/usr/share/slib/cring.scm is in slib 3b1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | ;;;"cring.scm" Extend Scheme numerics to any commutative ring.
;Copyright (C) 1997, 1998, 2001 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'common-list-functions)
(require 'relational-database)
(require 'databases)
(require 'sort)
(define number^ expt)
(define number* *)
(define number+ +)
(define number- -)
(define number/ /)
(define number0? zero?)
(define (zero? x) (and (number? x) (number0? x)))
;;(define (sign x) (if (positive? x) 1 (if (negative? x) -1 0)))
(define cring:db (create-database #f 'alist-table))
;@
(define (make-ruleset . rules)
(define name #f)
(cond ((and (not (null? rules)) (symbol? (car rules)))
(set! name (car rules))
(set! rules (cdr rules)))
(else (set! name (gentemp))))
(define-tables cring:db
(list name
'((op symbol)
(sub-op1 symbol)
(sub-op2 symbol))
'((reduction expression))
rules))
(let ((table ((cring:db 'open-table) name #t)))
(and table
(list (table 'get 'reduction)
(table 'row:update)
table))))
;@
(define *ruleset* (make-ruleset 'default))
(define (cring:define-rule . args)
(if *ruleset*
((cadr *ruleset*) args)
(slib:warn "No ruleset in *ruleset*")))
;@
(define (combined-rulesets . rulesets)
(define name #f)
(cond ((symbol? (car rulesets))
(set! name (car rulesets))
(set! rulesets (cdr rulesets)))
(else (set! name (gentemp))))
(apply make-ruleset name
(apply append
(map (lambda (ruleset) (((caddr ruleset) 'row:retrieve*)))
rulesets))))
;;; Distribute * over + (and -)
;@
(define distribute*
(make-ruleset
'distribute*
`(* + identity
,(lambda (exp1 exp2)
;;(print 'distributing '* '+ exp1 exp2 '==>)
(apply + (map (lambda (trm) (* trm exp2)) (cdr exp1)))))
`(* - identity
,(lambda (exp1 exp2)
;;(print 'distributing '* '- exp1 exp2 '==>)
(apply - (map (lambda (trm) (* trm exp2)) (cdr exp1)))))))
;;; Distribute / over + (and -)
;@
(define distribute/
(make-ruleset
'distribute/
`(/ + identity
,(lambda (exp1 exp2)
;;(print 'distributing '/ '+ exp1 exp2 '==>)
(apply + (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))
`(/ - identity
,(lambda (exp1 exp2)
;;(print 'distributing '/ '- exp1 exp2 '==>)
(apply - (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))))
(define (symbol-alpha? sym)
(char-alphabetic? (string-ref (symbol->string sym) 0)))
(define (expression-< x y)
(cond ((and (number? x) (number? y)) (> x y)) ;want negatives last
((number? x) #t)
((number? y) #f)
((and (symbol? x) (symbol? y))
(cond ((eqv? (symbol-alpha? x) (symbol-alpha? y))
(string<? (symbol->string x) (symbol->string y)))
(else (symbol-alpha? x))))
((symbol? x) #t)
((symbol? y) #f)
((null? x) #t)
((null? y) #f)
((expression-< (car x) (car y)) #t)
((expression-< (car y) (car x)) #f)
(else (expression-< (cdr x) (cdr y)))))
(define (expression-sort seq) (sort! seq expression-<))
(define is-term-op? (lambda (term op) (and (pair? term) (eq? op (car term)))))
;; To convert to CR internal form, NUMBER-op all the `numbers' in the
;; argument list and remove them from the argument list. Collect the
;; remaining arguments into equivalence classes, keeping track of the
;; number of arguments in each class. The returned list is thus:
;; (<numeric> (<expression1> . <exp1>) ...)
