/usr/share/scsh-0.6/scsh/scsh.scm is in scsh-common-0.6 0.6.7-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 | ;;; A Scheme shell.
;;; Copyright (c) 1992 by Olin Shivers.
;;; Copyright (c) 1994 by Brian D. Carlstrom.
;;; Call THUNK, then die.
;;; A clever definition in a clever implementation allows the caller's stack
;;; and dynamic env to be gc'd away, since this procedure never returns.
(define (call-terminally thunk)
(with-continuation
null-continuation
(lambda ()
(with-handler
(lambda (c more)
(display-condition c (current-error-port))
(exit 1))
(lambda ()
(dynamic-wind
(lambda () (values))
thunk
(lambda () (exit 0))))))))
;; from shift-reset.scm:
(define null-continuation #f)
;;; Like FORK, but the parent and child communicate via a pipe connecting
;;; the parent's stdin to the child's stdout. This function side-effects
;;; the parent by changing his stdin.
(define (fork/pipe . stuff)
(really-fork/pipe fork stuff))
(define (%fork/pipe . stuff)
(really-fork/pipe %fork stuff))
;;; Common code for FORK/PIPE and %FORK/PIPE.
(define (really-fork/pipe forker rest)
(let-optionals rest ((maybe-thunk #f)
(no-new-command-level? #f))
(receive (r w) (pipe)
(let ((proc (forker #f no-new-command-level?)))
(cond (proc ; Parent
(close w)
(move->fdes r 0)
(set-current-input-port! r))
(else ; Child
(close r)
(move->fdes w 1)
(if maybe-thunk
(with-current-output-port
w
(call-terminally maybe-thunk))
(set-current-output-port! w))))
proc))))
;;; FORK/PIPE with a connection list.
;;; (FORK/PIPE . m-t) = (apply fork/pipe+ '((1 0)) m-t)
(define (%fork/pipe+ conns . stuff)
(really-fork/pipe+ %fork conns stuff))
(define (fork/pipe+ conns . stuff)
(really-fork/pipe+ fork conns stuff))
;;; Common code.
(define (really-fork/pipe+ forker conns rest)
(let-optionals rest ((maybe-thunk #f)
(no-new-command-level? #f))
(let* ((pipes (map (lambda (conn) (call-with-values pipe cons))
conns))
(rev-conns (map reverse conns))
(froms (map (lambda (conn) (reverse (cdr conn)))
rev-conns))
(tos (map car rev-conns)))
(let ((proc (forker #f no-new-command-level?)))
(cond (proc ; Parent
(for-each (lambda (to r/w)
(let ((w (cdr r/w))
(r (car r/w)))
(close w)
(move->fdes r to)))
tos pipes))
(else ; Child
(for-each (lambda (from r/w)
(let ((r (car r/w))
(w (cdr r/w)))
(close r)
(for-each (lambda (fd) (dup w fd)) from)
(close w))) ; Unrevealed ports win.
froms pipes)
(if maybe-thunk
(call-terminally maybe-thunk))))
proc))))
(define (tail-pipe a b)
(fork/pipe a)
(call-terminally b))
(define (tail-pipe+ conns a b)
(fork/pipe+ conns a)
(call-terminally b))
;;; Lay a pipeline, one process for each thunk. Last thunk is called
;;; in this process. PIPE* never returns.
(define (pipe* . thunks)
(letrec ((lay-pipe (lambda (thunks)
(let ((thunk (car thunks))
(thunks (cdr thunks)))
(if (pair? thunks)
(begin (fork/pipe thunk)
(lay-pipe thunks))
(call-terminally thunk)))))) ; Last one.
(if (pair? thunks)
(lay-pipe thunks)
(error "No thunks passed to PIPE*"))))
;;; Splice the processes into the i/o flow upstream from us.
;;; First thunk's process reads from our stdin; last thunk's process'
;;; output becomes our new stdin. Essentially, n-ary fork/pipe.
;;;
;;; This procedure is so trivial it isn't included.
