each node returned by list as adjacent has additional parameter - weight of arc between him and
#current node.
# -directed - sets graph G to be interpreted as directed graph.
#
#Reference:
#http://en.wikipedia.org/wiki/Adjacency_list
#

proc ::struct::graph::op::toAdjacencyList {G args} {

    set arcTraversal "undirected"
    set weightsOn 0

    #options for procedure
    foreach option $args {
	switch -exact -- $option {
	    -directed {
		set arcTraversal "directed"
	    }
	    -weights {
		#checking if all edges have their weights set
		VerifyWeightsAreOk $G
		set weightsOn 1
	    }
	    default {
		return -code error "Bad option \"$option\". Expected -directed or -weights"
	    }
	}
    }

    set V [lsort -dict [$G nodes]]

    #mainloop
    switch -exact -- $arcTraversal {
	undirected {
	    #setting up the Adjacency List with nodes
	    foreach v [lsort -dict [$G nodes]] {
		dict set AdjacencyList $v {}
	    }
	    #appending the edges adjacent to nodes
	    foreach e [$G arcs] {

		set v [$G arc source $e]
		set u [$G arc target $e]

		if { !$weightsOn } {
		    dict lappend AdjacencyList $v $u
		    dict lappend AdjacencyList $u $v
		} else {
		    dict lappend AdjacencyList $v [list $u [$G arc getweight $e]]
		    dict lappend AdjacencyList $u [list $v [$G arc getweight $e]]
		}
	    }
	    #deleting duplicated edges
	    foreach x [dict keys $AdjacencyList] {
		dict set AdjacencyList $x [lsort -unique [dict get $AdjacencyList $x]]
	    }
	}
	directed {
	    foreach v $V {
		set E [$G arcs -out $v]
		set adjNodes {}
		foreach e $E {
		    if { !$weightsOn } {
			lappend adjNodes [$G arc target $e]
		    } else {
			lappend adjNodes [list [$G arc target $e] [$G arc getweight $e]]
		    }
		}
		dict set AdjacencyList $v $adjNodes
	    }
	}
	default {
	    return -code error "Error while executing procedure"
	}
    }

    return $AdjacencyList
}

#Bellman's Ford Algorithm
#-------------------------------------------------------------------------------------
#Searching for shortest paths between chosen node and
#all other nodes in graph G. Based on relaxation method. In comparison to Dijkstra
#it doesn't assume that all weights on edges are positive. However, this generality
#costs us time complexity - O(V*E), where V is number of vertices and E is number
#of edges.
#
#Input:
#Directed graph G, weighted on edges and not containing
#any cycles with negative sum of weights ( the presence of such cycles means
#there is no shortest path, since the total weight becomes lower each time the
#cycle is traversed ). Possible negative weights on edges.
#
#Output:
#dictionary d[u] - distances from start node to each other node in graph G.
#
#Reference: http://en.wikipedia.org/wiki/Bellman-Ford_algorithm
#

proc ::struct::graph::op::BellmanFord { G startnode } {

    #checking if all edges have their weights set
    VerifyWeightsAreOk $G

    #checking if the startnode exists in given graph G
    if {![$G node exists $startnode]} {
	return -code error "node \"$startnode\" does not exist in graph \"$G\""
    }

    #sets of nodes and edges for graph G
    set V [$G nodes]
    set E [$G arcs]

    #initialization
    foreach i $V {
	dict set distances $i Inf
    }

    dict set distances $startnode 0

    #main loop (relaxation)
    for { set i 1 } { $i <= ([dict size $distances]-1) } { incr i } {

	foreach j $E {
	    set u [$G arc source $j]	;# start node of edge j
	    set v [$G arc target $j]	;# end node of edge j

	    if { [ dict get $distances $v ] > [ dict get $distances $u ] + [ $G arc getweight $j ]} {
		dict set distances $v [ expr {[dict get $distances $u] + [$G arc getweight $j]} ]
	    }
	}
    }

    #checking if there exists cycle with negative sum of weights
    foreach i $E {
	set u [$G arc source $i]	;# start node of edge i
	set v [$G arc target $i]	;# end node of edge i

	if { [dict get $distances $v] > [ dict get $distances $u ] + [$G arc getweight $i] } {
	    return -code error "Error. Given graph \"$G\" contains cycle with negative sum of weights."
	}
    }

    return $distances

}


#Johnson's Algorithm
#-------------------------------------------------------------------------------------
#Searching paths between all pairs of vertices in graph. For rare graphs
#asymptotically quicker than Floyd-Warshall's algorithm. Johnson's algorithm
#uses Bellman-Ford's and Dijkstra procedures.
#
#Input:
#Directed graph G, weighted on edges and not containing
#any cycles with negative sum of weights ( the presence of such cycles means
#there is no shortest path, since the total weight becomes lower each time the
#cycle is traversed ). Possible negative weights on edges.
#Possible options:
# 	-filter ( returns only existing distances, cuts all Inf values for
#  non-existing connections between pairs of nodes )
#
#Output:
# Dictionary containing distances between all pairs of vertices
#
#Reference: http://en.wikipedia.org/wiki/Johnson_algorithm
#

proc ::struct::graph::op::Johnsons { G args } {

    #options for procedure
    set displaymode 0
    foreach option $args {
	switch -exact -- $option {
	    -filter {
		set displaymode 1
	    }
	    default {
		return -code error "Bad option \"$option\". Expected -filter"
	    }
	}
    }

    #checking if all edges have their weights set
    VerifyWeightsAreOk $G

    #Transformation of graph G - adding one more node connected with
    #each existing node with an edge, which weight is 0
    set V [$G nodes]
    set s [$G node insert]

    foreach i $V {
	if { $i ne $s } {
	    $G arc insert $s $i
	}
    }

    $G arc setunweighted

    #set potential values with Bellman-Ford's
    set h [BellmanFord $G $s]

    #transformed graph no needed longer - deleting added node and edges
    $G node delete $s

    #setting new weights for edges in graph G
    foreach i [$G arcs] {
	set u [$G arc source $i]
	set v [$G arc target $i]

	lappend weights [$G arc getweight $i]
	$G arc setweight $i [ expr { [$G arc getweight $i] + [dict get $h $u] - [dict get $h $v] } ]
    }

    #finding distances between all pair of nodes with Dijkstra started from each node
    foreach i [$G nodes] {
	set dijkstra [dijkstra $G $i -arcmode directed -outputformat distances]

	foreach j [$G nodes] {
	    if { $i ne $j } {
		if { $displaymode eq 1 } {
		    if { [dict get $dijkstra $j] ne "Inf" } {
			dict set values [list $i $j] [ expr {[ dict get $dijkstra $j] - [dict get $h $i] + [dict get $h $j]} ]
		    }
		} else {
		    dict set values [list $i $j] [ expr {[ dict get $dijkstra $j] - [dict get $h $i] + [dict get $h $j]} ]
		}
	    }
	}
    }

    #setting back edge weights for graph G
    set k 0
    foreach i [$G arcs] {
	$G arc setweight $i [ lindex $weights $k ]
	incr k
    }

    return $values
}


#Floyd-Warshall's Algorithm
#-------------------------------------------------------------------------------------
#Searching shortest paths between all pairs of edges in weighted graphs.
#Time complexity: O(V^3) - where V is number of vertices.
#Memory complexity: O(V^2)
#Input: directed weighted graph G
#Output: dictionary containing shortest distances to each node from each node
#
#Algorithm finds solutions dynamically. It compares all possible paths through the graph
#between each pair of vertices. Graph shouldn't possess any cycle with negative
#sum of weights ( the presence of such cycles means there is no shortest path,
#since the total weight becomes lower each time the cycle is traversed ).
#On the other hand algorithm can be used to find those cycles - if any shortest distance
#found by algorithm for any nodes v and u (when v is the same node as u) is negative,
#that node surely belong to at least one negative cycle.
#
#Reference: http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
#

proc ::struct::graph::op::FloydWarshall { G } {

    VerifyWeightsAreOk $G

    foreach v1 [$G nodes] {
	foreach v2 [$G nodes] {
	    dict set values [list $v1 $v2] Inf
	}
	dict set values [list $v1 $v1] 0
    }

    foreach e [$G arcs] {
	set v1 [$G arc source $e]
	set v2 [$G arc target $e]
	dict set values [list $v1 $v2] [$G arc getweight $e]
    }

    foreach u [$G nodes] {
	foreach v1 [$G nodes] {
	    foreach v2 [$G nodes] {

		set x [dict get $values [list $v1 $u]]
		set y [dict get $values [list $u $v2]]
		set d [ expr {$x + $y}]

		if { [dict get $values [list $v1 $v2]] > $d } {
		    dict set values [list $v1 $v2] $d
		}
	    }
	}
    }
    #finding negative cycles
    foreach v [$G nodes] {
	if { [dict get $values [list $v $v]] < 0 } {
	    return -code error "Error. Given graph \"$G\" contains cycle with negative sum of weights."
	}
    }

    return $values
}

#Metric Travelling Salesman Problem (TSP) - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Travelling salesman problem is a very popular problem in graph theory, where
#we are trying to find minimal Hamilton cycle in weighted complete graph. In other words:
#given a list of cities (nodes) and their pairwise distances (edges), the task is to find
#a shortest possible tour that visits each city exactly once.
#TSP problem is NP-Complete, so there is no efficient algorithm to solve it. Greedy methods
#are getting extremely slow, with the increase in the set of nodes.
#
#For this algorithm we consider a case when for given graph G, the triangle inequality is
#satisfied. So for example, for any three nodes A, B and C the distance between A and C must
#be at most the distance from A to B plus the distance from B to C. What's important
#most of the considered cases in TSP problem will satisfy this condition.
#
#Input: undirected, weighted graph G
#Output: approximated solution of minimum Hamilton Cycle - closed path visiting all nodes,
#each exactly one time.
#
#Reference: http://en.wikipedia.org/wiki/Travelling_salesman_problem
#

proc ::struct::graph::op::MetricTravellingSalesman { G } {

    #checking if graph is connected
    if { ![isConnected? $G] } {
	return -code error "Error. Given graph \"$G\" is not a connected graph."
    }
    #checking if all weights are set
    VerifyWeightsAreOk $G

    # Extend graph to make it complete.
    # NOTE: The graph is modified in place.
    createCompleteGraph $G originalEdges

    #create minimum spanning tree for graph G
    set T [prim $G]

    #TGraph - spanning tree of graph G
    #filling TGraph with edges and nodes
    set TGraph [createTGraph $G $T 0]

    #finding Hamilton cycle
    set result [findHamiltonCycle $TGraph $originalEdges $G]

    $TGraph destroy

    # Note: Fleury, which is the algorithm used to find our the cycle
    # (inside of isEulerian?) is inherently directionless, i.e. it
    # doesn't care about arc direction. This does not matter if our
    # input is a symmetric graph, i.e. u->v and v->u have the same
    # weight for all nodes u, v in G, u != v. But for an asymmetric
    # graph as our input we really have to check the two possible
    # directions of the returned tour for the one with the smaller
    # weight. See test case MetricTravellingSalesman-1.1 for an
    # exmaple.

    set w {}
    foreach a [$G arcs] {
	set u [$G arc source $a]
	set v [$G arc target $a]
	set uv [list $u $v]
	# uv = <$G arc nodes $arc>
	dict set w $uv [$G arc getweight $a]
    }
    foreach k [dict keys $w] {
	lassign $k u v
	set vu [list $v $u]
	if {[dict exists $w $vu]} continue
	dict set w $vu [dict get $w $k]
    }

    set reversed [lreverse $result]

    if {[TourWeight $w $result] > [TourWeight $w $reversed]} {
	return $reversed
    }
    return $result
}

proc ::struct::graph::op::TourWeight {w tour} {
    set total 0
    foreach \
	u [lrange $tour 0 end-1] \
	v [lrange $tour 1 end] {
	    set uv [list $u $v]
	    set total [expr {
			     $total +
			     [dict get $w $uv]
			 }]
	}
    return $total
}

#Christofides Algorithm - for Metric Travelling Salesman Problem (TSP)
#-------------------------------------------------------------------------------------
#Travelling salesman problem is a very popular problem in graph theory, where
#we are trying to find minimal Hamilton cycle in weighted complete graph. In other words:
#given a list of cities (nodes) and their pairwise distances (edges), the task is to find
#a shortest possible tour that visits each city exactly once.
#TSP problem is NP-Complete, so there is no efficient algorithm to solve it. Greedy methods
#are getting extremely slow, with the increase in the set of nodes.
#
#For this algorithm we consider a case when for given graph G, the triangle inequality is
#satisfied. So for example, for any three nodes A, B and C the distance between A and C must
#be at most the distance from A to B plus the distance from B to C. What's important
#most of the considered cases in TSP problem will satisfy this condition.
#
#Christofides is a 3/2 approximation algorithm. For a graph given at input, it returns
#found Hamilton cycle (list of nodes).
#
#Reference: http://en.wikipedia.org/wiki/Christofides_algorithm
#

proc ::struct::graph::op::Christofides { G } {

    #checking if graph is connected
    if { ![isConnected? $G] } {
	return -code error "Error. Given graph \"$G\" is not a connected graph."
    }
    #checking if all weights are set
    VerifyWeightsAreOk $G

    createCompleteGraph $G originalEdges

    #create minimum spanning tree for graph G
    set T [prim $G]

