This file is indexed.

/usr/share/tcltk/tcllib1.16/des/tcldes.tcl is in tcllib 1.16-dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
# des.tcl
# $Revision: 1.1 $
# $Date: 2005/09/26 09:16:59 $
#
# Port of Javascript implementation to Tcl 8.4 by Mac A. Cody,
# October, 2002 - February, 2003
# August, 2003 - Separated key set generation from encryption/decryption.
#                Renamed "des" procedure to "block" to differentiate from the
#                "stream" procedure used for CFB and OFB modes.
#                Modified the "encrypt" and "decrypt" procedures to support
#                CFB and OFB modes. Changed the procedure arguments.
#                Added the "stream" procedure to support CFB and OFB modes.
# June, 2004 - Corrected input vector bug in stream-mode processing.  Added
#              support for feedback vector storage and management function.
#              This enables a stream of data to be processed over several calls
#              to the encryptor or decryptor.
# September, 2004 - Added feedback vector to the CBC mode of operation to allow
#                   a large data set to be processed over several calls to the
#                   encryptor or decryptor.
# October, 2004 - Added test for weak keys in the createKeys procedure.
#
# Paul Tero, July 2001
# http://www.shopable.co.uk/des.html
#
# Optimised for performance with large blocks by Michael Hayworth,
# November 2001, http://www.netdealing.com
#
# This software is copyrighted (c) 2003, 2004 by Mac A. Cody.  All rights
# reserved.  The following terms apply to all files associated with
# the software unless explicitly disclaimed in individual files or
# directories.

# The authors hereby grant permission to use, copy, modify, distribute,
# and license this software for any purpose, provided that existing
# copyright notices are retained in all copies and that this notice is
# included verbatim in any distributions. No written agreement, license,
# or royalty fee is required for any of the authorized uses.
# Modifications to this software may be copyrighted by their authors and
# need not follow the licensing terms described here, provided that the
# new terms are clearly indicated on the first page of each file where
# they apply.

# IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
# FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
# ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
# DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

# THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.  THIS SOFTWARE
# IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
# NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
# MODIFICATIONS.

# GOVERNMENT USE: If you are acquiring this software on behalf of the
# U.S. government, the Government shall have only "Restricted Rights"
# in the software and related documentation as defined in the Federal 
# Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2).  If you
# are acquiring the software on behalf of the Department of Defense, the
# software shall be classified as "Commercial Computer Software" and the
# Government shall have only "Restricted Rights" as defined in Clause
# 252.227-7013 (c) (1) of DFARs.  Notwithstanding the foregoing, the
# authors grant the U.S. Government and others acting in its behalf
# permission to use and distribute the software in accordance with the
# terms specified in this license. 
namespace eval des {
    variable keysets
    variable WeakKeysError
    if {![info exists WeakKeysError]} { set WeakKeysError 1 }
    set keysets(ndx) 1
    # Produre: keyset - Create or destroy a keyset created from a 64-bit
    #                   DES key or a 192-bit 3DES key.
    # Inputs:
    #   oper  : The operation to be performed.  This will be either "create"
    #           (make a new keyset) or "destroy" (delete an existing keyset).
    #           The meaning of the argument "value" depends of the operation
    #           performed.  An error is generated if "oper" is not "create"
    #           or "destroy".
    #             
    #   value : If the argument "oper" is "create", then "value" is the 64-bit
    #           DES key or the 192-bit 3DES key.  (Note: The lsb of each byte
    #           is ignored; odd parity is not required).  If the argument
    #           "oper" is "destroy", then "value" is a handle to a keyset that
    #           was created previously.
    #
    #   weak:   If true then weak keys are allowed. The default is to raise an
    #           error when a weak key is seen.
    # Output:
    #   If the argument "oper" is "create", then the output is a handle to the
    #   keyset stored in the des namespace.  If the argument "oper" is
    #   "destroy", then nothing is returned.
    proc keyset {oper value {weak 0}} {
	variable keysets
	set newset {}
	switch -exact -- $oper {
	    create {
		# Create a new keyset handle.
		set newset keyset$keysets(ndx)
		# Create key set
		set keysets($newset) [createKeys $value $weak]
		# Never use that keyset handle index again.
		incr keysets(ndx)
	    }
	    destroy {
		# Determine if the keyset handle is valid.
		if {[array names keysets $value] != {}} {
		    # Delete the handle and corresponding keyset.
                    unset keysets($value)
		} else {
		    error "The keyset handle \"$value\" is invalid!"
		}
	    }
	    default {
		error {The operator must be either "create" or "destroy".}
	    }
	}
	return $newset
    }

    # Procedure: encrypt - Encryption front-end for the des procedure
    # Inputs:
    #   keyset  : Handle to an existing keyset.
    #   message : String to be encrypted.
    #   mode    : DES mode ecb (default), cbc, cfb, or ofb.
    #   iv      : Name of the initialization vector used in CBC, CFB,
    #             and OFB modes.
    #   kbits   : Number of bits in a data block (default of 64).
    # Output:
    #   The encrypted data string.
    proc encrypt {keyset message {mode ecb} {iv {}} {kbits 64}} {
	switch -exact -- $mode {
	    ecb {
		return [block $keyset $message 1 0]
	    }
	    cbc -
	    ofb -
	    cfb {
		# Is the initialization/feedback vector variable is valid?
		if {[string length $iv] == 0} {
		    error "An initialization variable must be specified."
		} else {
		    upvar $iv ivec
		    if {![info exists ivec]} {
			error "The variable $iv does not exist."
		    }
		}
		switch -exact -- $mode {
		    cbc {
			return [block $keyset $message 1 1 ivec]
		    }
		    ofb {
			return [stream $keyset $message 1 0 ivec $kbits]
		    }
		    cfb {
			return [stream $keyset $message 1 1 ivec $kbits]
		    }
		}
	    }
	    default {
		error {Mode must be ecb, cbc, cfb, or ofb.}
	    }
	}
    }