;;; (define (pipe-splice . thunks) (for-each fork/pipe thunks))
;;; Should be moved to somewhere else
(define (with-lock lock thunk)
(dynamic-wind
(lambda ()
(obtain-lock lock))
thunk
(lambda ()
(release-lock lock))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; working directory per thread
(define *cwd-cache* 'uninitialized)
(define cwd-lock (make-lock))
(define (initialize-cwd)
(set! *cwd-cache* (process-cwd))
(set! $cwd ;;; TODO The old thread-fluid will remain
(make-preserved-thread-fluid
(cwd-cache))))
; (set! cwd-lock (make-lock)))
(define (cwd-cache)
*cwd-cache*)
;; Actually do the syscall and update the cache
;; assumes the cwd lock obtained
(define (change-and-cache-cwd new-cwd)
(if (not (file-name-absolute? new-cwd))
(process-chdir (string-append (cwd) "/" new-cwd))
(process-chdir new-cwd))
(set! *cwd-cache* (process-cwd)))
;; The thread-specific cwd: A thread fluid
(define $cwd 'empty-cwd-value)
(define (cwd) (thread-fluid $cwd))
(define (thread-set-cwd! cwd) (set-thread-fluid! $cwd cwd))
(define (let-cwd cwd thunk)
(let-thread-fluid $cwd cwd thunk))
(define (with-cwd* new-cwd thunk)
(let ((changed-cwd
(with-lock cwd-lock
(lambda ()
(change-and-cache-cwd new-cwd)
(cwd-cache)))))
(let-cwd changed-cwd thunk)))
;; Align the value of the Unix cwd with scsh's value.
;; Since another thread could disalign, this call and
;; any ensuring syscall that relies upon it should
;; be "glued together" with the cwd lock.
(define (align-cwd!)
(let ((thread-cwd (cwd)))
(if (not (string=? thread-cwd (cwd-cache)))
(change-and-cache-cwd thread-cwd))))
(define (chdir . maybe-dir)
(let ((dir (:optional maybe-dir (home-dir))))
(with-lock cwd-lock
(lambda ()
(change-and-cache-cwd dir)
(thread-set-cwd! (cwd-cache))))))
(define-record-type resource :resource
(make-resource align! lock)
resource?
(align! resource-align!)
(lock resource-lock))
(define (with-resources-aligned resources thunk)
(let ((locks (map resource-lock resources)))
(apply obtain-all-or-none locks)
(for-each
(lambda (align!) (align!))
(map resource-align! resources))
(let ((val (with-handler
(lambda (cond more)
(for-each release-lock locks)
(more))
thunk)))
(for-each release-lock locks)
val)))
(define cwd-resource (make-resource align-cwd! cwd-lock))
;; example syscall
;; (define (exported-delete-file fname)
;; (with-cwd-aligned (really-delete-file fname)))
(define cwd-reinitializer
(make-reinitializer (lambda () (initialize-cwd))))
(initialize-cwd)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; umask per thread
(define *umask-cache* 'uninitialized)
(define umask-lock (make-lock))
(define (initialize-umask)
(set! *umask-cache* (process-umask))
(set! $umask ;;; TODO The old thread-fluid will remain
(make-preserved-thread-fluid
(umask-cache))))
; (set! umask-lock (make-lock)))
(define (umask-cache)
*umask-cache*)
;; Actually do the syscall and update the cache
;; assumes the resource lock obtained
(define (change-and-cache-umask new-umask)
(set-process-umask new-umask)
(set! *umask-cache* (process-umask)))
;; The thread-specific umask: A thread fluid
(define $umask 'empty-umask-value)
(define (umask) (thread-fluid $umask))
(define (thread-set-umask! new-umask) (set-thread-fluid! $umask new-umask))
(define (let-umask new-umask thunk)
(let-thread-fluid $umask new-umask thunk))
(define (with-umask* new-umask thunk)
(let ((changed-umask
(with-lock umask-lock
(lambda ()
(change-and-cache-umask new-umask)
(umask-cache)))))
(let-umask changed-umask thunk)))
(define (align-umask!)