    #setting graph algorithm is working on - spanning tree of graph G
    set TGraph [createTGraph $G $T 1]

    set oddTGraph [struct::graph]

    foreach v [$TGraph nodes] {
	if { [$TGraph node degree $v] % 2 == 1 } {
	    $oddTGraph node insert $v
	}
    }

    #create complete graph
    foreach v [$oddTGraph nodes] {
	foreach u [$oddTGraph nodes] {
	    if { ($u ne $v) && ![$oddTGraph arc exists [list $u $v]] } {
		$oddTGraph arc insert $v $u [list $v $u]
		$oddTGraph arc setweight [list $v $u] [distance $G $v $u]
	    }

	}
    }

    ####
    #		MAX MATCHING HERE!!!
    ####
    set M [GreedyMaxMatching $oddTGraph]

    foreach e [$oddTGraph arcs] {
	if { ![struct::set contains $M $e] } {
	    $oddTGraph arc delete $e
	}
    }

    #operation: M + T
    foreach e [$oddTGraph arcs] {
	set u [$oddTGraph arc source $e]
	set v [$oddTGraph arc target $e]
	set uv [list $u $v]

	# Check if the arc in max-matching is parallel or not, to make
	# sure that we always insert an anti-parallel arc.

	if {[$TGraph arc exists $uv]} {
	    set vu [list $v $u]
	    $TGraph arc insert $v $u $vu
	    $TGraph arc setweight $vu [$oddTGraph arc getweight $e]
	} else {
	    $TGraph arc insert $u $v $uv
	    $TGraph arc setweight $uv [$oddTGraph arc getweight $e]
	}
    }

    #finding Hamilton Cycle
    set result [findHamiltonCycle $TGraph $originalEdges $G]
    $oddTGraph destroy
    $TGraph destroy
    return $result
}

#Greedy Max Matching procedure, which finds maximal ( not maximum ) matching
#for given graph G. It adds edges to solution, beginning from edges with the
#lowest cost.

proc ::struct::graph::op::GreedyMaxMatching {G} {

    set maxMatch {}

    foreach e [sortEdges $G] {
	set v [$G arc source $e]
	set u [$G arc target $e]
	set neighbours [$G arcs -adj $v $u]
	set noAdjacentArcs 1

	lremove neighbours $e

	foreach a $neighbours {
	    if { $a in $maxMatch } {
		set noAdjacentArcs 0
		break
	    }
	}
	if { $noAdjacentArcs } {
	    lappend maxMatch $e
	}
    }

    return $maxMatch
}

#Subprocedure which for given graph G, returns the set of edges
#sorted with their costs.
proc ::struct::graph::op::sortEdges {G} {
    set weights [$G arc weights]

    # NOTE: Look at possible rewrite, simplification.

    set sortedEdges {}

    foreach val [lsort [dict values $weights]] {
	foreach x [dict keys $weights] {
	    if { [dict get $weights $x] == $val } {
		set weights [dict remove $weights $x]
		lappend sortedEdges $x ;#[list $val $x]
	    }
	}
    }

    return $sortedEdges
}

#Subprocedure, which for given graph G, returns the dictionary
#containing edges sorted by weights (sortMode -> weights) or
#nodes sorted by degree (sortMode -> degrees).

proc ::struct::graph::op::sortGraph {G sortMode} {

    switch -exact -- $sortMode {
	weights {
	    set weights [$G arc weights]
	    foreach val [lsort [dict values $weights]] {
		foreach x [dict keys $weights] {
		    if { [dict get $weights $x] == $val } {
			set weights [dict remove $weights $x]
			dict set sortedVals $x $val
		    }
		}
	    }
	}
	degrees {
	    foreach v [$G nodes] {
		dict set degrees $v [$G node degree $v]
	    }
	    foreach x [lsort -integer -decreasing [dict values $degrees]] {
		foreach y [dict keys $degrees] {
		    if { [dict get $degrees $y] == $x } {
			set degrees [dict remove $degrees $y]
			dict set sortedVals $y $x
		    }
		}
	    }
	}
	default {
	    return -code error "Unknown sort mode \"$sortMode\", expected weights, or degrees"
	}
    }

    return $sortedVals
}

#Finds Hamilton cycle in given graph G
#Procedure used by Metric TSP Algorithms:
#Christofides and Metric TSP 2-approximation algorithm

proc ::struct::graph::op::findHamiltonCycle {G originalEdges originalGraph} {

    isEulerian? $G tourvar tourstart

    # Note: The start node is not necessarily the source node of the
    # first arc in the tour. The Fleury in isEulerian? may have walked
    # the arcs against! their direction. See also the note in our
    # caller (MetricTravellingSalesman).

    # Instead of reconstructing the start node by intersecting the
    # node-set for first and last arc, we are taking the easy and get
    # it directly from isEulerian?, as that command knows which node
    # it had chosen for this.

    lappend result $tourstart
    lappend tourvar [lindex $tourvar 0]

    set v $tourstart
    foreach i $tourvar {
	set u [$G node opposite $v $i]

	if { $u ni $result } {
	    set va [lindex $result end]
	    set vb $u

	    if { ([list $va $vb] in $originalEdges) || ([list $vb $va] in $originalEdges) } {
		lappend result $u
	    } else {

		set path [dict get [dijkstra $G $va] $vb]

		#reversing the path
		set path [lreverse $path]
		#cutting the start element
		set path [lrange $path 1 end]

		#adding the path and the target element
		lappend result {*}$path
		lappend result $vb
	    }
	}
	set v $u
    }

    set path [dict get [dijkstra $originalGraph [lindex $result 0]] [lindex $result end]]
    set path [lreverse $path]

    set path [lrange $path 1 end]

    if { [llength $path] } {
	lappend result {*}$path
    }

    lappend result $tourstart
    return $result
}

#Subprocedure for TSP problems.
#
#Creating graph from sets of given nodes and edges.
#In option doubledArcs we decide, if we want edges to be
#duplicated or not:
#0 - duplicated (Metric TSP 2-approximation algorithm)
#1 - single (Christofides Algorithm)
#
#Note that it assumes that graph's edges are properly weighted. That
#condition is checked before in procedures that use createTGraph, but for
#other uses it should be taken into consideration.
#

proc ::struct::graph::op::createTGraph {G Edges doubledArcs} {
    #checking if given set of edges is proper (all edges are in graph G)
    foreach e $Edges {
	if { ![$G arc exists $e] } {
	    return -code error "Edge \"$e\" doesn't exist in graph \"$G\". Set the proper set of edges."
	}
    }

    set TGraph [struct::graph]

    #fill TGraph with nodes
    foreach v [$G nodes] {
	$TGraph node insert
    }

    #fill TGraph with arcs
    foreach e $Edges {
	set v [$G arc source $e]
	set u [$G arc target $e]
	if { ![$TGraph arc exists [list $u $v]] } {
	    $TGraph arc insert $u $v [list $u $v]
	    $TGraph arc setweight [list $u $v] [$G arc getweight $e]
	}
	if { !$doubledArcs } {
	    if { ![$TGraph arc exists [list $v $u]] } {
		$TGraph arc insert $v $u [list $v $u]
		$TGraph arc setweight [list $v $u] [$G arc getweight $e]
	    }
	}
    }

    return $TGraph
}

#Subprocedure for some algorithms, e.g. TSP algorithms.
#
#It returns graph filled with arcs missing to say that graph is complete.
#Also it sets variable originalEdges with edges, which existed in given
#graph G at beginning, before extending the set of edges.
#

proc ::struct::graph::op::createCompleteGraph {G originalEdges} {

    upvar $originalEdges st
    set st {}
    foreach e [$G arcs] {
	set v [$G arc source $e]
	set u [$G arc target $e]

	lappend st [list $v $u]
    }

    foreach v [$G nodes] {
	foreach u [$G nodes] {
	    if { ($u != $v) && ([list $v $u] ni $st) && ([list $u $v] ni $st) && ![$G arc exists [list $u $v]] } {
		$G arc insert $v $u [list $v $u]
		$G arc setweight [list $v $u] Inf
	    }
	}
    }
    return $G
}


#Maximum Cut - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Maximum cut problem is a problem finding a cut not smaller than any other cut. In
#other words, we divide set of nodes for graph G into such 2 sets of nodes U and V,
#that the amount of edges connecting U and V is as high as possible.
#
#Algorithm is a 2-approximation, so for ALG ( solution returned by Algorithm) and
#OPT ( optimal solution), such inequality is true: OPT <= 2 * ALG.
#
#Input:
#Graph G
#U - variable storing first set of nodes (cut) given by solution
#V - variable storing second set of nodes (cut) given by solution
#
#Output:
#Algorithm returns number of edges between found two sets of nodes.
#
#Reference: http://en.wikipedia.org/wiki/Maxcut
#

proc ::struct::graph::op::MaxCut {G U V} {

    upvar $U _U
    upvar $V _V

    set _U {}
    set _V {}
    set counter 0

    foreach {u v} [lsort -dict [$G nodes]] {
	lappend _U $u
	if {$v eq ""} continue
	lappend _V $v
    }

    set val 1
    set ALG [countEdges $G $_U $_V]
    while {$val>0} {
	set val [cut $G _U _V $ALG]
	if { $val > $ALG } {
	    set ALG $val
	}
    }
    return $ALG
}

#procedure replaces nodes between sets and checks if that change is profitable
proc ::struct::graph::op::cut {G Uvar Vvar param} {

    upvar $Uvar U
    upvar $Vvar V
    set _V {}
    set _U {}
    set value 0

    set maxValue $param
    set _U $U
    set _V $V

    foreach v [$G nodes] {

	if { $v ni $_U } {
	    lappend _U $v
	    lremove _V $v
	    set value [countEdges $G $_U $_V]
	} else {
	    lappend _V $v
	    lremove _U $v
	    set value [countEdges $G $_U $_V]
	}

	if { $value > $maxValue } {
	    set U $_U
	    set V $_V
	    set maxValue $value
	} else {
	    set _V $V
	    set _U $U
	}
    }

    set value $maxValue

    if { $value > $param } {
	return $value
    } else {
	return 0
    }
}

#Removing element from the list - auxiliary procedure
proc ::struct::graph::op::lremove {listVariable value} {
    upvar 1 $listVariable var
    set idx [lsearch -exact $var $value]
    set var [lreplace $var $idx $idx]
}

#procedure counts edges that link two sets of nodes
proc ::struct::graph::op::countEdges {G U V} {

    set value 0

    foreach u $U {
        foreach e [$G arcs -out $u] {
            set v [$G arc target $e]
            if {$v ni $V} continue
            incr value
        }
    }
    foreach v $V {
        foreach e [$G arcs -out $v] {
            set u [$G arc target $e]
            if {$u ni $U} continue
            incr value
        }
    }

    return $value
}

#K-Center Problem - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Input:
#Undirected complete graph G, which satisfies triangle inequality.
#k - positive integer
#
#Definition:
#For any set S ( which is subset of V ) and node v, let the connect(v,S) be the
#cost of cheapest edge connecting v with any node in S. The goal is to find
#such S, that |S| = k and max_v{connect(v,S)} is possibly small.
#
#In other words, we can use it i.e. for finding best locations in the city ( nodes
#of input graph ) for placing k buildings, such that those buildings will be as close
#as possible to all other locations in town.
#
#Output:
#set of nodes - k center for graph G
#

proc ::struct::graph::op::UnweightedKCenter {G k} {

    #checking if all weights for edges in graph G are set well
    VerifyWeightsAreOk $G

    #checking if proper value of k is given at input
    if { $k <= 0 } {
	return -code error "The \"k\" value must be an positive integer."
    }

    set j [ expr {$k+1} ]

    #variable for holding the graph G(i) in each iteration
    set Gi [struct::graph]
    #two squared graph G
    set GiSQ [struct::graph]
    #sorted set of edges for graph G
    set arcs [sortEdges $G]

    #initializing both graph variables
    foreach v [$G nodes] {
	$Gi node insert $v
	$GiSQ node insert $v
    }

    #index i for each iteration

    #we seek for final solution, as long as the max independent
    #set Mi (found in particular iterations), such that |Mi| <= k, is found.
    for {set index 0} {$j > $k} {incr index} {
	#source node of an edge we add in current iteration
	set u [$G arc source [lindex $arcs $index]]
	#target node of an edge we add in current iteration
	set v [$G arc target [lindex $arcs $index]]

	#adding edge Ei to graph G(i)
	$Gi arc insert $u $v [list $u $v]
	#extending G(i-1)**2 to G(i)**2 using G(i)
	set GiSQ [extendTwoSquaredGraph $GiSQ $Gi $u $v]

	#finding maximal independent set for G(i)**2
	set Mi [GreedyMaxIndependentSet $GiSQ]

	#number of nodes in maximal independent set that was found
	set j [llength $Mi]
    }

    $Gi destroy
    $GiSQ destroy
    return $Mi
}

#Weighted K-Center - 3 approximation algorithm
#-------------------------------------------------------------------------------------
#
#The variation of unweighted k-center problem. Besides the fact graph is edge-weighted,
#there are also weights on vertices of input graph G. We've got also restriction
#W. The goal is to choose such set of nodes S ( which is a subset of V ), that it's
#total weight is not greater than W and also function: max_v { min_u { cost(u,v) }}
#has the smallest possible worth ( v is a node in V and u is a node in S ).
#
#Note:
#For more information about K-Center problem check Unweighted K-Center algorithm
#description.