    # Procedure: decrypt - Decryption front-end for the des procedure
    # Inputs:
    #   keyset  : Handle to an existing keyset.
    #   message : String to be decrypted.
    #   mode    : DES mode ecb (default), cbc, cfb, or ofb.
    #   iv      : Name of the initialization vector used in CBC, CFB,
    #             and OFB modes.
    #   kbits   : Number of bits in a data block (default of 64).
    # Output:
    #   The encrypted or decrypted data string.
    proc decrypt {keyset message {mode ecb} {iv {}} {kbits 64}} {
	switch -exact -- $mode {
	    ecb {
		return [block $keyset $message 0 0]
	    }
	    cbc -
	    ofb -
	    cfb {
		# Is the initialization/feedback vector variable is valid?
		if {[string length $iv] < 1} {
		    error "An initialization variable must be specified."
		} else {
		    upvar $iv ivec
		    if {![info exists ivec]} {
			error "The variable $iv does not exist."
		    }
		}
		switch -exact -- $mode {
		    cbc {
			return [block $keyset $message 0 1 ivec]
		    }
		    ofb {
			return [stream $keyset $message 0 0 ivec $kbits]
		    }
		    cfb {
			return [stream $keyset $message 0 1 ivec $kbits]
		    }
		}
	    }
	    default {
		error {Mode must be ecb, cbc, cfb, or ofb.}
	    }
	}
    }

    variable spfunction1 [list 0x1010400 0 0x10000 0x1010404 0x1010004 0x10404 0x4 0x10000 0x400 0x1010400 0x1010404 0x400 0x1000404 0x1010004 0x1000000 0x4 0x404 0x1000400 0x1000400 0x10400 0x10400 0x1010000 0x1010000 0x1000404 0x10004 0x1000004 0x1000004 0x10004 0 0x404 0x10404 0x1000000 0x10000 0x1010404 0x4 0x1010000 0x1010400 0x1000000 0x1000000 0x400 0x1010004 0x10000 0x10400 0x1000004 0x400 0x4 0x1000404 0x10404 0x1010404 0x10004 0x1010000 0x1000404 0x1000004 0x404 0x10404 0x1010400 0x404 0x1000400 0x1000400 0 0x10004 0x10400 0 0x1010004];
    variable spfunction2 [list 0x80108020 0x80008000 0x8000 0x108020 0x100000 0x20 0x80100020 0x80008020 0x80000020 0x80108020 0x80108000 0x80000000 0x80008000 0x100000 0x20 0x80100020 0x108000 0x100020 0x80008020 0 0x80000000 0x8000 0x108020 0x80100000 0x100020 0x80000020 0 0x108000 0x8020 0x80108000 0x80100000 0x8020 0 0x108020 0x80100020 0x100000 0x80008020 0x80100000 0x80108000 0x8000 0x80100000 0x80008000 0x20 0x80108020 0x108020 0x20 0x8000 0x80000000 0x8020 0x80108000 0x100000 0x80000020 0x100020 0x80008020 0x80000020 0x100020 0x108000 0 0x80008000 0x8020 0x80000000 0x80100020 0x80108020 0x108000];
    variable spfunction3 [list 0x208 0x8020200 0 0x8020008 0x8000200 0 0x20208 0x8000200 0x20008 0x8000008 0x8000008 0x20000 0x8020208 0x20008 0x8020000 0x208 0x8000000 0x8 0x8020200 0x200 0x20200 0x8020000 0x8020008 0x20208 0x8000208 0x20200 0x20000 0x8000208 0x8 0x8020208 0x200 0x8000000 0x8020200 0x8000000 0x20008 0x208 0x20000 0x8020200 0x8000200 0 0x200 0x20008 0x8020208 0x8000200 0x8000008 0x200 0 0x8020008 0x8000208 0x20000 0x8000000 0x8020208 0x8 0x20208 0x20200 0x8000008 0x8020000 0x8000208 0x208 0x8020000 0x20208 0x8 0x8020008 0x20200];
    variable spfunction4 [list 0x802001 0x2081 0x2081 0x80 0x802080 0x800081 0x800001 0x2001 0 0x802000 0x802000 0x802081 0x81 0 0x800080 0x800001 0x1 0x2000 0x800000 0x802001 0x80 0x800000 0x2001 0x2080 0x800081 0x1 0x2080 0x800080 0x2000 0x802080 0x802081 0x81 0x800080 0x800001 0x802000 0x802081 0x81 0 0 0x802000 0x2080 0x800080 0x800081 0x1 0x802001 0x2081 0x2081 0x80 0x802081 0x81 0x1 0x2000 0x800001 0x2001 0x802080 0x800081 0x2001 0x2080 0x800000 0x802001 0x80 0x800000 0x2000 0x802080];
    variable spfunction5 [list 0x100 0x2080100 0x2080000 0x42000100 0x80000 0x100 0x40000000 0x2080000 0x40080100 0x80000 0x2000100 0x40080100 0x42000100 0x42080000 0x80100 0x40000000 0x2000000 0x40080000 0x40080000 0 0x40000100 0x42080100 0x42080100 0x2000100 0x42080000 0x40000100 0 0x42000000 0x2080100 0x2000000 0x42000000 0x80100 0x80000 0x42000100 0x100 0x2000000 0x40000000 0x2080000 0x42000100 0x40080100 0x2000100 0x40000000 0x42080000 0x2080100 0x40080100 0x100 0x2000000 0x42080000 0x42080100 0x80100 0x42000000 0x42080100 0x2080000 0 0x40080000 0x42000000 0x80100 0x2000100 0x40000100 0x80000 0 0x40080000 0x2080100 0x40000100];
    variable spfunction6 [list 0x20000010 0x20400000 0x4000 0x20404010 0x20400000 0x10 0x20404010 0x400000 0x20004000 0x404010 0x400000 0x20000010 0x400010 0x20004000 0x20000000 0x4010 0 0x400010 0x20004010 0x4000 0x404000 0x20004010 0x10 0x20400010 0x20400010 0 0x404010 0x20404000 0x4010 0x404000 0x20404000 0x20000000 0x20004000 0x10 0x20400010 0x404000 0x20404010 0x400000 0x4010 0x20000010 0x400000 0x20004000 0x20000000 0x4010 0x20000010 0x20404010 0x404000 0x20400000 0x404010 0x20404000 0 0x20400010 0x10 0x4000 0x20400000 0x404010 0x4000 0x400010 0x20004010 0 0x20404000 0x20000000 0x400010 0x20004010];
    variable spfunction7 [list 0x200000 0x4200002 0x4000802 0 0x800 0x4000802 0x200802 0x4200800 0x4200802 0x200000 0 0x4000002 0x2 0x4000000 0x4200002 0x802 0x4000800 0x200802 0x200002 0x4000800 0x4000002 0x4200000 0x4200800 0x200002 0x4200000 0x800 0x802 0x4200802 0x200800 0x2 0x4000000 0x200800 0x4000000 0x200800 0x200000 0x4000802 0x4000802 0x4200002 0x4200002 0x2 0x200002 0x4000000 0x4000800 0x200000 0x4200800 0x802 0x200802 0x4200800 0x802 0x4000002 0x4200802 0x4200000 0x200800 0 0x2 0x4200802 0 0x200802 0x4200000 0x800 0x4000002 0x4000800 0x800 0x200002];
    variable spfunction8 [list 0x10001040 0x1000 0x40000 0x10041040 0x10000000 0x10001040 0x40 0x10000000 0x40040 0x10040000 0x10041040 0x41000 0x10041000 0x41040 0x1000 0x40 0x10040000 0x10000040 0x10001000 0x1040 0x41000 0x40040 0x10040040 0x10041000 0x1040 0 0 0x10040040 0x10000040 0x10001000 0x41040 0x40000 0x41040 0x40000 0x10041000 0x1000 0x40 0x10040040 0x1000 0x41040 0x10001000 0x40 0x10000040 0x10040000 0x10040040 0x10000000 0x40000 0x10001040 0 0x10041040 0x40040 0x10000040 0x10040000 0x10001000 0x10001040 0 0x10041040 0x41000 0x41000 0x1040 0x1040 0x40040 0x10000000 0x10041000];