(let ((thread-umask (umask)))
(if (not (= thread-umask (umask-cache)))
(change-and-cache-umask thread-umask))))
(define (set-umask new-umask)
(with-lock umask-lock
(lambda ()
(change-and-cache-umask new-umask)
(thread-set-umask! (umask-cache)))))
(define umask-resource (make-resource align-umask! umask-lock))
(define umask-reinitializer
(make-reinitializer (lambda () (initialize-umask))))
(initialize-umask)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; effective uid and gid per thread
(define-syntax make-Xid-resource
(syntax-rules ()
((make-Xid-resource
process-user-effective-Xid set-process-user-effective-Xid
process-set-Xid set-Xid
align-eXid! eXid-resource
user-effective-Xid set-user-effective-Xid with-user-effective-Xid*)
(begin
(define *eXid-cache* 'uninitialized)
(define eXid-lock (make-lock))
(define (initialize-eXid)
(set! *eXid-cache* (process-user-effective-Xid))
(set! $eXid
(make-preserved-thread-fluid
(eXid-cache))))
(define (eXid-cache)
*eXid-cache*)
;; Actually do the syscall and update the cache
;; assumes the resource lock obtained
(define (change-and-cache-eXid new-eXid)
(set-process-user-effective-Xid new-eXid)
(set! *eXid-cache* (process-user-effective-Xid)))
;; The thread-specific eXid: A thread fluid
(define $eXid 'empty-eXid-value)
(define (user-effective-Xid) (thread-fluid $eXid))
(define (thread-set-eXid! new-eXid) (set-thread-fluid! $eXid new-eXid))
(define (let-eXid new-eXid thunk)
(let-thread-fluid $eXid new-eXid thunk))
;; set-Xid will affect the effective X id
(define (set-Xid Xid)
(with-lock eXid-lock
(lambda ()
(process-set-Xid Xid)
(set! *eXid-cache* (process-user-effective-Xid))
(thread-set-eXid! *eXid-cache*))))
(define (with-user-effective-Xid* new-eXid thunk)
(let ((changed-eXid
(with-lock eXid-lock
(lambda ()
(change-and-cache-eXid new-eXid)
(eXid-cache)))))
(let-eXid changed-eXid thunk)))
(define (align-eXid!)
(let ((thread-eXid (user-effective-Xid)))
(if (not (= thread-eXid (eXid-cache)))
(change-and-cache-eXid thread-eXid))))
(define (set-user-effective-Xid new-eXid)
(with-lock eXid-lock
(lambda ()
(change-and-cache-eXid new-eXid)
(thread-set-eXid! (eXid-cache)))))
(define eXid-resource (make-resource align-eXid! eXid-lock))
(define eXid-reinitializer
(make-reinitializer (lambda () (initialize-eXid))))
(initialize-eXid)
))))
(make-Xid-resource
process-user-effective-uid set-process-user-effective-uid
process-set-uid set-uid
align-euid! euid-resource
user-effective-uid set-user-effective-uid with-user-effective-uid*)
(make-Xid-resource
process-user-effective-gid set-process-user-effective-gid
process-set-gid set-gid
align-egid! egid-resource
user-effective-gid set-user-effective-gid with-user-effective-gid*)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ensure S48 is aligned too
(set-with-fs-context-aligned*!
(lambda (thunk)
(with-resources-aligned
(list cwd-resource umask-resource euid-resource egid-resource)
thunk)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Environment per thread
(define *env-cache* 'uninitialized)
(define env-lock (make-lock))
(define (install-env)
(set! *env-cache* (environ**-read))
(set! $env ;;; TODO The old thread-fluid will remain
(make-preserved-thread-fluid
(env-cache))))
; (set! env-lock (make-lock)))
(define (env-cache)
*env-cache*)
;; Actually do the syscall and update the cache
;; assumes the env lock obtained
(define (change-and-cache-env env)
(environ**-set env)
(set! *env-cache* env))
;; The thread-specific env: A thread fluid
(define $env 'empty-env-value)
(define (thread-read-env) (thread-fluid $env))
(define (thread-set-env! res) (set-thread-fluid! $env res))
(define (let-env res thunk)
(let-thread-fluid $env res thunk))
(define (really-with-env* env thunk)
(with-lock env-lock
(lambda ()
(change-and-cache-env env)))
(let-env env thunk))
(define (align-env!)