proc ::struct::graph::op::WeightedKCenter {G nodeWeights W} {

    #checking if all weights for edges in graph G are set well
    VerifyWeightsAreOk $G

    #checking if proper value of k is given at input
    if { $W <= 0 } {
	return -code error "The \"W\" value must be an positive integer."
    }
    #initilization
    set j [ expr {$W+1} ]

    #graphs G(i) and G(i)**2
    set Gi   [struct::graph]
    set GiSQ [struct::graph]
    #the set of arcs for graph G sorted with their weights (increasing)
    set arcs [sortEdges $G]

    #initialization of graphs G(i) and G(i)**2
    foreach v [$G nodes] {
	$Gi   node insert $v
	$GiSQ node insert $v
    }

    #the main loop - iteration over all G(i)'s and G(i)**2's,
    #extended with each iteration till the solution is found

    foreach arc $arcs {
	#initilization of the set of nodes, which are cheapest neighbours
	#for particular nodes in maximal independent set
	set Si {}

	set u [$G arc source $arc]
	set v [$G arc target $arc]

	#extending graph G(i)
	$Gi arc insert $u $v [list $u $v]

	#extending graph G(i)**2 from G(i-1)**2 using G(i)
	set GiSQ [extendTwoSquaredGraph $GiSQ $Gi $u $v]

	#finding maximal independent set (Mi) for graph G(i)**2 found in the
	#previous step. Mi is found using greedy algorithm that also considers
	#weights on vertices.
	set Mi [GreedyWeightedMaxIndependentSet $GiSQ $nodeWeights]

	#for each node u in Maximal Independent set found in previous step,
	#we search for its cheapest ( considering costs at vertices ) neighbour.
	#Note that node u is considered as it is a neighbour for itself.
	foreach u $Mi {

	    set minWeightOfSi Inf

	    #the neighbours of u
	    set neighbours [$Gi nodes -adj $u]
	    set smallestNeighbour 0
	    #u is a neighbour for itself
	    lappend neighbours $u

	    #finding neighbour with minimal cost
	    foreach w [lsort -index 1 $nodeWeights] {
		lassign $w node weight
		if {[struct::set contains $neighbours $node]} {
                    set minWeightOfSi $weight
		    set smallestNeighbour $node
                    break
		}
	    }

	    lappend Si [list $smallestNeighbour $minWeightOfSi]
	}

	set totalSiWeight 0
	set possibleSolution {}

	foreach s $Si {
	    #counting the total weight of the set of nodes - Si
	    set totalSiWeight [ expr { $totalSiWeight + [lindex $s 1] } ]

	    #it's final solution, if weight found in previous step is
	    #not greater than W
	    lappend possibleSolution [lindex $s 0]
	}

	#checking if final solution is found
	if { $totalSiWeight <= $W } {
	    $Gi destroy
	    $GiSQ destroy
	    return $possibleSolution
	}
    }

    $Gi destroy
    $GiSQ destroy

    #no solution found - error returned
    return -code error "No k-center found for restriction W = $W"

}

#Maximal Independent Set - 2 approximation greedy algorithm
#-------------------------------------------------------------------------------------
#
#A maximal independent set is an independent set such that adding any other node
#to the set forces the set to contain an edge.
#
#Note:
#Don't confuse it with maximum independent set, which is a largest independent set
#for a given graph G.
#
#Reference: http://en.wikipedia.org/wiki/Maximal_independent_set

proc ::struct::graph::op::GreedyMaxIndependentSet {G} {

    set result {}
    set nodes [$G nodes]

    foreach v $nodes {
	if { [struct::set contains $nodes $v] } {
	    lappend result $v

	    foreach neighbour [$G nodes -adj $v] {
		struct::set exclude nodes $neighbour
	    }
	}
    }

    return $result
}

#Weighted Maximal Independent Set - 2 approximation greedy algorithm
#-------------------------------------------------------------------------------------
#
#Weighted variation of Maximal Independent Set. It takes as an input argument
#not only graph G but also set of weights for all vertices in graph G.
#
#Note:
#Read also Maximal Independent Set description for more info.
#
#Reference: http://en.wikipedia.org/wiki/Maximal_independent_set

proc ::struct::graph::op::GreedyWeightedMaxIndependentSet {G nodeWeights} {

    set result {}
    set nodes {}
    foreach v [lsort -index 1 $nodeWeights] {
	lappend nodes [lindex $v 0]
    }

    foreach v $nodes {
	if { [struct::set contains $nodes $v] } {
	    lappend result $v

	    set neighbours [$G nodes -adj $v]

	    foreach neighbour [$G nodes -adj $v] {
		struct::set exclude nodes $neighbour
	    }
	}
    }

    return $result
}

#subprocedure creating from graph G two squared graph
#G^2 - graph in which edge between nodes u and v exists,
#if and only if, when distance (in edges, not weights)
#between those nodes is not greater than 2 and u != v.

proc ::struct::graph::op::createSquaredGraph {G} {

    set H [struct::graph]
    foreach v [$G nodes] {
	$H node insert $v
    }

    foreach v [$G nodes] {
	foreach u [$G nodes -adj $v] {
	    if { ($v != $u) && ![$H arc exists [list $v $u]] && ![$H arc exists [list $u $v]] } {
		$H arc insert $u $v [list $u $v]
	    }
	    foreach z [$G nodes -adj $u] {
		if { ($v != $z) && ![$H arc exists [list $v $z]] && ![$H arc exists [list $z $v]] } {
		    $H arc insert $v $z [list $v $z]
		}
	    }
	}
    }

    return $H
}

#subprocedure for Metric K-Center problem
#
#Input:
#previousGsq - graph G(i-1)**2
#currentGi - graph G(i)
#u and v - source and target of an edge added in this iteration
#
#Output:
#Graph G(i)**2 used by next steps of K-Center algorithm

proc ::struct::graph::op::extendTwoSquaredGraph {previousGsq currentGi u v} {

    #adding new edge
    if { ![$previousGsq arc exists [list $v $u]] && ![$previousGsq arc exists [list $u $v]]} {
	$previousGsq arc insert $u $v [list $u $v]
    }

    #adding new edges to solution graph:
    #here edges, where source is a $u node and targets are neighbours of node $u except for $v
    foreach x [$currentGi nodes -adj $u] {
	if { ( $x != $v) && ![$previousGsq arc exists [list $v $x]] && ![$previousGsq arc exists [list $x $v]] } {
	    $previousGsq arc insert $v $x [list $v $x]
	}
    }
    #here edges, where source is a $v node and targets are neighbours of node $v except for $u
    foreach x [$currentGi nodes -adj $v] {
	if { ( $x != $u ) && ![$previousGsq arc exists [list $u $x]] && ![$previousGsq arc exists [list $x $u]] } {
	    $previousGsq arc insert $u $x [list $u $x]
	}
    }

    return $previousGsq
}

#Vertices Cover - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Vertices cover is a set o vertices such that each edge of the graph is incident to
#at least one vertex of the set. This 2-approximation algorithm searches for minimum
#vertices cover, which is a classical optimization problem in computer science and
#is a typical example of an NP-hard optimization problem that has an approximation
#algorithm.
#
#Reference: http://en.wikipedia.org/wiki/Vertex_cover_problem
#

proc ::struct::graph::op::VerticesCover {G} {
    #variable containing final solution
    set vc {}
    #variable containing sorted (with degree) set of arcs for graph G
    set arcs {}

    #setting the dictionary with degrees for each node
    foreach v [$G nodes] {
	dict set degrees $v [$G node degree $v]
    }

    #creating a list containing the sum of degrees for source and
    #target nodes for each edge in graph G
    foreach e [$G arcs] {
	set v [$G arc source $e]
	set u [$G arc target $e]

	lappend values [list [expr {[dict get $degrees $v]+[dict get $degrees $u]}] $e]
    }
    #sorting the list of source and target degrees
    set values [lsort -integer -decreasing -index 0 $values]

    #setting the set of edges in a right sequence
    foreach e $values {
	lappend arcs [lindex $e 1]
    }

    #for each node in graph G, we add it to the final solution and
    #erase all arcs adjacent to it, so they cannot be
    #added to solution in next iterations
    foreach e $arcs {

	if { [struct::set contains $arcs $e] } {
	    set v [$G arc source $e]
	    set u [$G arc target $e]
	    lappend vc $v $u

	    foreach n [$G arcs -adj $v $u] {
		struct::set exclude arcs $n
	    }
	}
    }

    return $vc
}


#Ford's Fulkerson algorithm - computing maximum flow in a flow network
#-------------------------------------------------------------------------------------
#
#The general idea of algorithm is finding augumenting paths in graph G, as long
#as they exist, and for each path updating the edge's weights along that path,
#with maximum possible throughput. The final (maximum) flow is found
#when there is no other augumenting path from source to sink.
#
#Input:
#graph G - weighted and directed graph. Weights at edges are considered as
#maximum throughputs that can be carried by that link (edge).
#s - the node that is a source for graph G
#t - the node that is a sink for graph G
#
#Output:
#Procedure returns the dictionary contaning throughputs for all edges. For
#each key ( the edge between nodes u and v in the for of list u v ) there is
#a value that is a throughput for that key. Edges where throughput values
#are equal to 0 are not returned ( it is like there was no link in the flow network
#between nodes connected by such edge).
#
#Reference: http://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm

proc ::struct::graph::op::FordFulkerson {G s t} {

    #checking if nodes s and t are in graph G
    if { !([$G node exists $s] && [$G node exists $t]) } {
	return -code error "Nodes \"$s\" and \"$t\" should be contained in graph's G set of nodes"
    }

    #checking if all attributes for input network are set well ( costs and throughputs )
    foreach e [$G arcs] {
	if { ![$G arc keyexists $e throughput] } {
	    return -code error "The input network doesn't have all attributes set correctly... Please, check again attributes: \"throughput\" for input graph."
	}
    }

    #initilization
    foreach e [$G arcs] {
	set u [$G arc source $e]
	set v [$G arc target $e]
	dict set f [list $u $v] 0
	dict set f [list $v $u] 0
    }

    #setting the residual graph for the first iteration
    set residualG [createResidualGraph $G $f]

    #deleting the arcs that are 0-weighted
    foreach e [$residualG arcs] {
	if { [$residualG arc set $e throughput] == 0 } {
	    $residualG arc delete $e
	}
    }

    #the main loop - works till the path between source and the sink can be found
    while {1} {
	set paths [ShortestsPathsByBFS $residualG $s paths]

	if { ($paths == {}) || (![dict exists $paths $t]) } break

	set path [dict get $paths $t]
	#setting the path from source to sink

	#adding sink to path
	lappend path $t

	#finding the throughput of path p - the smallest value of c(f) among
	#edges that are contained in the path
	set maxThroughput Inf

	foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
	    set pathEdgeFlow [$residualG arc set [list $u $v] throughput]
	    if { $maxThroughput > $pathEdgeFlow } {
		set maxThroughput $pathEdgeFlow
	    }
	}

	#increase of throughput using the path p, with value equal to maxThroughput
	foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {

	    #if maximum throughput that was found for the path p (maxThroughput) is bigger than current throughput
	    #at the edge not contained in the path p (for current pair of nodes u and v), then we add to the edge
	    #which is contained into path p the maxThroughput value decreased by the value of throughput at
	    #the second edge (not contained in path). That second edge's throughtput value is set to 0.

	    set f_uv [dict get $f [list $u $v]]
	    set f_vu [dict get $f [list $v $u]]
	    if { $maxThroughput >= $f_vu } {
		dict set f [list $u $v] [ expr { $f_uv + $maxThroughput - $f_vu } ]
		dict set f [list $v $u] 0
	    } else {

		#if maxThroughput is not greater than current throughput at the edge not contained in path p (here - v->u),
		#we add a difference between those values to edge contained in the path p (here u->v) and substract that
		#difference from edge not contained in the path p.
		set difference [ expr { $f_vu - $maxThroughput } ]
		dict set f [list $u $v] [ expr { $f_uv + $difference } ]
		dict set f [list $v $u] $maxThroughput
	    }
	}

	#when the current throughput for the graph is updated, we generate new residual graph
	#for new values of throughput
	$residualG destroy
	set residualG [createResidualGraph $G $f]

	foreach e [$residualG arcs] {
	    if { [$residualG arc set $e throughput] == 0 } {
		$residualG arc delete $e
	    }
	}
    }

    $residualG destroy

    #removing 0-weighted edges from solution
    foreach e [dict keys $f] {
	if { [dict get $f $e] == 0 } {
	    set f [dict remove $f $e]
	}
    }

    return $f
}

#subprocedure for FordFulkerson's algorithm, which creates
#for input graph G and given throughput f residual graph
#for further operations to find maximum flow in flow network

proc ::struct::graph::op::createResidualGraph {G f} {

    #initialization
    set residualG [struct::graph]

    foreach v [$G nodes] {
	$residualG node insert $v
    }

    foreach e [$G arcs] {
	set u [$G arc source $e]
	set v [$G arc target $e]
	dict set GF [list $u $v] [$G arc set $e throughput]
    }

    foreach e [dict keys $GF] {

	lassign $e u v

	set c_uv [dict get $GF $e]
	set flow_uv [dict get $f $e]
	set flow_vu [dict get $f [list $v $u]]

	if { ![$residualG arc exists $e] } {
	    $residualG arc insert $u $v $e
	}

	if { ![$residualG arc exists [list $v $u]] } {
	    $residualG arc insert $v $u [list $v $u]
	}