    variable desEncrypt {0 32 2}
    variable desDecrypt {30 -2 -2}
    variable des3Encrypt {0 32 2 62 30 -2 64 96 2}
    variable des3Decrypt {94 62 -2 32 64 2 30 -2 -2}

    # Procedure: block - DES ECB and CBC mode support
    # Inputs:
    #   keyset   : Handle to an existing keyset.
    #   message  : String to be encrypted or decrypted (Note: For encryption,
    #              the string is extended with null characters to an integral
    #              multiple of eight bytes.  For decryption, the string length
    #              must be an integral multiple of eight bytes.
    #   encrypt  : Perform encryption (1) or decryption (0)
    #   mode     : DES mode 1=CBC, 0=ECB (default).
    #   iv       : Name of the variable containing the initialization vector
    #              used in CBC mode.  The value must be 64 bits in length.
    # Output:
    #   The encrypted or decrypted data string.
    proc block {keyset message encrypt {mode 0} {iv {}}} {
	variable spfunction1
	variable spfunction2
	variable spfunction3
	variable spfunction4
	variable spfunction5
	variable spfunction6
	variable spfunction7
	variable spfunction8
	variable desEncrypt
	variable desDecrypt
	variable des3Encrypt
	variable des3Decrypt
	variable keysets

	# Determine if the keyset handle is valid.
	if {[array names keysets $keyset] != {}} {
	    # Acquire the 16 or 48 subkeys we will need
	    set keys $keysets($keyset)
	} else {
	    error "The keyset handle \"$keyset\" is invalid!"
	}
	set m 0
	set cbcleft 0x00; set cbcleft2 0x00
	set cbcright 0x00; set cbcright2 0x00
	set len [string length $message];
        if {$len == 0} {
            return -code error "invalid message size: the message may not be empty"
        }
	set chunk 0;
	# Set up the loops for single and triple des
	set iterations [expr {[llength $keys] == 32 ? 3 : 9}];
	if {$iterations == 3} {
	    expr {$encrypt ? [set looping $desEncrypt] : \
		      [set looping $desDecrypt]}
	} else {
	    expr {$encrypt ? [set looping $des3Encrypt] : \
		      [set looping $des3Decrypt]}
	}

	# Pad the message out with null bytes.
	append message "\0\0\0\0\0\0\0\0"

	# Store the result here
	set result {};
	set tempresult {};

	# CBC mode
	if {$mode == 1} {
	    # Is the initialization/feedback vector variable is valid?
	    if {[string length $iv] < 1} {
		error "An initialization variable must be specified."
	    } else {
		upvar $iv ivec
		if {![info exists ivec]} {
		    error "The variable $iv does not exist."
		}
                if {[string length $ivec] != 8} {
                    return -code error "invalid initialization vector size:\
                        the initialization vector must be 8 bytes"
                }
	    }
	    # Use the input vector as the intial vector.
	    binary scan $ivec H8H8 cbcleftTemp cbcrightTemp
	    set cbcleft "0x$cbcleftTemp"
	    set cbcright "0x$cbcrightTemp"
	}

	# Loop through each 64 bit chunk of the message
	while {$m < $len} {
	    binary scan $message x${m}H8H8 lefttemp righttemp
	    set left {}
	    append left "0x" $lefttemp
	    set right {}
	    append right "0x" $righttemp
	    incr m 8

	    #puts "Left start: $left";
	    #puts "Right start: $right";
	    # For Cipher Block Chaining mode, xor the
	    # message with the previous result.
	    if {$mode == 1} {
		if {$encrypt} {
		    set left [expr {$left ^ $cbcleft}]
		    set right [expr {$right ^ $cbcright}]
		} else {
		    set cbcleft2 $cbcleft;
		    set cbcright2 $cbcright;
		    set cbcleft $left;
		    set cbcright $right;
		}
	    }

	    #puts "Left mode: $left";
	    #puts "Right mode: $right";
	    #puts "cbcleft: $cbcleft";
	    #puts "cbcleft2: $cbcleft2";
	    #puts "cbcright: $cbcright";
	    #puts "cbcright2: $cbcright2";

	    # First each 64 but chunk of the message
	    # must be permuted according to IP.
	    set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 4)}];
	    set temp [expr {(($left >> 16) ^ $right) & 0x0000ffff}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 16)}];
	    set temp [expr {(($right >> 2) ^ $left) & 0x33333333}];
	    set left [expr {$left ^ $temp}]
	    set right [expr {$right ^ ($temp << 2)}];

	    set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}];
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 8)}];
	    set temp [expr {(($left >> 1) ^ $right) & 0x55555555}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 1)}];

	    set left [expr {((($left << 1) & 0xffffffff) | \
				 (($left >> 31) & 0x00000001))}]; 
	    set right [expr {((($right << 1) & 0xffffffff) | \
				  (($right >> 31) & 0x00000001))}]; 

	    #puts "Left IP: [format %x $left]";
	    #puts "Right IP: [format %x $right]";

	    # Do this either 1 or 3 times for each chunk of the message
	    for {set j 0} {$j < $iterations} {incr j 3} {
		set endloop [lindex $looping [expr {$j + 1}]];
		set loopinc [lindex $looping [expr {$j + 2}]];

		#puts "endloop: $endloop";
		#puts "loopinc: $loopinc";