;;; Converts * argument list to CR internal form
(define (cr*-args->fcts args)
;;(print (cons 'cr*-args->fcts args) '==>)
(let loop ((args args) (pow 1) (nums 1) (arg_exps '()))
;;(print (list 'loop args pow nums denoms arg_exps) '==>)
(cond ((null? args) (cons nums arg_exps))
((number? (car args))
(let ((num^pow (number^ (car args) (abs pow))))
(if (negative? pow)
(loop (cdr args) pow (number/ (number* num^pow nums))
arg_exps)
(loop (cdr args) pow (number* num^pow nums) arg_exps))))
;; Associative Rule
((is-term-op? (car args) '*) (loop (append (cdar args) (cdr args))
pow nums arg_exps))
;; Do singlet -
((and (is-term-op? (car args) '-) (= 2 (length (car args))))
;;(print 'got-here (car args))
(set! arg_exps (loop (cdar args) pow (number- nums) arg_exps))
(loop (cdr args) pow
(car arg_exps)
(cdr arg_exps)))
((and (is-term-op? (car args) '/) (= 2 (length (car args))))
;; Do singlet /
;;(print 'got-here=cr+ (car args))
(set! arg_exps (loop (cdar args) (number- pow) nums arg_exps))
(loop (cdr args) pow
(car arg_exps)
(cdr arg_exps)))
((is-term-op? (car args) '/)
;; Do multi-arg /
;;(print 'doing '/ (cddar args) (number- pow))
(set! arg_exps
(loop (cddar args) (number- pow) nums arg_exps))
;;(print 'finishing '/ (cons (cadar args) (cdr args)) pow)
(loop (cons (cadar args) (cdr args))
pow
(car arg_exps)
(cdr arg_exps)))
;; Pull out numeric exponents as powers
((and (is-term-op? (car args) '^)
(= 3 (length (car args)))
(number? (caddar args)))
(set! arg_exps (loop (list (cadar args))
(number* pow (caddar args))
nums
arg_exps))
(loop (cdr args) pow (car arg_exps) (cdr arg_exps)))
;; combine with same terms
((assoc (car args) arg_exps)
=> (lambda (pair) (set-cdr! pair (number+ pow (cdr pair)))
(loop (cdr args) pow nums arg_exps)))
;; Add new term to arg_exps
(else (loop (cdr args) pow nums
(cons (cons (car args) pow) arg_exps))))))
;;; Converts + argument list to CR internal form
(define (cr+-args->trms args)
(let loop ((args args) (cof 1) (numbers 0) (arg_exps '()))
(cond ((null? args) (cons numbers arg_exps))
((number? (car args))
(loop (cdr args)
cof
(number+ (number* (car args) cof) numbers)
arg_exps))
;; Associative Rule
((is-term-op? (car args) '+) (loop (append (cdar args) (cdr args))
cof
numbers
arg_exps))
;; Idempotent singlet *
((and (is-term-op? (car args) '*) (= 2 (length (car args))))
(loop (cons (cadar args) (cdr args))
cof
numbers
arg_exps))
((and (is-term-op? (car args) '-) (= 2 (length (car args))))
;; Do singlet -
(set! arg_exps (loop (cdar args) (number- cof) numbers arg_exps))
(loop (cdr args) cof (car arg_exps) (cdr arg_exps)))
;; Pull out numeric factors as coefficients
((and (is-term-op? (car args) '*) (some number? (cdar args)))
;;(print 'got-here (car args) '=> (cons '* (remove-if number? (cdar args))))
(set! arg_exps
(loop (list (cons '* (remove-if number? (cdar args))))
(apply number* cof (remove-if-not number? (cdar args)))
numbers
arg_exps))
(loop (cdr args) cof (car arg_exps) (cdr arg_exps)))
((is-term-op? (car args) '-)
;; Do multi-arg -
(set! arg_exps (loop (cddar args) (number- cof) numbers arg_exps))
(loop (cons (cadar args) (cdr args))
cof
(car arg_exps)
(cdr arg_exps)))
;; combine with same terms
((assoc (car args) arg_exps)
=> (lambda (pair) (set-cdr! pair (number+ cof (cdr pair)))
(loop (cdr args) cof numbers arg_exps)))
;; Add new term to arg_exps
(else (loop (cdr args) cof numbers
(cons (cons (car args) cof) arg_exps))))))
;;; Converts + or * internal form to Scheme expression
(define (cr-terms->form op ident inv-op higher-op res_cofs)
(define (negative-cof? fct_cof)
(negative? (cdr fct_cof)))
(define (finish exprs)
(if (null? exprs) ident
(if (null? (cdr exprs))
(car exprs)
(cons op exprs))))
(define (do-terms sign fct_cofs)
(expression-sort
(map (lambda (fct_cof)
(define cof (number* sign (cdr fct_cof)))
(cond ((eqv? 1 cof) (car fct_cof))
((number? (car fct_cof)) (number* cof (car fct_cof)))
((is-term-op? (car fct_cof) higher-op)
(if (eq? higher-op '^)
(list '^ (cadar fct_cof) (* cof (caddar fct_cof)))
(cons higher-op (cons cof (cdar fct_cof)))))
((eqv? -1 cof) (list inv-op (car fct_cof)))
(else (list higher-op (car fct_cof) cof))))
fct_cofs)))
(let* ((all_cofs (remove-if (lambda (fct_cof)
(or (zero? (cdr fct_cof))
(eqv? ident (car fct_cof))))
res_cofs))
(cofs (map cdr all_cofs))
(some-positive? (some positive? cofs)))
;;(print op 'positive? some-positive? 'negative? (some negative? cofs) all_cofs)
(cond ((and some-positive? (some negative? cofs))
(append (list inv-op
(finish (do-terms
1 (remove-if negative-cof? all_cofs))))
(do-terms -1 (remove-if-not negative-cof? all_cofs))))
(some-positive? (finish (do-terms 1 all_cofs)))
((not (some negative? cofs)) ident)
(else (list inv-op (finish (do-terms -1 all_cofs)))))))
(define (* . args)
(cond
((null? args) 1)
;;This next line is commented out so ^ will collapse numerical expressions.