	#new value of c_f(u,v) for residual Graph is a max flow value for this edge
	#minus current flow on that edge
	if { ![$residualG arc keyexists $e throughput] } {
	    if { [dict exists $GF [list $v $u]] } {
		$residualG arc set [list $u $v] throughput [ expr { $c_uv - $flow_uv + $flow_vu } ]
	    } else {
		$residualG arc set $e throughput [ expr { $c_uv - $flow_uv } ]
	    }
	}

	if { [dict exists $GF [list $v $u]] } {
	    #when double arcs in graph G (u->v , v->u)
	    #so, x/y i w/z    y-x+w
	    set c_vu [dict get $GF [list $v $u]]
	    if { ![$residualG arc keyexists [list $v $u] throughput] } {
		$residualG arc set [list $v $u] throughput [ expr { $c_vu - $flow_vu + $flow_uv} ]
	    }
	} else {
	    $residualG arc set [list $v $u] throughput $flow_uv
	}
    }

    #setting all weights at edges to 1 for proper usage of shortest paths finding procedures
    $residualG arc setunweighted 1

    return $residualG
}

#Subprocedure for Busacker Gowen algorithm
#
#Input:
#graph G - flow network. Graph G has two attributes for each edge:
#cost and throughput. Each arc must have it's attribute value assigned.
#dictionary f - some flow for network G. Keys represent edges and values
#are flows at those edges
#path - set of nodes for which we transform the network
#
#Subprocedure checks 6 vital conditions and for them updates the network
#(let values with * be updates values for network). So, let edge (u,v) be
#the non-zero flow for network G, c(u,v) throughput of edge (u,v) and
#d(u,v) non-negative cost of edge (u,v):
#1. c*(v,u) = f(u,v)  --- adding apparent arc
#2. d*(v,u) = -d(u,v)
#3. c*(u,v) = c(u,v) - f(u,v)    --- if f(v,u) = 0 and c(u,v) > f(u,v)
#4. d*(u,v) = d(u,v)             --- if f(v,u) = 0 and c(u,v) > f(u,v)
#5. c*(u,v) = 0                  --- if f(v,u) = 0 and c(u,v) = f(u,v)
#6. d*(u,v) = Inf                --- if f(v,u) = 0 and c(u,v) = f(u,v)

proc ::struct::graph::op::createAugmentingNetwork {G f path} {

    set Gf [struct::graph]

    #setting the Gf graph
    foreach v [$G nodes] {
	$Gf node insert $v
    }

    foreach e [$G arcs] {
	set u [$G arc source $e]
	set v [$G arc target $e]

	$Gf arc insert $u $v [list $u $v]

	$Gf arc set [list $u $v] throughput [$G arc set $e throughput]
	$Gf arc set [list $u $v] cost [$G arc set $e cost]
    }

    #we set new values for each edge contained in the path from input
    foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {

	set f_uv [dict get $f [list $u $v]]
	set f_vu [dict get $f [list $v $u]]
	set c_uv [$G arc get [list $u $v] throughput]
	set d_uv [$G arc get [list $u $v] cost]

	#adding apparent arcs
	if { ![$Gf arc exists [list $v $u]] } {
	    $Gf arc insert $v $u [list $v $u]
	    #1.
	    $Gf arc set [list $v $u] throughput $f_uv
	    #2.
	    $Gf arc set [list $v $u] cost [ expr { -1 * $d_uv } ]
	} else {
	    #1.
	    $Gf arc set [list $v $u] throughput $f_uv
	    #2.
	    $Gf arc set [list $v $u] cost [ expr { -1 * $d_uv } ]
	    $Gf arc set [list $u $v] cost Inf
	    $Gf arc set [list $u $v] throughput 0
	}

	if { ($f_vu == 0 ) && ( $c_uv > $f_uv ) } {
	    #3.
	    $Gf arc set [list $u $v] throughput [ expr { $c_uv - $f_uv } ]
	    #4.
	    $Gf arc set [list $u $v] cost $d_uv
	}

	if { ($f_vu == 0 ) && ( $c_uv == $f_uv) } {
	    #5.
	    $Gf arc set [list $u $v] throughput 0
	    #6.
	    $Gf arc set [list $u $v] cost Inf
	}
    }

    return $Gf
}

#Busacker Gowen's algorithm - computing minimum cost maximum flow in a flow network
#-------------------------------------------------------------------------------------
#
#The goal is to find a flow, whose max value can be d, from source node to
#sink node in given flow network. That network except throughputs at edges has
#also defined a non-negative cost on each edge - cost of using that edge when
#directing flow with that edge ( it can illustrate e.g. fuel usage, time or
#any other measure dependent on usages ).
#
#Input:
#graph G - flow network, weights at edges are costs of using particular edge
#desiredFlow - max value of the flow for that network
#dictionary c - throughputs for all edges
#node s - the source node for graph G
#node t - the sink node for graph G
#
#Output:
#f - dictionary containing values of used throughputs for each edge ( key )
#found by algorithm.
#
#Reference: http://en.wikipedia.org/wiki/Minimum_cost_flow_problem
#

proc ::struct::graph::op::BusackerGowen {G desiredFlow s t} {

    #checking if nodes s and t are in graph G
    if { !([$G node exists $s] && [$G node exists $t]) } {
	return -code error "Nodes \"$s\" and \"$t\" should be contained in graph's G set of nodes"
    }

    if { $desiredFlow <= 0 } {
	return -code error "The \"desiredFlow\" value must be an positive integer."
    }

    #checking if all attributes for input network are set well ( costs and throughputs )
    foreach e [$G arcs] {
	if { !([$G arc keyexists $e throughput] && [$G arc keyexists $e cost]) } {
	    return -code error "The input network doesn't have all attributes set correctly... Please, check again attributes: \"throughput\" and \"cost\" for input graph."
	}
    }

    set Gf [struct::graph]

    #initialization of Augmenting Network
    foreach v [$G nodes] {
	$Gf node insert $v
    }

    foreach e [$G arcs] {
	set u [$G arc source $e]
	set v [$G arc target $e]
	$Gf arc insert $u $v [list $u $v]

	$Gf arc set [list $u $v] throughput [$G arc set $e throughput]
	$Gf arc set [list $u $v] cost [$G arc set $e cost]
    }

    #initialization of f
    foreach e [$G arcs] {
	set u [$G arc source $e]
	set v [$G arc target $e]
	dict set f [list $u $v] 0
	dict set f [list $v $u] 0
    }

    set currentFlow 0

    #main loop - it ends when we reach desired flow value or there is no path in Gf
    #leading from source node s to sink t

    while { $currentFlow < $desiredFlow } {

	#preparing correct values for pathfinding
	foreach edge [$Gf arcs] {
	    $Gf arc setweight $edge [$Gf arc get $edge cost]
	}

	#setting the path 'p' from 's' to 't'
	set paths [ShortestsPathsByBFS $Gf $s paths]

	#if there are no more paths, the search has ended
	if { ($paths == {}) || (![dict exists $paths $t]) } break

	set path [dict get $paths $t]
	lappend path $t

	#counting max throughput that is availiable to send
	#using path 'p'
	set maxThroughput Inf
	foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
	    set uv_throughput [$Gf arc set [list $u $v] throughput]
	    if { $maxThroughput > $uv_throughput } {
		set maxThroughput $uv_throughput
	    }
	}

	#if max throughput that was found will cause exceeding the desired
	#flow, send as much as it's possible
	if { ( $currentFlow + $maxThroughput ) <= $desiredFlow } {
	    set fAdd $maxThroughput
	    set currentFlow [ expr { $currentFlow + $fAdd } ]
	} else {
	    set fAdd [ expr { $desiredFlow - $currentFlow } ]
	    set currentFlow $desiredFlow
	}

	#update the throuputs on edges
	foreach v [lrange $path 0 end-1] u [lrange $path 1 end] {
	    if { [dict get $f [list $u $v]] >= $fAdd } {
		dict set f [list $u $v] [ expr { [dict get $f [list $u $v]] - $fAdd } ]
	    }

	    if { ( [dict get $f [list $u $v]] < $fAdd ) && ( [dict get $f [list $u $v]] > 0 ) } {
		dict set f [list $v $u] [ expr { $fAdd - [dict get $f [list $u $v]] } ]
		dict set f [list $u $v] 0
	    }

	    if { [dict get $f [list $u $v]] == 0 } {
		dict set f [list $v $u] [ expr { [dict get $f [list $v $u]] + $fAdd } ]
	    }
	}

	#create new Augemnting Network

	set Gfnew [createAugmentingNetwork $Gf $f $path]
        $Gf destroy
        set Gf $Gfnew
    }

    set f [dict filter $f script {flow flowvalue} {expr {$flowvalue != 0}}]

    $Gf destroy
    return $f
}

#
proc ::struct::graph::op::ShortestsPathsByBFS {G s outputFormat} {

    switch -exact -- $outputFormat {
	distances {
	    set outputMode distances
	}
	paths {
	    set outputMode paths
	}
	default {
	    return -code error "Unknown output format \"$outputFormat\", expected distances, or paths."
	}
    }

    set queue [list $s]
    set result {}

    #initialization of marked nodes, distances and predecessors
    foreach v [$G nodes] {
	dict set marked $v 0
	dict set distances $v Inf
	dict set pred $v -1
    }

    #the s node is initially marked and has 0 distance to itself
    dict set marked $s 1
    dict set distances $s 0

    #the main loop
    while { [llength $queue] != 0 } {

	#removing top element from the queue
	set v [lindex $queue 0]
	lremove queue $v

	#for each arc that begins in v
	foreach arc [$G arcs -out $v] {

	    set u [$G arc target $arc]
	    set newlabel [ expr { [dict get $distances $v] + [$G arc getweight $arc] } ]

	    if { $newlabel < [dict get $distances $u] } {

		dict set distances $u $newlabel
		dict set pred $u $v

		#case when current node wasn't placed in a queue yet -
		#we set u at the end of the queue
		if { [dict get $marked $u] == 0 } {
		    lappend queue $u
		    dict set marked $u 1
		} else {

		    #case when current node u was in queue before but it is not in it now -
		    #we set u at the beginning of the queue
		    if { [lsearch $queue $u] < 0 } {
			set queue [linsert $queue 0 $u]
		    }
		}
	    }
	}
    }

    #if the outputformat is paths, we travel back to find shorests paths
    #to return sets of nodes for each node, which are their paths between
    #s and particular node
    dict set paths nopaths 1
    if { $outputMode eq "paths" } {
	foreach node [$G nodes] {

	    set path {}
	    set lastNode $node

	    while { $lastNode != -1 } {
		set currentNode [dict get $pred $lastNode]
		if { $currentNode != -1 } {
		    lappend path $currentNode
		}
		set lastNode $currentNode
	    }

	    set path [lreverse $path]

	    if { [llength $path] != 0 } {
		dict set paths $node $path
		dict unset paths nopaths
	    }
	}

	if { ![dict exists $paths nopaths] } {
	    return $paths
	} else {
	    return {}
	}

	#returning dictionary containing distance from start node to each other node (key)
    } else {
	return $distances
    }

}

#
proc ::struct::graph::op::BFS {G s outputFormat} {

    set queue [list $s]

    switch -exact -- $outputFormat {
	graph {
	    set outputMode graph
	}
	tree {
	    set outputMode tree
	}
	default {
	    return -code error "Unknown output format \"$outputFormat\", expected graph, or tree."
	}
    }

    if { $outputMode eq "graph" } {
	#graph initializing
	set BFSGraph [struct::graph]
	foreach v [$G nodes] {
	    $BFSGraph node insert $v
	}
    } else {
	#tree initializing
	set BFSTree [struct::tree]
	$BFSTree set root name $s
	$BFSTree rename root $s
    }

    #initilization of marked nodes
    foreach v [$G nodes] {
	dict set marked $v 0
    }

    #start node is marked from the beginning
    dict set marked $s 1

    #the main loop
    while { [llength $queue] != 0 } {
	#removing top element from the queue

	set v [lindex $queue 0]
	lremove queue $v

	foreach x [$G nodes -adj $v] {
	    if { ![dict get $marked $x] } {
		dict set marked $x 1
		lappend queue $x

		if { $outputMode eq "graph" } {
		    $BFSGraph arc insert $v $x [list $v $x]
		} else {
		    $BFSTree insert $v end $x
		}
	    }
	}
    }

    if { $outputMode eq "graph" } {
	return $BFSGraph
    } else {
	return $BFSTree
    }
}

#Minimum Diameter Spanning Tree - MDST
#-------------------------------------------------------------------------------------
#
#The goal is to find for input graph G, the spanning tree that
#has the minimum diameter worth.
#
#General idea of algorithm is to run BFS over all vertices in graph
#G. If the diameter "d" of the tree is odd, then we are sure that tree
#given by BFS is minimum (considering diameter value). When, diameter "d"
#is even, then optimal tree can have minimum diameter equal to "d" or
#"d-1".
#
#In that case, what algorithm does is rebuilding the tree given by BFS, by
#adding a vertice between root node and root's child node (nodes), such that
#subtree created with child node as root node is the greatest one (has the
#greatests height). In the next step for such rebuilded tree, we run again BFS
#with new node as root node. If the height of the tree didn't changed, we have found
#a better solution.