		# Now go through and perform the encryption or decryption  
		for {set i [lindex $looping $j]} \
		    {$i != $endloop} {incr i $loopinc} {
		    # For efficiency
		    set right1 [expr {$right ^ [lindex $keys $i]}]; 
		    set right2 [expr {((($right >> 4) & 0x0fffffff) | \
					   (($right << 28) & 0xffffffff)) ^ \
					  [lindex $keys [expr {$i + 1}]]}];
 
		    # puts "right1: [format %x $right1]";
		    # puts "right2: [format %x $right2]";

		    # The result is attained by passing these
		    # bytes through the S selection functions.
		    set temp $left;
		    set left $right;
		    set right [expr {$temp ^ ([lindex $spfunction2 [expr {($right1 >> 24) & 0x3f}]] | \
                                                  [lindex $spfunction4 [expr {($right1 >> 16) & 0x3f}]] | \
                                                  [lindex $spfunction6 [expr {($right1 >>  8) & 0x3f}]] | \
                                                  [lindex $spfunction8 [expr {$right1 & 0x3f}]] | \
                                                  [lindex $spfunction1 [expr {($right2 >> 24) & 0x3f}]] | \
                                                  [lindex $spfunction3 [expr {($right2 >> 16) & 0x3f}]] | \
                                                  [lindex $spfunction5 [expr {($right2 >>  8) & 0x3f}]] | \
						  [lindex $spfunction7 [expr {$right2 & 0x3f}]])}];
 
		    # puts "Left iter: [format %x $left]";
		    # puts "Right iter: [format %x $right]";

		}
		set temp $left;
		set left $right;
		set right $temp; # Unreverse left and right
	    }; # For either 1 or 3 iterations

	    #puts "Left Iterated: [format %x $left]";
	    #puts "Right Iterated: [format %x $right]";

	    # Move then each one bit to the right
	    set left [expr {((($left >> 1) & 0x7fffffff) \
				 | (($left << 31) & 0xffffffff))}]; 
	    set right [expr {((($right >> 1) & 0x7fffffff) \
				  | (($right << 31) & 0xffffffff))}]; 

	    #puts "Left shifted: [format %x $left]";
	    #puts "Right shifted: [format %x $right]";

	    # Now perform IP-1, which is IP in the opposite direction
	    set temp [expr {((($left >> 1) & 0x7fffffff) ^ $right) & 0x55555555}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 1)}];
	    set temp [expr {((($right >> 8) & 0x00ffffff) ^ $left) & 0x00ff00ff}];
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 8)}];
	    set temp [expr {((($right >> 2) & 0x3fffffff) ^ $left) & 0x33333333}]; 
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 2)}];
	    set temp [expr {((($left >> 16) & 0x0000ffff) ^ $right) & 0x0000ffff}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 16)}];
	    set temp [expr {((($left >> 4) & 0x0fffffff) ^ $right) & 0x0f0f0f0f}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 4)}];

	    #puts "Left IP-1: [format %x $left]";
	    #puts "Right IP-1: [format %x $right]";

	    # For Cipher Block Chaining mode, xor
	    # the message with the previous result.
	    if {$mode == 1} {
		if {$encrypt} {
		    set cbcleft $left;
		    set cbcright $right;
		} else {
		    set left [expr {$left ^ $cbcleft2}];
		    set right [expr {$right ^ $cbcright2}];
		}
	    }

	    append tempresult \
		[binary format H16 [format %08x%08x $left $right]]

	    #puts "Left final: [format %x $left]";
	    #puts "Right final: [format %x $right]";

	    incr chunk 8;
	    if {$chunk == 512} {
		append result $tempresult
		set tempresult {};
		set chunk 0;
	    }
	}; # For every 8 characters, or 64 bits in the message

	if {$mode == 1} {
	    if {$encrypt} {
		# Save the left and right registers to the feedback vector.
		set ivec [binary format H* \
			      [format %08x $left][format %08x $right]]
	    } else {
		set ivec [binary format H* \
			      [format %08x $cbcleft][format %08x $cbcright]]
	    }
	}

	# Return the result as an array
	return ${result}$tempresult
    }; # End of block

    # Procedure: stream - DES CFB and OFB mode support
    # Inputs:
    #   keyset   : Handle to an existing keyset.
    #   message  : String to be encrypted or decrypted (Note: The length of the
    #              string is dependent upon the value of kbits.  Remember that
    #              the string is part of a stream of data, so it must be sized
    #              properly for subsequent encryptions/decryptions to be
    #              correct.  See the man page for correct message lengths for
    #              values of kbits).
    #   encrypt  : Perform encryption (1) or decryption (0)
    #   mode     : DES mode 0=OFB, 1=CFB.
    #   iv       : Name of variable containing the initialization vector.  The
    #              value must be 64 bits in length with the first 64-L bits set
    #              to zero.
    #   kbits    : Number of bits in a data block (default of 64).
    # Output:
    #   The encrypted or decrypted data string.
    proc stream {keyset message encrypt mode iv {kbits 64}} {
	variable spfunction1
	variable spfunction2
	variable spfunction3
	variable spfunction4
	variable spfunction5
	variable spfunction6
	variable spfunction7
	variable spfunction8
	variable desEncrypt
	variable des3Encrypt
	variable keysets

	# Determine if the keyset handle is valid.
	if {[array names keysets $keyset] != {}} {
	    # Acquire the 16 or 48 subkeys we will need.
	    set keys $keysets($keyset)
	} else {
	    error "The keyset handle \"$keyset\" is invalid!"
	}

	# Is the initialization/feedback vector variable is valid?
	if {[string length $iv] < 1} {
	    error "An initialization variable must be specified."
	} else {
	    upvar $iv ivec
	    if {![info exists ivec]} {
		error "The variable $iv does not exist."
	    }
	}

        # Determine if message length (in bits)
	# is not an integral number of kbits.
	set len [string length $message];
        #puts "len: $len, kbits: $kbits"
	if {($kbits < 1) || ($kbits > 64)} {
	    error "The valid values of kbits are 1 through 64."
        } elseif {($kbits % 8) != 0} {
	    set blockSize [expr {$kbits + (8 - ($kbits % 8))}]
	    set fail [expr {(($len * 8) / $blockSize) % $kbits}]
	} else {
	    set blockSize [expr {$kbits / 8}]
	    set fail [expr {$len % $blockSize}]
	}
        if {$fail} {
	    error "Data length (in bits) is not an integral number of kbits."
	}

	set m 0
	set n 0
	set chunk 0;
	# Set up the loops for single and triple des
	set iterations [expr {[llength $keys] == 32 ? 3 : 9}];
	if {$iterations == 3} {
	    set looping $desEncrypt
	} else {
	    set looping $des3Encrypt
	}