;;((null? (cdr args)) (car args))
(else
(let ((in (cr*-args->fcts args)))
(cond
((zero? (car in)) 0)
(else
(if (null? (cdr in))
(set-cdr! in (list (cons 1 1))))
(let* ((num #f)
(ans (cr-terms->form
'* 1 '/ '^
(apply
(lambda (numeric red_cofs res_cofs)
(set! num numeric)
(append
;;(list (cons (abs numeric) 1))
red_cofs
res_cofs))
(cr1 '* number* '^ '/ (car in) (cdr in))))))
(cond ((number0? (+ -1 num)) ans)
((number? ans) (number* num ans))
((number0? (+ 1 num))
(if (and (list? ans) (= 2 (length ans)) (eq? '- (car ans)))
(cadr ans)
(list '- ans)))
((not (pair? ans)) (list '* num ans))
(else
(case (car ans)
((*) (append (list '* num) (cdr ans)))
((+) (apply + (map (lambda (mon) (* num mon)) (cdr ans))))
((-) (apply - (map (lambda (mon) (* num mon)) (cdr ans))))
(else (list '* num ans))))))))))))
(define (+ . args)
(cond ((null? args) 0)
;;((null? (cdr args)) (car args))
(else
(let ((in (cr+-args->trms args)))
(if (null? (cdr in))
(car in)
(cr-terms->form
'+ 0 '- '*
(apply (lambda (numeric red_cofs res_cofs)
(append
(list (if (and (number? numeric)
(negative? numeric))
(cons (abs numeric) -1)
(cons numeric 1)))
red_cofs
res_cofs))
(cr1 '+ number+ '* '- (car in) (cdr in)))))))))
(define (- arg1 . args)
(if (null? args)
(if (number? arg1) (number- arg1)
(* -1 arg1) ;(list '- arg1)
)
(+ arg1 (* -1 (apply + args)))))
;;(print `(/ ,arg1 ,@args) '=> )
(define (/ arg1 . args)
(if (null? args)
(^ arg1 -1)
(* arg1 (^ (apply * args) -1))))
(define (^ arg1 arg2)
(cond ((and (number? arg2) (integer? arg2))
(* (list '^ arg1 arg2)))
(else (list '^ arg1 arg2))))
;; TRY-EACH-PAIR-ONCE algorithm. I think this does the minimum
;; number of rule lookups given no information about how to sort
;; terms.
;; Pick equivalence classes one at a time and move them into the
;; result set of equivalence classes by searching for rules to
;; multiply an element of the chosen class by itself (if multiple) and
;; the element of each class already in the result group. Each
;; (multiplicative) term resulting from rule application would be put
;; in the result class, if that class exists; or put in an argument
;; class if not.
(define (cr1 op number-op hop inv-op numeric in)
(define red_pows '())
(define res_pows '())
(define (cring:apply-rule->terms exp1 exp2) ;(display op)
(let ((ans (cring:apply-rule op exp1 exp2)))
(cond ((not ans) #f)
((number? ans) (list ans))
(else (list (cons ans 1))))))
(define (cring:apply-inv-rule->terms exp1 exp2) ;(display inv-op)
(let ((ans (cring:apply-rule inv-op exp1 exp2)))
(cond ((not ans) #f)
((number? ans) (list ans))
(else (list (cons ans 1))))))
(let loop_arg_pow_s ((arg (caar in)) (pow (cdar in)) (arg_pows (cdr in)))
(define (arg-loop arg_pows)
(cond ((not (null? arg_pows))
(loop_arg_pow_s (caar arg_pows) (cdar arg_pows) (cdr arg_pows)))
(else (list numeric red_pows res_pows)))) ; Actually return!