proc ::struct::graph::op::MinimumDiameterSpanningTree {G} {

    set min_diameter Inf
    set best_Tree [struct::graph]

    foreach v [$G nodes] {

	#BFS Tree
	set T [BFS $G $v tree]
	#BFS Graph
	set TGraph [BFS $G $v graph]

	#Setting all arcs to 1 for diameter procedure
	$TGraph arc setunweighted 1

	#setting values for current Tree
	set diam [diameter $TGraph]
	set subtreeHeight [ expr { $diam / 2 - 1} ]

	##############################################
	#case when diameter found for tree found by BFS is even:
	#it's possible to decrease the diameter by one.
	if { ( $diam % 2 ) == 0 } {

	    #for each child u that current root node v has, we search
	    #for the greatest subtree(subtrees) with the root in child u.
	    #
	    foreach u [$TGraph nodes -adj $v] {
		set u_depth 1 ;#[$T depth $u]
		set d_depth 0

		set descendants [$T descendants $u]

		foreach d $descendants {
		    if { $d_depth < [$T depth $d] } {
			set d_depth [$T depth $d]
		    }
		}

		#depth of the current subtree
		set depth [ expr { $d_depth - $u_depth } ]

		#proceed if found subtree is the greatest one
		if { $depth >= $subtreeHeight } {

		    #temporary Graph for holding potential better values
		    set tempGraph [struct::graph]

		    foreach node [$TGraph nodes] {
			$tempGraph node insert $node
		    }

		    #zmienic nazwy zmiennych zeby sie nie mylily
		    foreach arc [$TGraph arcs] {
			set _u [$TGraph arc source $arc]
			set _v [$TGraph arc target $arc]
			$tempGraph arc insert $_u $_v [list $_u $_v]
		    }

		    if { [$tempGraph arc exists [list $u $v]] } {
			$tempGraph arc delete [list $u $v]
		    } else {
			$tempGraph arc delete [list $v $u]
		    }

		    #for nodes u and v, we add a node between them
		    #to again start BFS with root in new node to check
		    #if it's possible to decrease the diameter in solution
		    set node [$tempGraph node insert]
		    $tempGraph arc insert $node $v [list $node $v]
		    $tempGraph arc insert $node $u [list $node $u]

		    set newtempGraph [BFS $tempGraph $node graph]
		    $tempGraph destroy
		    set tempGraph $newtempGraph

		    $tempGraph node delete $node
		    $tempGraph arc insert $u $v [list $u $v]
		    $tempGraph arc setunweighted 1

		    set tempDiam [diameter $tempGraph]

		    #if better tree is found (that any that were already found)
		    #replace it
		    if { $min_diameter > $tempDiam } {
			set $min_diameter [diameter $tempGraph ]
			$best_Tree destroy
			set best_Tree $tempGraph
		    } else {
			$tempGraph destroy
		    }
		}

	    }
	}
	################################################################

	set currentTreeDiameter $diam

	if { $min_diameter > $currentTreeDiameter } {
	    set min_diameter $currentTreeDiameter
	    $best_Tree destroy
	    set best_Tree $TGraph
	} else {
	    $TGraph destroy
	}

	$T destroy
    }

    return $best_Tree
}

#Minimum Degree Spanning Tree
#-------------------------------------------------------------------------------------
#
#In graph theory, minimum degree spanning tree (or degree-constrained spanning tree)
#is a spanning tree where the maximum vertex degree is as small as possible (or is
#limited to a certain constant k). The minimum degree spanning tree problem is to
#determine whether a particular graph has such a spanning tree for a particular k.
#
#Algorithm for input undirected graph G finds its spanning tree with the smallest
#possible degree. Algorithm is a 2-approximation, so it doesn't assure that optimal
#solution will be found.
#
#Reference: http://en.wikipedia.org/wiki/Degree-constrained_spanning_tree

proc ::struct::graph::op::MinimumDegreeSpanningTree {G} {

    #initialization of spanning tree for G
    set MST [struct::graph]

    foreach v [$G nodes] {
	$MST node insert $v
    }

    #forcing all arcs to be 1-weighted
    foreach e [$G arcs] {
	$G arc setweight $e 1
    }

    foreach e [kruskal $G] {
	set u [$G arc source $e]
	set v [$G arc target $e]

	$MST arc insert $u $v [list $u $v]
    }

    #main loop
    foreach e [$G arcs] {

	set u [$G arc source $e]
	set v [$G arc target $e]

	#if nodes u and v are neighbours, proceed to next iteration
	if { ![$MST arc exists [list $u $v]] && ![$MST arc exists [list $v $u]] } {

	    $MST arc setunweighted 1

	    #setting the path between nodes u and v in Spanning Tree MST
	    set path [dict get [dijkstra $MST $u] $v]
	    lappend path $v

	    #search for the node in the path, such that its degree is greater than degree of any of nodes
	    #u or v increased by one
	    foreach node $path {
		if { [$MST node degree $node] > ([Max [$MST node degree $u] [$MST node degree $v]] + 1) } {

		    #if such node is found add the arc between nodes u and v
                    $MST arc insert $u $v [list $u $v]

		    #then to hold MST being a spanning tree, delete any arc that is in the path
		    #that is adjacent to found node
		    foreach n [$MST nodes -adj $node] {
			if { $n in $path } {
			    if { [$MST arc exists [list $node $n]] } {
				$MST arc delete [list $node $n]
			    } else {
				$MST arc delete [list $n $node]
			    }
			    break
			}
		    }

		    # Node found, stop processing the path
		    break
		}
	    }
	}
    }

    return $MST
}

#Dinic algorithm for finding maximum flow in flow network
#-------------------------------------------------------------------------------------
#
#Reference: http://en.wikipedia.org/wiki/Dinic's_algorithm
#
proc ::struct::graph::op::MaximumFlowByDinic {G s t blockingFlowAlg} {

    if { !($blockingFlowAlg eq "dinic" || $blockingFlowAlg eq "mkm") } {
	return -code error "Uncorrect name of blocking flow algorithm. Choose \"mkm\" for Malhotra, Kumar and Maheshwari algorithm and \"dinic\" for Dinic algorithm."
    }

    foreach arc [$G arcs] {
	set u [$G arc source $arc]
	set v [$G arc target $arc]

	dict set f [list $u $v] 0
	dict set f [list $v $u] 0
    }

    while {1} {
	set residualG [createResidualGraph $G $f]
	if { $blockingFlowAlg == "mkm" } {
	    set blockingFlow [BlockingFlowByMKM $residualG $s $t]
	} else {
	    set blockingFlow [BlockingFlowByDinic $residualG $s $t]
	}
	$residualG destroy

	if { $blockingFlow == {} } break

	foreach key [dict keys $blockingFlow] {
	    dict set f $key [ expr { [dict get $f $key] + [dict get $blockingFlow $key] } ]
	}
    }

    set f [dict filter $f script {flow flowvalue} {expr {$flowvalue != 0}}]

    return $f
}

#Dinic algorithm for finding blocking flow
#-------------------------------------------------------------------------------------
#
#Algorithm for given network G with source s and sink t, finds a blocking
#flow, which can be used to obtain a maximum flow for that network G.
#
#Some steps that algorithm takes:
#1. constructing the level graph from network G
#2. until there are edges in level graph:
#	3. find the path between s and t nodes in level graph
#	4. for each edge in path update current throughputs at those edges and...
#	5. ...deleting nodes from which there are no residual edges
#6. return the dictionary containing the blocking flow

proc ::struct::graph::op::BlockingFlowByDinic {G s t} {

    #initializing blocking flow dictionary
    foreach edge [$G arcs] {
	set u [$G arc source $edge]
	set v [$G arc target $edge]

	dict set b [list $u $v] 0
    }

    #1.
    set LevelGraph [createLevelGraph $G $s]

    #2. the main loop
    while { [llength [$LevelGraph arcs]] > 0 } {

	if { ![$LevelGraph node exists $s] || ![$LevelGraph node exists $t] } break

	#3.
	set paths [ShortestsPathsByBFS $LevelGraph $s paths]

	if { $paths == {} } break
	if { ![dict exists $paths $t] } break

	set path [dict get $paths $t]
	lappend path $t

	#setting the max throughput to go with the path found one step before
	set maxThroughput Inf
	foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {

	    set uv_throughput [$LevelGraph arc get [list $u $v] throughput]

	    if { $maxThroughput > $uv_throughput } {
		set maxThroughput $uv_throughput
	    }
	}

	#4. updating throughputs and blocking flow
	foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {

	    set uv_throughput [$LevelGraph arc get [list $u $v] throughput]
	    #decreasing the throughputs contained in the path by max flow value
	    $LevelGraph arc set [list $u $v] throughput [ expr { $uv_throughput - $maxThroughput } ]

	    #updating blocking flows
	    dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + $maxThroughput } ]
	    #dict set b [list $v $u] [ expr { -1 * [dict get $b [list $u $v]] } ]

	    #5. deleting the arcs, whose throughput is completely used
	    if { [$LevelGraph arc get [list $u $v] throughput] == 0 } {
		$LevelGraph arc delete [list $u $v]
	    }

	    #deleting the node, if it hasn't any outgoing arcs
	    if { ($u != $s) && ( ![llength [$LevelGraph nodes -out $u]] || ![llength [$LevelGraph nodes -in $u]] ) } {
		$LevelGraph node delete $u
	    }
	}

    }

    set b [dict filter $b script {flow flowvalue} {expr {$flowvalue != 0}}]

    $LevelGraph destroy

    #6.
    return $b
}

#Malhotra, Kumar and Maheshwari Algorithm for finding blocking flow
#-------------------------------------------------------------------------------------
#
#Algorithm for given network G with source s and sink t, finds a blocking
#flow, which can be used to obtain a maximum flow for that network G.
#
#For given node v, Let c(v) be the min{ a, b }, where a is the sum of all incoming
#throughputs and b is the sum of all outcoming throughputs from the node v.
#
#Some steps that algorithm takes:
#1. constructing the level graph from network G
#2. until there are edges in level graph:
#   3. finding the node with the minimum c(v)
#   4. sending c(v) units of throughput by incoming arcs of v
#	5. sending c(v) units of throughput by outcoming arcs of v
#	6. 4 and 5 steps can cause excess or deficiency of throughputs at nodes, so we
#	send exceeds forward choosing arcs greedily and...
#	7. ...the same with deficiencies but we send those backward.
#	8. delete the v node from level graph
#	9. upgrade the c values for all nodes
#
#10. if no other edges left in level graph, return b - found blocking flow
#

proc ::struct::graph::op::BlockingFlowByMKM {G s t} {

    #initializing blocking flow dictionary
    foreach edge [$G arcs] {
	set u [$G arc source $edge]
	set v [$G arc target $edge]

	dict set b [list $u $v] 0
    }

    #1. setting the level graph
    set LevelGraph [createLevelGraph $G $s]

    #setting the in/out throughputs for each node
    set c [countThroughputsAtNodes $LevelGraph $s $t]

    #2. the main loop
    while { [llength [$LevelGraph nodes]] > 2 } {

	#if there is no path between s and t nodes, end the procedure and
	#return current blocking flow
	set distances [ShortestsPathsByBFS $LevelGraph $s distances]
	if { [dict get $distances $t] == "Inf" } {
	    $LevelGraph destroy
	    set b [dict filter $b script {flow flowvalue} {expr {$flowvalue != 0}}]
	    return $b
	}

	#3. finding the node with minimum value of c(v)
	set min_cv Inf

	dict for {node cv} $c {
	    if { $min_cv > $cv } {
		set min_cv $cv
		set minCv_node $node
	    }
	}

	#4. sending c(v) by all incoming arcs of node with minimum c(v)
	set _min_cv $min_cv
	foreach arc [$LevelGraph arcs -in $minCv_node] {

	    set t_arc [$LevelGraph arc get $arc throughput]
	    set u [$LevelGraph arc source $arc]
	    set v [$LevelGraph arc target $arc]
	    set b_uv [dict get $b [list $u $v]]

	    if { $t_arc >= $min_cv } {
		$LevelGraph arc set $arc throughput [ expr { $t_arc - $min_cv } ]
		dict set b [list $u $v] [ expr { $b_uv + $min_cv } ]
		break
	    } else {
		set difference [ expr { $min_cv - $t_arc } ]
		set min_cv $difference
		dict set b [list $u $v] [ expr { $b_uv + $difference } ]
		$LevelGraph arc set $arc throughput 0
	    }
	}

	#5. sending c(v) by all outcoming arcs of node with minimum c(v)
	foreach arc [$LevelGraph arcs -out $minCv_node] {

	    set t_arc [$LevelGraph arc get $arc throughput]
	    set u [$LevelGraph arc source $arc]
	    set v [$LevelGraph arc target $arc]
	    set b_uv [dict get $b [list $u $v]]

	    if { $t_arc >= $min_cv } {
		$LevelGraph arc set $arc throughput [ expr { $t_arc - $_min_cv } ]
		dict set b [list $u $v] [ expr { $b_uv + $_min_cv } ]
		break
	    } else {
		set difference [ expr { $_min_cv - $t_arc } ]
		set _min_cv $difference
		dict set b [list $u $v] [ expr { $b_uv + $difference } ]
		$LevelGraph arc set $arc throughput 0
	    }
	}

	#find exceeds and if any, send them forward or backwards
	set distances [ShortestsPathsByBFS $LevelGraph $s distances]