        # Set up shifting values.  Used for both CFB and OFB modes.
        if {$kbits < 32} {
	    # Only some bits from left output are needed.
	    set kOutShift [expr {32 - $kbits}]
	    set kOutMask [expr {0x7fffffff >> (31 - $kbits)}]
	    # Determine number of message bytes needed per iteration.
	    set msgBytes [expr {int(ceil(double($kbits) / 8.0))}]
	    # Determine number of message bits needed per iteration.
	    set msgBits [expr {$msgBytes * 8}]
	    set msgBitsSub1 [expr {$msgBits - 1}]
	    # Define bit caches.
	    set bitCacheIn {}
	    set bitCacheOut {}
	    # Variable used to remove bits 0 through
	    # kbits-1 in the input bit cache.
	    set kbitsSub1 [expr {$kbits - 1}]
	    # Variable used to remove leading dummy binary bits.
	    set xbits [expr {32 - $kbits}]
	} elseif {$kbits == 32} {
	    # Only bits of left output are used.
	    # Four messages bytes are needed per iteration.
	    set msgBytes 4
	    set xbits 32
	} elseif {$kbits < 64} {
	    # All bits from left output are needed.
	    set kOutShiftLeft [expr {$kbits - 32}]
	    # Some bits from right output are needed.
	    set kOutShiftRight [expr {64 - $kbits}]
	    set kOutMaskRight [expr {0x7fffffff >> (63 - $kbits)}]
	    # Determine number of message bytes needed per iteration.
	    set msgBytes [expr {int(ceil(double($kbits) / 8.0))}]
	    # Determine number of message bits needed per iteration.
	    set msgBits [expr {$msgBytes * 8}]
	    set msgBitsSub1 [expr {$msgBits - 1}]
	    # Define bit caches.
	    set bitCacheIn {}
	    set bitCacheOut {}
	    # Variable used to remove bits 0 through
	    # kbits-1 in the input bit cache.
	    set kbitsSub1 [expr {$kbits - 1}]
	    # Variable used to remove leading dummy binary bits.
	    set xbits [expr {64 - $kbits}]
	} else {
	    # All 64 bits of output are used.
	    # Eight messages bytes are needed per iteration.
	    set msgBytes 8
	    set xbits 0
	}

	# Store the result here
	set result {}
	set tempresult {}

	# Set up the initialization vector bitstream
	binary scan $ivec H8H8 leftTemp rightTemp
	set left "0x$leftTemp"
	set right "0x$rightTemp"
        #puts "Retrieved Feedback vector: $fbvec"
        #puts "Start: |$left| |$right|"
	
	# Loop through each 64 bit chunk of the message
	while {$m < $len} {
	    # puts "Left start: $left";
	    # puts "Right start: $right";

	    # First each 64 but chunk of the
	    # message must be permuted according to IP.
	    set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 4)}];
	    set temp [expr {(($left >> 16) ^ $right) & 0x0000ffff}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 16)}];
	    set temp [expr {(($right >> 2) ^ $left) & 0x33333333}];
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 2)}];

	    set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}];
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 8)}];
	    set temp [expr {(($left >> 1) ^ $right) & 0x55555555}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 1)}];

	    set left [expr {((($left << 1) & 0xffffffff) | \
				 (($left >> 31) & 0x00000001))}]; 
	    set right [expr {((($right << 1) & 0xffffffff) | \
				  (($right >> 31) & 0x00000001))}]; 

	    #puts "Left IP: [format %x $left]";
	    #puts "Right IP: [format %x $right]";

	    # Do this either 1 or 3 times for each chunk of the message
	    for {set j 0} {$j < $iterations} {incr j 3} {
		set endloop [lindex $looping [expr {$j + 1}]];
		set loopinc [lindex $looping [expr {$j + 2}]];

		#puts "endloop: $endloop";
		#puts "loopinc: $loopinc";

		# Now go through and perform the encryption or decryption  
		for {set i [lindex $looping $j]} \
		    {$i != $endloop} {incr i $loopinc} {
		    # For efficiency
		    set right1 [expr {$right ^ [lindex $keys $i]}]; 
		    set right2 [expr {((($right >> 4) & 0x0fffffff) | \
					   (($right << 28) & 0xffffffff)) ^ \
					  [lindex $keys [expr {$i + 1}]]}];
 
		    # puts "right1: [format %x $right1]";
		    # puts "right2: [format %x $right2]";

		    # The result is attained by passing these
		    # bytes through the S selection functions.
		    set temp $left;
		    set left $right;
		    set right [expr {$temp ^ ([lindex $spfunction2 [expr {($right1 >> 24) & 0x3f}]] | \
						  [lindex $spfunction4 [expr {($right1 >> 16) & 0x3f}]] | \
						  [lindex $spfunction6 [expr {($right1 >>  8) & 0x3f}]] | \
						  [lindex $spfunction8 [expr {$right1 & 0x3f}]] | \
						  [lindex $spfunction1 [expr {($right2 >> 24) & 0x3f}]] | \
						  [lindex $spfunction3 [expr {($right2 >> 16) & 0x3f}]] | \
						  [lindex $spfunction5 [expr {($right2 >>  8) & 0x3f}]] | \
						  [lindex $spfunction7 [expr {$right2 & 0x3f}]])}];
 
		    # puts "Left iter: [format %x $left]";
		    # puts "Right iter: [format %x $right]";

		}
		set temp $left;
		set left $right;
		set right $temp; # Unreverse left and right
	    }; # For either 1 or 3 iterations

	    #puts "Left Iterated: [format %x $left]";
	    #puts "Right Iterated: [format %x $right]";

	    # Move then each one bit to the right
	    set left [expr {((($left >> 1) & 0x7fffffff) | \
				 (($left << 31) & 0xffffffff))}]; 
	    set right [expr {((($right >> 1) & 0x7fffffff) | \
				  (($right << 31) & 0xffffffff))}]; 

	    #puts "Left shifted: [format %x $left]";
	    #puts "Right shifted: [format %x $right]";

	    # Now perform IP-1, which is IP in the opposite direction
	    set temp [expr {((($left >> 1) & 0x7fffffff) ^ $right) & 0x55555555}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 1)}];
	    set temp [expr {((($right >> 8) & 0x00ffffff) ^ $left) & 0x00ff00ff}];
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 8)}];
	    set temp [expr {((($right >> 2) & 0x3fffffff) ^ $left) & 0x33333333}]; 
	    set left [expr {$left ^ $temp}];
	    set right [expr {$right ^ ($temp << 2)}];
	    set temp [expr {((($left >> 16) & 0x0000ffff) ^ $right) & 0x0000ffff}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 16)}];
	    set temp [expr {((($left >> 4) & 0x0fffffff) ^ $right) & 0x0f0f0f0f}];
	    set right [expr {$right ^ $temp}];
	    set left [expr {$left ^ ($temp << 4)}];