(define (merge-res tmp_pows multiplicity)
(cond ((null? tmp_pows))
((number? (car tmp_pows))
(do ((m (number+ -1 (abs multiplicity)) (number+ -1 m))
(n numeric (number-op n (abs (car tmp_pows)))))
((negative? m) (set! numeric n)))
(merge-res (cdr tmp_pows) multiplicity))
((or (assoc (car tmp_pows) res_pows)
(assoc (car tmp_pows) arg_pows))
=> (lambda (pair)
(set-cdr! pair (number+
pow (number-op multiplicity (cdar tmp_pows))))
(merge-res (cdr tmp_pows) multiplicity)))
((assoc (car tmp_pows) red_pows)
=> (lambda (pair)
(set! arg_pows
(cons (cons (caar tmp_pows)
(number+
(cdr pair)
(number* multiplicity (cdar tmp_pows))))
arg_pows))
(set-cdr! pair 0)
(merge-res (cdr tmp_pows) multiplicity)))
(else (set! arg_pows
(cons (cons (caar tmp_pows)
(number* multiplicity (cdar tmp_pows)))
arg_pows))
(merge-res (cdr tmp_pows) multiplicity))))
(define (try-fct_pow fct_pow)
;;(print 'try-fct_pow fct_pow op 'arg arg 'pow pow)
(cond ((or (zero? (cdr fct_pow)) (number? (car fct_pow))) #f)
((not (and (number? pow) (number? (cdr fct_pow))
(integer? pow) ;(integer? (cdr fct_pow))
))
#f)
;;((zero? pow) (slib:error "Don't try exp-0 terms") #f)
;;((or (number? arg) (number? (car fct_pow)))
;; (slib:error 'found-number arg fct_pow) #f)
((and (positive? pow) (positive? (cdr fct_pow))
(or (cring:apply-rule->terms arg (car fct_pow))
(cring:apply-rule->terms (car fct_pow) arg)))
=> (lambda (terms)
;;(print op op terms)
(let ((multiplicity (min pow (cdr fct_pow))))
(set-cdr! fct_pow (number- (cdr fct_pow) multiplicity))
(set! pow (number- pow multiplicity))
(merge-res terms multiplicity))))
((and (negative? pow) (negative? (cdr fct_pow))
(or (cring:apply-rule->terms arg (car fct_pow))
(cring:apply-rule->terms (car fct_pow) arg)))
=> (lambda (terms)
;;(print inv-op inv-op terms)
(let ((multiplicity (max pow (cdr fct_pow))))
(set-cdr! fct_pow (number+ (cdr fct_pow) multiplicity))
(set! pow (number+ pow multiplicity))
(merge-res terms multiplicity))))
((and (positive? pow) (negative? (cdr fct_pow))
(cring:apply-inv-rule->terms arg (car fct_pow)))
=> (lambda (terms)
;;(print op inv-op terms)
(let ((multiplicity (min pow (number- (cdr fct_pow)))))
(set-cdr! fct_pow (number+ (cdr fct_pow) multiplicity))
(set! pow (number- pow multiplicity))
(merge-res terms multiplicity))))
((and (negative? pow) (positive? (cdr fct_pow))
(cring:apply-inv-rule->terms (car fct_pow) arg))
=> (lambda (terms)
;;(print inv-op op terms)
(let ((multiplicity (max (number- pow) (cdr fct_pow))))
(set-cdr! fct_pow (number- (cdr fct_pow) multiplicity))
(set! pow (number+ pow multiplicity))
(merge-res terms multiplicity))))
(else #f)))
;;(print op numeric 'arg arg 'pow pow 'arg_pows arg_pows 'red_pows red_pows 'res_pows res_pows)
;;(trace arg-loop cring:apply-rule->terms merge-res try-fct_pow) (set! *qp-width* 333)
(cond ((or (zero? pow) (eqv? 1 arg)) ;(number? arg) arg seems to always be 1
(arg-loop arg_pows))
((assoc arg res_pows) => (lambda (pair)
(set-cdr! pair (number+ pow (cdr pair)))
(arg-loop arg_pows)))
((and (> (abs pow) 1) (cring:apply-rule->terms arg arg))
=> (lambda (terms)
(merge-res terms (quotient pow 2))
(if (odd? pow)
(loop_arg_pow_s arg 1 arg_pows)
(arg-loop arg_pows))))
((or (some try-fct_pow res_pows) (some try-fct_pow arg_pows))
(loop_arg_pow_s arg pow arg_pows))
(else (set! res_pows (cons (cons arg pow) res_pows))
(arg-loop arg_pows)))))
(define (cring:try-rule op sop1 sop2 exp1 exp2)
(and *ruleset*
(let ((rule ((car *ruleset*) op sop1 sop2)))
(and rule (rule exp1 exp2)))))
(define (cring:apply-rule op exp1 exp2)
(and (pair? exp1)
(or (and (pair? exp2)
(cring:try-rule op (car exp1) (car exp2) exp1 exp2))
(cring:try-rule op (car exp1) 'identity exp1 exp2))))
;;(begin (trace cr-terms->form) (set! *qp-width* 333))
|