	#6.
	for {set i [ expr {[dict get $distances $minCv_node] + 1}] } { $i < [llength [$G nodes]] } { incr i } {
	    foreach w [$LevelGraph nodes] {
		if { [dict get $distances $w] == $i } {
		    set excess [findExcess $LevelGraph $w $b]
		    if { $excess > 0 } {
			set b [sendForward $LevelGraph $w $b $excess]
		    }
		}
	    }
	}

	#7.
	for { set i [ expr { [dict get $distances $minCv_node] - 1} ] } { $i > 0 } { incr i -1 } {
	    foreach w [$LevelGraph nodes] {
		if { [dict get $distances $w] == $i } {
		    set excess [findExcess $LevelGraph $w $b]
		    if { $excess < 0 } {
			set b [sendBack $LevelGraph $w $b [ expr { (-1) * $excess } ]]
		    }
		}
	    }
	}

	#8. delete current node from the network
	$LevelGraph node delete $minCv_node

	#9. correctingg the in/out throughputs for each node after
	#deleting one of the nodes in network
	set c [countThroughputsAtNodes $LevelGraph $s $t]

	#if node has no availiable outcoming or incoming throughput
	#delete that node from the graph
	dict for {key val} $c {
	    if { $val == 0 } {
		$LevelGraph node delete $key
		dict unset c $key
	    }
	}
    }

    set b [dict filter $b script {flow flowvalue} {expr {$flowvalue != 0}}]

    $LevelGraph destroy
    #10.
    return $b
}

#Subprocedure for algorithms that find blocking-flows.
#It's creating a level graph from the residual network.
proc ::struct::graph::op::createLevelGraph {Gf s} {

    set LevelGraph [struct::graph]

    $Gf arc setunweighted 1

    #deleting arcs with 0 throughputs for proper pathfinding
    foreach arc [$Gf arcs] {
	if { [$Gf arc get $arc throughput] == 0 } {
	    $Gf arc delete $arc
	}
    }

    set distances [ShortestsPathsByBFS $Gf $s distances]

    foreach v [$Gf nodes] {
	$LevelGraph node insert $v
	$LevelGraph node set $v distance [dict get $distances $v]
    }

    foreach e [$Gf arcs] {
	set u [$Gf arc source $e]
	set v [$Gf arc target $e]

	if { ([$LevelGraph node get $u distance] + 1) == [$LevelGraph node get $v distance]} {
	    $LevelGraph arc insert $u $v [list $u $v]
	    $LevelGraph arc set [list $u $v] throughput [$Gf arc get $e throughput]
	}
    }

    $LevelGraph arc setunweighted 1
    return $LevelGraph
}

#Subprocedure for blocking flow finding by MKM algorithm
#
#It computes for graph G and each of his nodes the throughput value -
#for node v: from the sum of availiable throughputs from incoming arcs and
#the sum of availiable throughputs from outcoming arcs chooses lesser and sets
#as the throughput of the node.
#
#Throughputs of nodes are returned in the dictionary.
#
proc ::struct::graph::op::countThroughputsAtNodes {G s t} {

    set c {}
    foreach v [$G nodes] {

	if { ($v eq $t) || ($v eq $s) } continue

	set outcoming [$G arcs -out $v]
	set incoming [$G arcs -in $v]

	set outsum 0
	set insum 0

	foreach o $outcoming i $incoming {

	    if { [llength $o] > 0 } {
		set outsum [ expr { $outsum + [$G arc get $o throughput] } ]
	    }

	    if { [llength $i] > 0 } {
		set insum [ expr { $insum + [$G arc get $i throughput] } ]
	    }

	    set value [Min $outsum $insum]
	}

	dict set c $v $value
    }

    return $c
}

#Subprocedure for blocking-flow finding algorithm by MKM
#
#If for a given input node, outcoming flow is bigger than incoming, then that deficiency
#has to be send back by that subprocedure.
proc ::struct::graph::op::sendBack {G node b value} {

    foreach arc [$G arcs -in $node] {
	set u [$G arc source $arc]
	set v [$G arc target $arc]

	if { $value > [$G arc get $arc throughput] } {
	    set value [ expr { $value - [$G arc get $arc throughput] } ]
	    dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + [$G arc get $arc throughput] } ]
	    $G arc set $arc throughput 0
	} else {
	    $G arc set $arc throughput [ expr { [$G arc get $arc throughput] - $value } ]
	    dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + $value } ]
	    set value 0
	    break
	}
    }

    return $b
}

#Subprocedure for blocking-flow finding algorithm by MKM
#
#If for a given input node, incoming flow is bigger than outcoming, then that exceed
#has to be send forward by that sub procedure.
proc ::struct::graph::op::sendForward {G node b value} {

    foreach arc [$G arcs -out $node] {

	set u [$G arc source $arc]
	set v [$G arc target $arc]

	if { $value > [$G arc get $arc throughput] } {
	    set value [ expr { $value - [$G arc get $arc throughput] } ]
	    dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + [$G arc get $arc throughput] } ]
	    $G arc set $arc throughput 0
	} else {
	    $G arc set $arc throughput [ expr { [$G arc get $arc throughput] - $value } ]
	    dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + $value } ]

	    set value 0
	    break
	}
    }

    return $b
}

#Subprocedure for blocking-flow finding algorithm by MKM
#
#It checks for graph G if node given at input has a exceed
#or deficiency of throughput.
#
#For exceed the positive value of exceed is returned, for deficiency
#procedure returns negative value. If the incoming throughput
#is the same as outcoming, procedure returns 0.
#
proc ::struct::graph::op::findExcess {G node b} {

    set incoming 0
    set outcoming 0

    foreach key [dict keys $b] {

	lassign $key u v
	if { $u eq $node } {
	    set outcoming [ expr { $outcoming + [dict get $b $key] } ]
	}
	if { $v eq $node } {
	    set incoming [ expr { $incoming + [dict get $b $key] } ]
	}
    }

    return [ expr { $incoming - $outcoming } ]
}

#Travelling Salesman Problem - Heuristic of local searching
#2 - approximation Algorithm
#-------------------------------------------------------------------------------------
#

proc ::struct::graph::op::TSPLocalSearching {G C} {

    foreach arc $C {
	if { ![$G arc exists $arc] } {
	    return -code error "Given cycle has arcs not included in graph G."
	}
    }

    #initialization
    set CGraph [struct::graph]
    set GCopy [struct::graph]
    set w 0

    foreach node [$G nodes] {
	$CGraph node insert $node
	$GCopy node insert $node
    }

    foreach arc [$G arcs] {
	set u [$G arc source $arc]
	set v [$G arc target $arc]
	$GCopy arc insert $u $v [list $u $v]
	$GCopy arc set [list $u $v] weight [$G arc get $arc weight]
    }

    foreach arc $C {

	set u [$G arc source $arc]
	set v [$G arc target $arc]
	set arcWeight [$G arc get $arc weight]

	$CGraph arc insert $u $v [list $u $v]
	$CGraph arc set [list $u $v] weight $arcWeight

	set w [ expr { $w + $arcWeight } ]
    }

    set reductionDone 1

    while { $reductionDone } {

	set queue {}
	set reductionDone 0

	#double foreach loop goes through all pairs of arcs
	foreach i [$CGraph arcs] {

	    #source and target nodes of first arc
	    set iu [$CGraph arc source $i]
	    set iv [$CGraph arc target $i]

	    #second arc
	    foreach j [$CGraph arcs] {

		#if pair of arcs already was considered, continue with next pair of arcs
		if { [list $j $i] ni $queue } {

		    #add current arc to queue to mark that it was used
		    lappend queue [list $i $j]

		    set ju [$CGraph arc source $j]
		    set jv [$CGraph arc target $j]

		    #we consider only arcs that are not adjacent
		    if { !($iu eq $ju) && !($iu eq $jv) && !($iv eq $ju) && !($iv eq $jv) } {

			#set the current cycle
			set CPrim [copyGraph $CGraph]

			#transform the current cycle:
			#1.
			$CPrim arc delete $i
			$CPrim arc delete $j


			set param 0

			#adding new edges instead of erased ones
			if { !([$CPrim arc exists [list $iu $ju]] || [$CPrim arc exists [list $iv $jv]] || [$CPrim arc exists [list $ju $iu]] || [$CPrim arc exists [list $jv $iv]] ) } {

			    $CPrim arc insert $iu $ju [list $iu $ju]
			    $CPrim arc insert $iv $jv [list $iv $jv]

			    if { [$GCopy arc exists [list $iu $ju]] } {
				$CPrim arc set [list $iu $ju] weight [$GCopy arc get [list $iu $ju] weight]
			    } else {
				$CPrim arc set [list $iu $ju] weight [$GCopy arc get [list $ju $iu] weight]
			    }

			    if { [$GCopy arc exists [list $iv $jv]] } {
				$CPrim arc set [list $iv $jv] weight [$GCopy arc get [list $iv $jv] weight]
			    } else {
				$CPrim arc set [list $iv $jv] weight [$GCopy arc get [list $jv $iv] weight]
			    }
			} else {
			    set param 1
			}

			$CPrim arc setunweighted 1

			#check if it's still a cycle or if any arcs were added instead those erased
			if { !([struct::graph::op::distance $CPrim $iu $ju] > 0 ) || $param } {

			    #deleting new edges if they were added before in current iteration
			    if { !$param } {
				$CPrim arc delete [list $iu $ju]
			    }

			    if { !$param } {
				$CPrim arc delete [list $iv $jv]
			    }

			    #adding new ones that will assure the graph is still a cycle
			    $CPrim arc insert $iu $jv [list $iu $jv]
			    $CPrim arc insert $iv $ju [list $iv $ju]

			    if { [$GCopy arc exists [list $iu $jv]] } {
				$CPrim arc set [list $iu $jv] weight [$GCopy arc get [list $iu $jv] weight]
			    } else {
				$CPrim arc set [list $iu $jv] weight [$GCopy arc get [list $jv $iu] weight]
			    }

			    if { [$GCopy arc exists [list $iv $ju]] } {
				$CPrim arc set [list $iv $ju] weight [$GCopy arc get [list $iv $ju] weight]
			    } else {
				$CPrim arc set [list $iv $ju] weight [$GCopy arc get [list $ju $iv] weight]
			    }
			}

			#count current value of cycle
			set cycleWeight [countCycleWeight $CPrim]

			#if we found cycle with lesser sum of weights, we set is as a result and
			#marked that reduction was successful
			if { $w > $cycleWeight } {
			    set w $cycleWeight
			    set reductionDone 1
			    set C [$CPrim arcs]
			}

			$CPrim destroy
		    }
		}
	    }
	}

	#setting the new current cycle if the reduction was successful
	if { $reductionDone } {
	    foreach arc [$CGraph arcs] {
		$CGraph arc delete $arc
	    }
	    for {set i 0} { $i < [llength $C] } { incr i } {
		lset C $i [lsort [lindex $C $i]]
	    }

	    foreach arc [$GCopy arcs] {
		if { [lsort $arc] in $C } {
		    set u [$GCopy arc source $arc]
		    set v [$GCopy arc target $arc]
		    $CGraph arc insert $u $v [list $u $v]
		    $CGraph arc set $arc weight [$GCopy arc get $arc weight]
		}
	    }
	}
    }

    $GCopy destroy
    $CGraph destroy

    return $C
}

proc ::struct::graph::op::copyGraph {G} {

    set newGraph [struct::graph]

    foreach node [$G nodes] {
	$newGraph node insert $node
    }
    foreach arc [$G arcs] {
	set u [$G arc source $arc]
	set v [$G arc target $arc]
	$newGraph arc insert $u $v $arc
	$newGraph arc set $arc weight [$G arc get $arc weight]
    }

    return $newGraph
}

proc ::struct::graph::op::countCycleWeight {G} {

    set result 0

    foreach arc [$G arcs] {
	set result [ expr { $result + [$G arc get $arc weight] } ]
    }

    return $result
}

# ### ### ### ######### ######### #########
##

# This command finds a minimum spanning tree/forest (MST) of the graph
# argument, using the algorithm developed by Joseph Kruskal. The
# result is a set (as list) containing the names of the arcs in the
# MST. The set of nodes of the MST is implied by set of arcs, and thus
# not given explicitly. The algorithm does not consider arc
# directions. Note that unconnected nodes are left out of the result.

# Reference: http://en.wikipedia.org/wiki/Kruskal%27s_algorithm

proc ::struct::graph::op::kruskal {g} {
    # Check graph argument for proper configuration.