	    #puts "Left IP-1: [format %x $left]";
	    #puts "Right IP-1: [format %x $right]";

	    # Extract the "kbits" most significant bits from the output block.
	    if {$kbits < 32} {
		# Only some bits from left output are needed.
		set kData [expr {($left >> $kOutShift) & $kOutMask}]
		set newBits {}
		# If necessary, copy message bytes into input bit cache.
		if {([string length $bitCacheIn] < $kbits) && ($n < $len)} {
		    if {$len - $n < $msgBytes} {
			set lastBits [expr {($len - $n) * 8}]
			###puts -nonewline [binary scan $message x${n}B$lastBits newBits]
			binary scan $message x${n}B$lastBits newBits
		    } else {
			# Extract "msgBytes" whole bytes as bits
			###puts -nonewline [binary scan $message x${n}B$msgBits newBits]
			binary scan $message x${n}B$msgBits newBits
		    }
		    incr n $msgBytes
		    #puts " $newBits  $n [expr {$len - $n}]"
		    # Add the bits to the input bit cache.
		    append bitCacheIn $newBits
		}
		#puts -nonewline "In bit cache: $bitCacheIn"
		# Set up message data from input bit cache.
		binary scan [binary format B32 [format %032s [string range $bitCacheIn 0 $kbitsSub1]]] H8 temp
		set msgData "0x$temp"
		# Mix message bits with crypto bits.
		set mixData [expr {$msgData ^ $kData}]
		# Discard collected bits from the input bit cache.
		set bitCacheIn [string range $bitCacheIn $kbits end]
		#puts "  After: $bitCacheIn"
		# Convert back to a bit stream and append to the output bit cache.
		# Only the lower kbits are wanted.
		binary scan [binary format H8 [format %08x $mixData]] B32 msgOut
		append bitCacheOut [string range $msgOut $xbits end]
		#puts -nonewline "Out bit cache: $bitCacheOut"
		# If there are sufficient bits, move bytes to the temporary holding string.
		if {[string length $bitCacheOut] >= $msgBits} {
		    append tempresult [binary format B$msgBits [string range $bitCacheOut 0 $msgBitsSub1]]
		    set bitCacheOut [string range $bitCacheOut $msgBits end]
                    #puts -nonewline "  After: $bitCacheOut"
		    incr m $msgBytes
		    ###puts "$m bytes output"
		    incr chunk $msgBytes
		}
		#puts ""
		# For CFB mode
		if {$mode == 1} {
		    if {$encrypt} {
			set temp [expr {($right << $kbits) & 0xffffffff}]
			set left [expr {(($left << $kbits) & 0xffffffff) | (($right >> $kOutShift) & $kOutMask)}]
			set right [expr {$temp | $mixData}]
		    } else {
			set temp [expr {($right << $kbits) & 0xffffffff}]
			set left [expr {(($left << $kbits) & 0xffffffff) | (($right >> $kOutShift) & $kOutMask)}]
			set right [expr {$temp | $msgData}]
		    }
		}
	    } elseif {$kbits == 32} {
		# Only bits of left output are used.
		set kData $left
		# Four messages bytes are needed per iteration.
		binary scan $message x${m}H8 temp
		incr m 4
		incr chunk 4
		set msgData "0x$temp"
		# Mix message bits with crypto bits.
		set mixData [expr {$msgData ^ $kData}]
		# Move bytes to the temporary holding string.
		append tempresult [binary format H8 [format %08x $mixData]]
		# For CFB mode
		if {$mode == 1} {
		    set left $right
		    if {$encrypt} {
			set right $mixData
		    } else {
			set right $msgData
		    }
		}
	    } elseif {$kbits < 64} {
		set kDataLeft [expr {($left >> $kOutShiftRight) & $kOutMaskRight}]
		set temp [expr {($left << $kOutShiftLeft) & 0xffffffff}]
		set kDataRight [expr {(($right >> $kOutShiftRight) & $kOutMaskRight) | $temp}]
		# If necessary, copy message bytes into input bit cache.
		if {([string length $bitCacheIn] < $kbits)  && ($n < $len)} {
		    if {$len - $n < $msgBytes} {
			set lastBits [expr {($len - $n) * 8}]
			###puts -nonewline [binary scan $message x${n}B$lastBits newBits]
			binary scan $message x${n}B$lastBits newBits
		    } else {
			# Extract "msgBytes" whole bytes as bits
			###puts -nonewline [binary scan $message x${n}B$msgBits newBits]
			binary scan $message x${n}B$msgBits newBits
		    }
		    incr n $msgBytes
		    # Add the bits to the input bit cache.
		    append bitCacheIn $newBits
		}
		# Set up message data from input bit cache.
		# puts "Bits from cache: [set temp [string range $bitCacheIn 0 $kbitsSub1]]"
		# puts "Length of bit string: [string length $temp]"
		binary scan [binary format B64 [format %064s [string range $bitCacheIn 0 $kbitsSub1]]] H8H8 leftTemp rightTemp
		set msgDataLeft "0x$leftTemp"
		set msgDataRight "0x$rightTemp"
		# puts "msgDataLeft: $msgDataLeft"
		# puts "msgDataRight: $msgDataRight"
		# puts "kDataLeft: [format 0x%08x $kDataLeft]"
		# puts "kDataRight: [format 0x%08x $kDataRight]"
		# Mix message bits with crypto bits.
		set mixDataLeft [expr {$msgDataLeft ^ $kDataLeft}]
		set mixDataRight [expr {$msgDataRight ^ $kDataRight}]
		# puts "mixDataLeft: $mixDataLeft"
		# puts "mixDataRight: $mixDataRight"
		# puts "mixDataLeft: [format 0x%08x $mixDataLeft]"
		# puts "mixDataRight: [format 0x%08x $mixDataRight]"
		# Discard collected bits from the input bit cache.
		set bitCacheIn [string range $bitCacheIn $kbits end]
		# Convert back to a bit stream and
		# append to the output bit cache.
		# Only the lower kbits are wanted.
		binary scan \
		    [binary format H8H8 \
			 [format %08x $mixDataLeft] \
			 [format %08x $mixDataRight]] B64 msgOut
		append bitCacheOut [string range $msgOut $xbits end]
		# If there are sufficient bits, move
		# bytes to the temporary holding string.
		if {[string length $bitCacheOut] >= $msgBits} {
		    append tempresult \
			[binary format B$msgBits \
			     [string range $bitCacheOut 0 $msgBitsSub1]]
		    set bitCacheOut [string range $bitCacheOut $msgBits end]
		    incr m $msgBytes
		    incr chunk $msgBytes
		}
		# For CFB mode
		if {$mode == 1} {
		    if {$encrypt} {
			set temp \
			    [expr {($right << $kOutShiftRight) & 0xffffffff}]
			set left [expr {$temp | $mixDataLeft}]
			set right $mixDataRight
		    } else {
			set temp \
			    [expr {($right << $kOutShiftRight) & 0xffffffff}]
			set left [expr {$temp | $msgDataLeft}]
			set right $msgDataRight
		    }
		}
	    } else {
		# All 64 bits of output are used.
		set kDataLeft $left
		set kDataRight $right
		# Eight messages bytes are needed per iteration.
		binary scan $message x${m}H8H8 leftTemp rightTemp
		incr m 8
		incr chunk 8
		set msgDataLeft "0x$leftTemp"
		set msgDataRight "0x$rightTemp"
		# Mix message bits with crypto bits.
		set mixDataLeft [expr {$msgDataLeft ^ $kDataLeft}]
		set mixDataRight [expr {$msgDataRight ^ $kDataRight}]
		# Move bytes to the temporary holding string.
		append tempresult \
		    [binary format H16 \
			 [format %08x%08x $mixDataLeft $mixDataRight]]
		# For CFB mode
		if {$mode == 1} {
		    if {$encrypt} {
			set left $mixDataLeft
			set right $mixDataRight
		    } else {
			set left $msgDataLeft
			set right $msgDataRight
		    }
		}
	    }