    VerifyWeightsAreOk $g

    # Transient helper data structures. A priority queue for the arcs
    # under consideration, using their weights as priority, and a
    # disjoint-set to keep track of the forest of partial minimum
    # spanning trees we are working with.

    set consider [::struct::prioqueue -dictionary consider]
    set forest   [::struct::disjointset forest]

    # Start with all nodes in the graph each in their partition.

    foreach n [$g nodes] {
	$forest add-partition $n
    }

    # Then fill the queue with all arcs, using their weight to
    # prioritize. The weight is the cost of the arc. The lesser the
    # better.

    foreach {arc weight} [$g arc weights] {
	$consider put $arc $weight
    }

    # And now we can construct the tree. This is done greedily. In
    # each round we add the arc with the smallest weight to the
    # minimum spanning tree, except if doing so would violate the tree
    # condition.

    set result {}

    while {[$consider size]} {
	set minarc [$consider get]
	set origin [$g arc source $minarc]
	set destin [$g arc target $minarc]

	# Ignore the arc if both ends are in the same partition. Using
	# it would add a cycle to the result, i.e. it would not be a
	# tree anymore.

	if {[$forest equal $origin $destin]} continue

	# Take the arc for the result, and merge the trees both ends
	# are in into a single tree.

	lappend result $minarc
	$forest merge $origin $destin
    }

    # We are done. Get rid of the transient helper structures and
    # return our result.

    $forest   destroy
    $consider destroy

    return $result
}

# ### ### ### ######### ######### #########
##

# This command finds a minimum spanning tree/forest (MST) of the graph
# argument, using the algorithm developed by Prim. The result is a
# set (as list) containing the names of the arcs in the MST. The set
# of nodes of the MST is implied by set of arcs, and thus not given
# explicitly. The algorithm does not consider arc directions.

# Reference: http://en.wikipedia.org/wiki/Prim%27s_algorithm

proc ::struct::graph::op::prim {g} {
    VerifyWeightsAreOk $g

    # Fill an array with all nodes, to track which nodes have been
    # visited at least once. When the inner loop runs out of nodes and
    # we still have some left over we restart using one of the
    # leftover as new starting point. In this manner we get the MST of
    # the whole graph minus unconnected nodes, instead of only the MST
    # for the component the initial starting node is in.

    array set unvisited {}
    foreach n [$g nodes] { set unvisited($n) . }

    # Transient helper data structure. A priority queue for the nodes
    # and arcs under consideration for inclusion into the MST. Each
    # element of the queue is a list containing node name, a flag bit,
    # and arc name, in this order. The associated priority is the
    # weight of the arc. The flag bit is set for the initial queue
    # entry only, containing a fake (empty) arc, to trigger special
    # handling.

    set consider [::struct::prioqueue -dictionary consider]

    # More data structures, the result arrays.
    array set weightmap {} ; # maps nodes to min arc weight seen so
    # far. This is the threshold other arcs
    # on this node will have to beat to be
    # added to the MST.
    array set arcmap    {} ; # maps arcs to nothing, these are the
    # arcs in the MST.

    while {[array size unvisited]} {
	# Choose a 'random' node as the starting point for the inner
	# loop, prim's algorithm, and put it on the queue for
	# consideration. Then we iterate until we have considered all
	# nodes in the its component.

	set startnode [lindex [array names unvisited] 0]
	$consider put [list $startnode 1 {}] 0

	while {[$consider size] > 0} {
	    # Pull the next minimum weight to look for. This is the
	    # priority of the next item we can get from the queue. And the
	    # associated node/decision/arc data.

	    set arcweight [$consider peekpriority 1]

	    foreach {v arcundefined arc} [$consider get] break
	    #8.5: lassign [$consider get] v arcundefined arc

	    # Two cases to consider: The node v is already part of the
	    # MST, or not. If yes we check if the new arcweight is better
	    # than what we have stored already, and update accordingly.

	    if {[info exists weightmap($v)]} {
		set currentweight $weightmap($v)
		if {$arcweight < $currentweight} {
		    # The new weight is better, update to use it as
		    # the new threshold. Note that this fill not touch
		    # any other arcs found for this node, as these are
		    # still minimal.

		    set weightmap($v) $arcweight
		    set arcmap($arc)  .
		}
	    } else {
		# Node not yet present. Save weight and arc. The
		# latter if and only the arc is actually defined. For
		# the first, initial queue entry, it is not.  Then we
		# add all the arcs adjacent to the current node to the
		# queue to consider them in the next rounds.

		set weightmap($v) $arcweight
		if {!$arcundefined} {
		    set arcmap($arc) .
		}
		foreach adjacentarc [$g arcs -adj $v] {
		    set weight    [$g arc  getweight   $adjacentarc]
		    set neighbour [$g node opposite $v $adjacentarc]
		    $consider put [list $neighbour 0 $adjacentarc] $weight
		}
	    }

	    # Mark the node as visited, belonging to the current
	    # component. Future iterations will ignore it.
	    unset -nocomplain unvisited($v)
	}
    }

    # We are done. Get rid of the transient helper structure and
    # return our result.

    $consider destroy

    return [array names arcmap]
}

# ### ### ### ######### ######### #########
##

# This command checks whether the graph argument is bi-partite or not,
# and returns the result as a boolean value, true for a bi-partite
# graph, and false otherwise. A variable can be provided to store the
# bi-partition into.
#
# Reference: http://en.wikipedia.org/wiki/Bipartite_graph

proc ::struct::graph::op::isBipartite? {g {bipartitionvar {}}} {

    # Handle the special cases of empty graphs, or one without arcs
    # quickly. Both are bi-partite.

    if {$bipartitionvar ne ""} {
	upvar 1 $bipartitionvar bipartitions
    }
    if {![llength [$g nodes]]} {
	set  bipartitions {{} {}}
	return 1
    } elseif {![llength [$g arcs]]} {
	if {$bipartitionvar ne ""} {
	    set  bipartitions [list [$g nodes] {}]
	}
	return 1
    }

    # Transient helper data structure, a queue of the nodes waiting
    # for processing.

    set pending [struct::queue pending]
    set nodes   [$g nodes]

    # Another structure, a map from node names to their 'color',
    # indicating which of the two partitions a node belngs to. All
    # nodes start out as undefined (0). Traversing the arcs we
    # set and flip them as needed (1,2).

    array set color {}
    foreach node $nodes {
	set color($node) 0
    }

    # Iterating over all nodes we use their connections to traverse
    # the components and assign colors. We abort when encountering
    # paradox, as that means that the graph is not bi-partite.

    foreach node $nodes {
	# Ignore nodes already in the second partition.
	if {$color($node)} continue

	# Flip the color, then travel the component and check for
	# conflicts with the neighbours.

	set color($node) 1

	$pending put $node
	while {[$pending size]} {
	    set current [$pending get]
	    foreach neighbour [$g nodes -adj $current] {
		if {!$color($neighbour)} {
		    # Exchange the color between current and previous
		    # nodes, and remember the neighbour for further
		    # processing.
		    set color($neighbour) [expr {3 - $color($current)}]
		    $pending put $neighbour
		} elseif {$color($neighbour) == $color($current)} {
		    # Color conflict between adjacent nodes, should be
		    # different.  This graph is not bi-partite. Kill
		    # the data structure and abort.

		    $pending destroy
		    return 0
		}
	    }
	}
    }

    # The graph is bi-partite. Kill the transient data structure, and
    # move the partitions into the provided variable, if there is any.

    $pending destroy

    if {$bipartitionvar ne ""} {
	# Build bipartition, then set the data into the variable
	# passed as argument to this command.

	set X {}
	set Y {}

	foreach {node partition} [array get color] {
	    if {$partition == 1} {
		lappend X $node
	    } else {
		lappend Y $node
	    }
	}
	set bipartitions [list $X $Y]
    }

    return 1
}

# ### ### ### ######### ######### #########
##

# This command computes a maximal matching, if it exists, for the
# graph argument G and its bi-partition as specified through the node
# sets X and Y. As is implied, this method requires that the graph is
# bi-partite. Use the command 'isBipartite?' to check for this
# property, and to obtain the bi-partition.
if 0 {
    proc ::struct::graph::op::maxMatching {g X Y} {
	return -code error "not implemented yet"
    }}

# ### ### ### ######### ######### #########
##

# This command computes the strongly connected components (SCCs) of
# the graph argument G. The result is a list of node-sets, each set
# containing the nodes of one SCC of G. In any SCC there is a directed
# path between any two nodes U, V from U to V. If all SCCs contain
# only a single node the graph is acyclic.

proc ::struct::graph::op::tarjan {g} {
    set all [$g nodes]

    # Quick bailout for simple special cases, i.e. graphs without
    # nodes or arcs.
    if {![llength $all]} {
	# No nodes => no SCCs
	return {}
    } elseif {![llength [$g arcs]]} {
	# Have nodes, but no arcs => each node is its own SCC.
	set r {} ; foreach a $all { lappend r [list $a] }
	return $r
    }

    # Transient data structures. Stack of nodes to consider, the
    # result, and various state arrays. TarjanSub upvar's all them
    # into its scope.

    set pending [::struct::stack pending]
    set result  {}

    array set index   {}
    array set lowlink {}
    array set instack {}

    # Invoke the main search system while we have unvisited
    # nodes. TarjanSub will remove all visited nodes from 'all',
    # ensuring termination.

    while {[llength $all]} {
	TarjanSub [lindex $all 0] 0
    }

    # Release the transient structures and return result.
    $pending destroy
    return $result
}

proc ::struct::graph::op::TarjanSub {start counter} {
    # Import the tracer state from our caller.
    upvar 1 g g index index lowlink lowlink instack instack result result pending pending all all

    struct::set subtract all $start

    set component {}
    set   index($start) $counter
    set lowlink($start) $counter
    incr counter

    $pending push $start
    set instack($start) 1

    foreach outarc [$g arcs -out $start] {
	set neighbour [$g arc target $outarc]

	if {![info exists index($neighbour)]} {
	    # depth-first-search of reachable nodes from the neighbour
	    # node. Original from the chosen startnode.
	    TarjanSub $neighbour $counter
	    set lowlink($start) [Min $lowlink($start) $lowlink($neighbour)]

	} elseif {[info exists instack($neighbour)]} {
	    set lowlink($start) [Min $lowlink($start) $lowlink($neighbour)]
	}
    }

    # Check if the 'start' node on this recursion level is the root
    # node of a SCC, and collect the component if yes.

    if {$lowlink($start) == $index($start)} {
	while {1} {
	    set v [$pending pop]
	    unset instack($v)
	    lappend component $v
	    if {$v eq $start} break
	}
	lappend result $component
    }

    return
}

# ### ### ### ######### ######### #########
##

# This command computes the connected components (CCs) of the graph
# argument G. The result is a list of node-sets, each set containing
# the nodes of one CC of G. In any CC there is UN-directed path
# between any two nodes U, V.

proc ::struct::graph::op::connectedComponents {g} {
    set all [$g nodes]

    # Quick bailout for simple special cases, i.e. graphs without
    # nodes or arcs.
    if {![llength $all]} {
	# No nodes => no CCs
	return {}
    } elseif {![llength [$g arcs]]} {
	# Have nodes, but no arcs => each node is its own CC.
	set r {} ; foreach a $all { lappend r [list $a] }
	return $r
    }

    # Invoke the main search system while we have unvisited
    # nodes.

    set result  {}
    while {[llength $all]} {
	set component [ComponentOf $g [lindex $all 0]]
	lappend result $component
	# all = all - component
	struct::set subtract all $component
    }
    return $result
}

# A derivative command which computes the connected component (CC) of
# the graph argument G containing the node N. The result is a node-set
# containing the nodes of the CC of N in G.

proc ::struct::graph::op::connectedComponentOf {g n} {
    # Quick bailout for simple special cases
    if {![$g node exists $n]} {
	return -code error "node \"$n\" does not exist in graph \"$g\""
    } elseif {![llength [$g arcs -adj $n]]} {
	# The chosen node has no neighbours, so is its own CC.
	return [list $n]
    }

    # Invoke the main search system for the chosen node.

    return [ComponentOf $g $n]
}

# Internal helper for finding connected components.

proc ::struct::graph::op::ComponentOf {g start} {
    set pending [::struct::queue pending]
    $pending put $start

    array set visited {}
    set visited($start) .

    while {[$pending size]} {
	set current [$pending get 1]
	foreach neighbour [$g nodes -adj $current] {
	    if {[info exists visited($neighbour)]} continue
	    $pending put $neighbour
	    set visited($neighbour) 1
	}
    }
    $pending destroy
    return [array names visited]
}

# ### ### ### ######### ######### #########
##

# This command determines if the specified arc A in the graph G is a
# bridge, i.e. if its removal will split the connected component its
# end nodes belong to, into two. The result is a boolean value. Uses
# the 'ComponentOf' helper command.

proc ::struct::graph::op::isBridge? {g arc} {
    if {![$g arc exists $arc]} {
	return -code error "arc \"$arc\" does not exist in graph \"$g\""
    }

    # Note: We could avoid the need for a copy of the graph if we were
    # willing to modify G (*). As we are not willing using a copy is
    # the easiest way to allow us a trivial modification. For the
    # future consider the creation of a graph class which represents
    # virtual graphs over a source, generated by deleting nodes and/or
    # arcs. without actually modifying the source.
    #
    # (Ad *): Create a new unnamed helper node X. Move the arc
    #         destination to X. Recompute the component and ignore
    #         X. Then move the arc target back to its original node
    #         and remove X again.

    set src        [$g arc source $arc]
    set compBefore [ComponentOf $g $src]
    if {[llength $compBefore] == 1} {
	# Special case, the arc is a loop on an otherwise unconnected
	# node. The component will not split, this is not a bridge.
	return 0
    }

    set copy       [struct::graph BridgeCopy = $g]
    $copy arc delete $arc
    set compAfter  [ComponentOf $copy $src]
    $copy destroy

    return [expr {[llength $compBefore] != [llength $compAfter]}]
}

# This command determines if the specified node N in the graph G is a
# cut vertex, i.e. if its removal will split the connected component
# it belongs to into two. The result is a boolean value. Uses the
# 'ComponentOf' helper command.

proc ::struct::graph::op::isCutVertex? {g n} {
    if {![$g node exists $n]} {
	return -code error "node \"$n\" does not exist in graph \"$g\""
    }

    # Note: We could avoid the need for a copy of the graph if we were
    # willing to modify G (*). As we are not willing using a copy is
    # the easiest way to allow us a trivial modification. For the
    # future consider the creation of a graph class which represents
    # virtual graphs over a source, generated by deleting nodes and/or
    # arcs. without actually modifying the source.
    #
    # (Ad *): Create two new unnamed helper nodes X and Y. Move the
    #         icoming and outgoing arcs to these helpers. Recompute
    #         the component and ignore the helpers. Then move the arcs
    #         back to their original nodes and remove the helpers
    #         again.

    set compBefore [ComponentOf $g $n]

    if {[llength $compBefore] == 1} {
	# Special case. The node is unconnected. Its removal will
	# cause no changes. Therefore not a cutvertex.
	return 0
    }

    # We remove the node from the original component, so that we can
    # select a new start node without fear of hitting on the
    # cut-vertex candidate. Also makes the comparison later easier
    # (straight ==).
    struct::set subtract compBefore $n

    set copy       [struct::graph CutVertexCopy = $g]
    $copy node delete $n
    set compAfter  [ComponentOf $copy [lindex $compBefore 0]]
    $copy destroy

    return [expr {[llength $compBefore] != [llength $compAfter]}]
}

# This command determines if the graph G is connected.

proc ::struct::graph::op::isConnected? {g} {
    return [expr { [llength [connectedComponents $g]] == 1 }]
}

# ### ### ### ######### ######### #########
##

# This command determines if the specified graph G has an eulerian
# cycle (aka euler tour, <=> g is eulerian) or not. If yes, it can
# return the cycle through the named variable, as a list of arcs
# traversed.
#
# Note that for a graph to be eulerian all nodes have to have an even
# degree, and the graph has to be connected. And if more than two
# nodes have an odd degree the graph is not even semi-eulerian (cannot
# even have an euler path).

proc ::struct::graph::op::isEulerian? {g {eulervar {}} {tourstart {}}} {
    set nodes [$g nodes]
    if {![llength $nodes] || ![llength [$g arcs]]} {
	# Quick bailout for special cases. No nodes, or no arcs imply
	# that no euler cycle is present.
	return 0
    }

    # Check the condition regarding even degree nodes, then
    # connected-ness.

    foreach n $nodes {
	if {([$g node degree $n] % 2) == 0} continue
	# Odd degree node found, not eulerian.
	return 0
    }

    if {![isConnected? $g]} {
	return 0
    }

    # At this point the graph is connected, with all nodes of even
    # degree. As per Carl Hierholzer the graph has to have an euler
    # tour. If the user doesn't request it we do not waste the time to
    # actually compute one.

    if {$tourstart ne ""} {
	upvar 1 $tourstart start
    }

    # We start the tour at an arbitrary node.
    set start [lindex $nodes 0]

    if {$eulervar eq ""} {
	return 1
    }

    upvar 1 $eulervar tour
    Fleury $g $start tour
    return 1
}

# This command determines if the specified graph G has an eulerian
# path (<=> g is semi-eulerian) or not. If yes, it can return the
# path through the named variable, as a list of arcs traversed.
#
# (*) Aka euler tour.
#
# Note that for a graph to be semi-eulerian at most two nodes are
# allowed to have an odd degree, all others have to be of even degree,
# and the graph has to be connected.

proc ::struct::graph::op::isSemiEulerian? {g {eulervar {}}} {
    set nodes [$g nodes]
    if {![llength $nodes] || ![llength [$g arcs]]} {
	# Quick bailout for special cases. No nodes, or no arcs imply
	# that no euler path is present.
	return 0
    }

    # Check the condition regarding oddd/even degree nodes, then
    # connected-ness.

    set odd 0
    foreach n $nodes {
	if {([$g node degree $n] % 2) == 0} continue
	incr odd
	set lastodd $n
    }
    if {($odd > 2) || ![isConnected? $g]} {
	return 0
    }

    # At this point the graph is connected, with the node degrees
    # supporting existence of an euler path. If the user doesn't
    # request it we do not waste the time to actually compute one.

    if {$eulervar eq ""} {
	return 1
    }

    upvar 1 $eulervar path

    # We start at either an odd-degree node, or any node, if there are
    # no odd-degree ones. In the last case we are actually
    # constructing an euler tour, i.e. a closed path.

    if {$odd} {
	set start $lastodd
    } else {
	set start [lindex $nodes 0]
    }

    Fleury $g $start path
    return 1
}

proc ::struct::graph::op::Fleury {g start eulervar} {
    upvar 1 $eulervar path

    # We start at the chosen node.

    set copy  [struct::graph FleuryCopy = $g]
    set path  {}

    # Edges are chosen per Fleury's algorithm. That is easy,
    # especially as we already have a command to determine whether an
    # arc is a bridge or not.

    set arcs [$copy arcs]
    while {![struct::set empty $arcs]} {
	set adjacent [$copy arcs -adj $start]

	if {[llength $adjacent] == 1} {
	    # No choice in what arc to traverse.
	    set arc [lindex $adjacent 0]
	} else {
	    # Choose first non-bridge arcs. The euler conditions force
	    # that at least two such are present.

	    set has 0
	    foreach arc $adjacent {
		if {[isBridge? $copy $arc]} {
		    continue
		}
		set has 1
		break
	    }
	    if {!$has} {
		$copy destroy
		return -code error {Internal error}
	    }
	}

	set start [$copy node opposite $start $arc]
	$copy arc delete $arc
	struct::set exclude arcs $arc
	lappend path $arc
    }

    $copy destroy
    return
}

# ### ### ### ######### ######### #########
##

# This command uses dijkstra's algorithm to find all shortest paths in
# the graph G starting at node N. The operation can be configured to
# traverse arcs directed and undirected, and the format of the result.

proc ::struct::graph::op::dijkstra {g node args} {
    # Default traversal is undirected.
    # Default output format is tree.

    set arcTraversal undirected
    set resultFormat tree

    # Process options to override the defaults, if any.
    foreach {option param} $args {
	switch -exact -- $option {
	    -arcmode {
		switch -exact -- $param {
		    directed -
		    undirected {
			set arcTraversal $param
		    }
		    default {
			return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
		    }
		}
	    }
	    -outputformat {
		switch -exact -- $param {
		    tree -
		    distances {
			set resultFormat $param
		    }
		    default {
			return -code error "Bad value for -outputformat, expected one of \"distances\" or \"tree\""
		    }
		}
	    }
	    default {
		return -code error "Bad option \"$option\", expected one of \"-arcmode\" or \"-outputformat\""
	    }
	}
    }

    # We expect that all arcs of g are given a weight.
    VerifyWeightsAreOk $g

    # And the start node has to belong to the graph too, of course.
    if {![$g node exists $node]} {
	return -code error "node \"$node\" does not exist in graph \"$g\""
    }

    # TODO: Quick bailout for special cases (no arcs).

    # Transient and other data structures for the core algorithm.
    set pending [::struct::prioqueue -dictionary DijkstraQueue]
    array set distance {} ; # array: node -> distance to 'n'
    array set previous {} ; # array: node -> parent in shortest path to 'n'.
    array set visited  {} ; # array: node -> bool, true when node processed

    # Initialize the data structures.
    foreach n [$g nodes] {
	set distance($n) Inf
	set previous($n) undefined
	set  visited($n) 0
    }

    # Compute the distances ...
    $pending put $node 0
    set distance($node) 0
    set previous($node) none

    while {[$pending size]} {
	set current [$pending get]
	set visited($current) 1

	# Traversal to neighbours according to the chosen mode.
	if {$arcTraversal eq "undirected"} {
	    set arcNeighbours [$g arcs -adj $current]
	} else {
	    set arcNeighbours [$g arcs -out $current]
	}

	# Compute distances, record newly discovered nodes, minimize
	# distances for nodes reachable through multiple paths.
	foreach arcNeighbour $arcNeighbours {
	    set cost      [$g arc getweight $arcNeighbour]
	    set neighbour [$g node opposite $current $arcNeighbour]
	    set delta     [expr {$distance($current) + $cost}]

	    if {
		($distance($neighbour) eq "Inf") ||
		($delta < $distance($neighbour))
	    } {
		# First path, or better path to the node folund,
		# update our records.

		set distance($neighbour) $delta
		set previous($neighbour) $current
		if {!$visited($neighbour)} {
		    $pending put $neighbour $delta
		}
	    }
	}
    }

    $pending destroy

    # Now generate the result based on the chosen format.
    if {$resultFormat eq "distances"} {
	return [array get distance]
    } else {
	array set listofprevious {}
	foreach n [$g nodes] {
	    set current $n
	    while {1} {
		if {$current eq "undefined"} break
		if {$current eq $node} {
		    lappend listofprevious($n) $current
		    break
		}
		if {$current ne $n} {
		    lappend listofprevious($n) $current
		}
		set current $previous($current)
	    }
	}
	return [array get listofprevious]
    }
}

# This convenience command is a wrapper around dijkstra's algorithm to
# find the (un)directed distance between two nodes in the graph G.

proc ::struct::graph::op::distance {g origin destination args} {
    if {![$g node exists $origin]} {
	return -code error "node \"$origin\" does not exist in graph \"$g\""
    }
    if {![$g node exists $destination]} {
	return -code error "node \"$destination\" does not exist in graph \"$g\""
    }

    set arcTraversal undirected

    # Process options to override the defaults, if any.
    foreach {option param} $args {
	switch -exact -- $option {
	    -arcmode {
		switch -exact -- $param {
		    directed -
		    undirected {
			set arcTraversal $param
		    }
		    default {
			return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
		    }
		}
	    }
	    default {
		return -code error "Bad option \"$option\", expected \"-arcmode\""
	    }
	}
    }

    # Quick bailout for special case: the distance from a node to
    # itself is zero

    if {$origin eq $destination} {
	return 0
    }

    # Compute all distances, then pick and return the one we are
    # interested in.
    array set distance [dijkstra $g $origin -outputformat distances -arcmode $arcTraversal]
    return $distance($destination)
}

# This convenience command is a wrapper around dijkstra's algorithm to
# find the (un)directed eccentricity of the node N in the graph G. The
# eccentricity is the maximal distance to any other node in the graph.

proc ::struct::graph::op::eccentricity {g node args} {
    if {![$g node exists $node]} {
	return -code error "node \"$node\" does not exist in graph \"$g\""
    }

    set arcTraversal undirected

    # Process options to override the defaults, if any.
    foreach {option param} $args {
	switch -exact -- $option {
	    -arcmode {
		switch -exact -- $param {
		    directed -
		    undirected {
			set arcTraversal $param
		    }
		    default {
			return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
		    }
		}
	    }
	    default {
		return -code error "Bad option \"$option\", expected \"-arcmode\""
	    }
	}
    }

    # Compute all distances, then pick out the max

    set ecc 0
    foreach {n distance} [dijkstra $g $node -outputformat distances -arcmode $arcTraversal] {
	if {$distance eq "Inf"} { return Inf }
	if {$distance > $ecc} { set ecc $distance }
    }

    return $ecc
}

# This convenience command is a wrapper around eccentricity to find
# the (un)directed radius of the graph G. The radius is the minimal
# eccentricity over all nodes in the graph.

proc ::struct::graph::op::radius {g args} {
    return [lindex [RD $g $args] 0]
}

# This convenience command is a wrapper around eccentricity to find
# the (un)directed diameter of the graph G. The diameter is the
# maximal eccentricity over all nodes in the graph.

proc ::struct::graph::op::diameter {g args} {
    return [lindex [RD $g $args] 1]
}

proc ::struct::graph::op::RD {g options} {
    set arcTraversal undirected

    # Process options to override the defaults, if any.
    foreach {option param} $options {
	switch -exact -- $option {
	    -arcmode {
		switch -exact -- $param {
		    directed -
		    undirected {
			set arcTraversal $param
		    }
		    default {
			return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
		    }
		}
	    }
	    default {
		return -code error "Bad option \"$option\", expected \"-arcmode\""
	    }
	}
    }

    set radius   Inf
    set diameter 0
    foreach n [$g nodes] {
	set e [eccentricity $g $n -arcmode $arcTraversal]
	#puts "$n ==> ($e)"
	if {($e eq "Inf") || ($e > $diameter)} {
	    set diameter $e
	}
	if {($radius eq "Inf") || ($e < $radius)} {
	    set radius $e
	}
    }

    return [list $radius $diameter]
}

#
## place holder for operations to come
#

# ### ### ### ######### ######### #########
## Internal helpers

proc ::struct::graph::op::Min {first second} {
    if {$first > $second} {
	return $second
    } else {
	return $first
    }
}

proc ::struct::graph::op::Max {first second} {
    if {$first < $second} {
	return $second
    } else {
	return $first
    }
}

# This method verifies that every arc on the graph has a weight
# assigned to it. This is required for some algorithms.
proc ::struct::graph::op::VerifyWeightsAreOk {g} {
    if {![llength [$g arc getunweighted]]} return
    return -code error "Operation invalid for graph with unweighted arcs."
}

# ### ### ### ######### ######### #########
## Ready

namespace eval ::struct::graph::op {
    #namespace export ...
}

package provide struct::graph::op 0.11.3