	    #puts "Left final: [format %x $left]";
	    #puts "Right final: [format %x $right]";

	    if {$chunk >= 512} {
		append result $tempresult
		set tempresult {};
		set chunk 0;
	    }
	}; # For every 8 characters, or 64 bits in the message
        #puts "End: |[format 0x%08x $left]| |[format 0x%08x $right]|"
	# Save the left and right registers to the feedback vector.
	set ivec [binary format H* [format %08x $left][format %08x $right]]
	#puts "Saved Feedback vector: $fbvectors($fbvector)"

        append result $tempresult
	if {[string length $result] > $len} {
	    set result [string replace $result $len end]
	}
	# Return the result as an array
	return $result
    }; # End of stream

    variable pc2bytes0 [list 0 0x4 0x20000000 0x20000004 0x10000 0x10004 0x20010000 0x20010004 0x200 0x204 0x20000200 0x20000204 0x10200 0x10204 0x20010200 0x20010204]
    variable pc2bytes1 [list 0 0x1 0x100000 0x100001 0x4000000 0x4000001 0x4100000 0x4100001 0x100 0x101 0x100100 0x100101 0x4000100 0x4000101 0x4100100 0x4100101]
    variable pc2bytes2 [list 0 0x8 0x800 0x808 0x1000000 0x1000008 0x1000800 0x1000808 0 0x8 0x800 0x808 0x1000000 0x1000008 0x1000800 0x1000808]
    variable pc2bytes3 [list 0 0x200000 0x8000000 0x8200000 0x2000 0x202000 0x8002000 0x8202000 0x20000 0x220000 0x8020000 0x8220000 0x22000 0x222000 0x8022000 0x8222000]
    variable pc2bytes4 [list 0 0x40000 0x10 0x40010 0 0x40000 0x10 0x40010 0x1000 0x41000 0x1010 0x41010 0x1000 0x41000 0x1010 0x41010]
    variable pc2bytes5 [list 0 0x400 0x20 0x420 0 0x400 0x20 0x420 0x2000000 0x2000400 0x2000020 0x2000420 0x2000000 0x2000400 0x2000020 0x2000420]
    variable pc2bytes6 [list 0 0x10000000 0x80000 0x10080000 0x2 0x10000002 0x80002 0x10080002 0 0x10000000 0x80000 0x10080000 0x2 0x10000002 0x80002 0x10080002]
    variable pc2bytes7 [list 0 0x10000 0x800 0x10800 0x20000000 0x20010000 0x20000800 0x20010800 0x20000 0x30000 0x20800 0x30800 0x20020000 0x20030000 0x20020800 0x20030800]
    variable pc2bytes8 [list 0 0x40000 0 0x40000 0x2 0x40002 0x2 0x40002 0x2000000 0x2040000 0x2000000 0x2040000 0x2000002 0x2040002 0x2000002 0x2040002]
    variable pc2bytes9 [list 0 0x10000000 0x8 0x10000008 0 0x10000000 0x8 0x10000008 0x400 0x10000400 0x408 0x10000408 0x400 0x10000400 0x408 0x10000408]
    variable pc2bytes10 [list 0 0x20 0 0x20 0x100000 0x100020 0x100000 0x100020 0x2000 0x2020 0x2000 0x2020 0x102000 0x102020 0x102000 0x102020]
    variable pc2bytes11 [list 0 0x1000000 0x200 0x1000200 0x200000 0x1200000 0x200200 0x1200200 0x4000000 0x5000000 0x4000200 0x5000200 0x4200000 0x5200000 0x4200200 0x5200200]
    variable pc2bytes12 [list 0 0x1000 0x8000000 0x8001000 0x80000 0x81000 0x8080000 0x8081000 0x10 0x1010 0x8000010 0x8001010 0x80010 0x81010 0x8080010 0x8081010]
    variable pc2bytes13 [list 0 0x4 0x100 0x104 0 0x4 0x100 0x104 0x1 0x5 0x101 0x105 0x1 0x5 0x101 0x105]

    # Now define the left shifts which need to be done
    variable shifts {0  0  1  1  1  1  1  1  0  1  1  1  1  1  1  0};

    # Procedure: createKeys
    # Input:
    #   key     : The 64-bit DES key or the 192-bit 3DES key
    #             (Note: The lsb of each byte is ignored; odd parity
    #             is not required).
    #
    #   weak:   If true then weak keys are allowed. The default is to raise an
    #           error when a weak key is seen.
    # Output:
    # The 16 (DES) or 48 (3DES) subkeys.
    proc createKeys {key {weak 0}} {
	variable pc2bytes0
	variable pc2bytes1
	variable pc2bytes2
	variable pc2bytes3
	variable pc2bytes4
	variable pc2bytes5
	variable pc2bytes6
	variable pc2bytes7
	variable pc2bytes8
	variable pc2bytes9
	variable pc2bytes10
	variable pc2bytes11
	variable pc2bytes12
	variable pc2bytes13
	variable shifts

	# How many iterations (1 for des, 3 for triple des)
	set iterations [expr {([string length $key] >= 24) ? 3 : 1}];
	# Stores the return keys
	set keys {}
	# Other variables
	set lefttemp {}; set righttemp {}
	set m 0
	# Either 1 or 3 iterations
	for {set j 0} {$j < $iterations} {incr j} {
	    binary scan $key x${m}H8H8 lefttemp righttemp
	    set left {}
	    append left "0x" $lefttemp
	    set right {}
	    append right "0x" $righttemp
	    incr m 8

	    #puts "Left key: $left"
	    #puts "Right key: $right"

	    # Test for weak keys
            if {! $weak} {
                set maskedLeft [expr {$left & 0xfefefefe}]
                set maskedRight [expr {$right & 0xfefefefe}]
                if {($maskedLeft == 0x00000000) \
                        && ($maskedRight == 0x00000000)} {
                    error "Key [expr {$j + 1}] is weak!"
                } elseif {($maskedLeft == 0x1e1e1e1e) \
                              && ($maskedRight == 0x0e0e0e0e)} {
                    error "Key [expr {$j + 1}] is weak!"
                } elseif {($maskedLeft == 0xe0e0e0e0) \
                              && ($maskedRight == 0xf0f0f0f0)} {
                    error "Key [expr {$j + 1}] is weak!"
                } elseif {($maskedLeft == 0xfefefefe) \
                              && ($maskedRight == 0xfefefefe)} {
                    error "Key [expr {$j + 1}] is weak!"
                }
            }

	    set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}]
	    set right [expr {$right ^ $temp}]
	    set left [expr {$left ^ ($temp << 4)}]
	    set temp [expr {(($right >> 16) ^ $left) & 0x0000ffff}]
	    set left [expr {$left ^ $temp}]
	    set right [expr {$right ^ ($temp << 16)}]
	    set temp [expr {(($left >> 2) ^ $right) & 0x33333333}]
	    set right [expr {$right ^ $temp}]
	    set left [expr {$left ^ ($temp << 2)}]
	    set temp [expr {(($right >> 16) ^ $left) & 0x0000ffff}]
	    set left [expr {$left ^ $temp}]
	    set right [expr {$right ^ ($temp << 16)}]
	    set temp [expr {(($left >> 1) ^ $right) & 0x55555555}]
	    set right [expr {$right ^ $temp}]
	    set left [expr {$left ^ ($temp << 1)}]
	    set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}]
	    set left [expr {$left ^ $temp}]
	    set right [expr {$right ^ ($temp << 8)}]
	    set temp [expr {(($left >> 1) ^ $right) & 0x55555555}]
	    set right [expr {$right ^ $temp}]
	    set left [expr {$left ^ ($temp << 1)}]
	    
	    #puts "Left key PC1: [format %x $left]"
	    #puts "Right key PC1: [format %x $right]"

	    # The right side needs to be shifted and to get
	    # the last four bits of the left side
	    set temp [expr {($left << 8) | (($right >> 20) & 0x000000f0)}];
	    # Left needs to be put upside down
	    set left [expr {($right << 24) | (($right << 8) & 0x00ff0000) | \
				(($right >> 8) & 0x0000ff00) \
				| (($right >> 24) & 0x000000f0)}];
	    set right $temp;

	    #puts "Left key juggle: [format %x $left]"
	    #puts "Right key juggle: [format %x $right]"

	    # Now go through and perform these
	    # shifts on the left and right keys.
	    foreach i $shifts  {
		# Shift the keys either one or two bits to the left.
		if {$i} {
		    set left [expr {($left << 2) \
					| (($left >> 26) & 0x0000003f)}];
		    set right [expr {($right << 2) \
					 | (($right >> 26) & 0x0000003f)}];
		} else {
		    set left [expr {($left << 1) \
					| (($left >> 27) & 0x0000001f)}];
		    set right [expr {($right << 1) \
					 | (($right >> 27) & 0x0000001f)}];
		}
		set left [expr {$left & 0xfffffff0}];
		set right [expr {$right & 0xfffffff0}];

		# Now apply PC-2, in such a way that E is easier when
		# encrypting or decrypting this conversion will look like PC-2
		# except only the last 6 bits of each byte are used rather than
		# 48 consecutive bits and the order of lines will be according
		# to how the S selection functions will be applied: S2, S4, S6,
		# S8, S1, S3, S5, S7.
		set lefttemp [expr {[lindex $pc2bytes0 [expr {($left >> 28) & 0x0000000f}]] | \
					[lindex $pc2bytes1 [expr {($left >> 24) & 0x0000000f}]] | \
					[lindex $pc2bytes2 [expr {($left >> 20) & 0x0000000f}]] | \
					[lindex $pc2bytes3 [expr {($left >> 16) & 0x0000000f}]] | \
					[lindex $pc2bytes4 [expr {($left >> 12) & 0x0000000f}]] | \
					[lindex $pc2bytes5 [expr {($left >> 8) & 0x0000000f}]] | \
					[lindex $pc2bytes6 [expr {($left >> 4) & 0x0000000f}]]}];
		set righttemp [expr {[lindex $pc2bytes7 [expr {($right >> 28) & 0x0000000f}]] | \
					 [lindex $pc2bytes8 [expr {($right >> 24) & 0x0000000f}]] | \
					 [lindex $pc2bytes9 [expr {($right >> 20) & 0x0000000f}]] | \
					 [lindex $pc2bytes10 [expr {($right >> 16) & 0x0000000f}]] | \
					 [lindex $pc2bytes11 [expr {($right >> 12) & 0x0000000f}]] | \
					 [lindex $pc2bytes12 [expr {($right >> 8) & 0x0000000f}]] | \
					 [lindex $pc2bytes13 [expr {($right >> 4) & 0x0000000f}]]}];
		set temp [expr {(($righttemp >> 16) ^ $lefttemp) & 0x0000ffff}];
		lappend keys [expr {$lefttemp ^ $temp}];
		lappend keys [expr {$righttemp ^ ($temp << 16)}];
	    }
	}; # For each iteration.
	# Return the keys we've created.
	return $keys;
    }; # End of createKeys.
}; # End of des namespace eval.

package provide tclDES 1.0.0