(let ((res (thread-read-env)))
(if (not (env=? res (env-cache)))
(change-and-cache-env res))))
(define (thread-change-env res)
(with-lock env-lock
(lambda ()
(change-and-cache-env res)
(thread-set-env! (env-cache)))))
(define environ-resource (make-resource align-env! env-lock))
(define env-reinitializer
(make-reinitializer install-env))
(define-record env
envvec
alist) ; Corresponding alist
(define-record-resumer type/env
(lambda (env)
(set-env:envvec env #f)))
(define (env=? e1 e2)
(and (env:envvec e1)
(eq? (env:envvec e1)
(env:envvec e2))))
(define-record envvec
environ ;; char**
)
(define (add-envvec-finalizer! envvec)
(add-finalizer! envvec envvec-finalizer))
(define-exported-binding "envvec-record-type" type/envvec)
(define-exported-binding "add-envvec-finalizer!" add-envvec-finalizer!)
(define (envvec-finalizer envvec)
(%free-env envvec))
(define (environ**-read)
(let ((alist.envvec (environ-env->alist)))
(make-env (cdr alist.envvec) (car alist.envvec))))
(define (environ**-set env)
(if (env:envvec env)
(%align-env (env:envvec env))
(set-env:envvec env (envvec-alist->env (env:alist env)))))
(define (getenv var)
(let* ((env (thread-read-env))
(res (assoc var (env:alist env))))
(if res (cdr res) res)))
(define (env->alist)
(env:alist (thread-read-env)))
(define (setenv var val)
(let* ((env (thread-read-env))
(alist (if val
(alist-update
var
val
(env:alist env))
(alist-delete
var
(env:alist env)))))
(thread-set-env!
(make-env
#f
alist))))
(define (alist->env alist)
(thread-set-env!
(make-env
#f
alist)))
(define (with-env* alist-delta thunk)
(let ((new-env (fold (lambda (key/val alist)
(alist-update (car key/val) (cdr key/val) alist))
(env->alist)
alist-delta)))
(with-total-env* new-env thunk)))
(define (with-total-env* alist thunk)
(really-with-env* (make-env #f alist) thunk))
;;; These two functions are obsoleted by the more general INFIX-SPLITTER and
;;; JOIN-STRINGS functions. However, we keep SPLIT-COLON-LIST defined
;;; internally so the top-level startup code (INIT-SCSH) can use it
;;; to split up $PATH without requiring the field-splitter or regexp code.
(define (split-colon-list clist)
(let ((len (string-length clist)))
(if (= 0 len) '() ; Special case "" -> ().
;; Main loop.
(let split ((i 0))
(cond ((string-index clist #\: i) =>
(lambda (colon)
(cons (substring clist i colon)
(split (+ colon 1)))))
(else (list (substring clist i len))))))))
;;; Unix colon lists typically use colons as separators, which
;;; is not as clean to deal with as terminators, but that's Unix.
;;; Note ambiguity: (s-l->c-l '()) = (s-l->c-l '("")) = "".
; (define (string-list->colon-list slist)
; (if (pair? slist)
; (apply string-append
; (let colonise ((lis slist)) ; LIS is always
; (let ((tail (cdr lis))) ; a pair.
; (cons (car lis)
; (if (pair? tail)
; (cons ":" (colonise tail))
; '())))))
; "")) ; () case.
(define (alist-delete key alist)
(filter (lambda (key/val) (not (equal? key (car key/val)))) alist))
(define (alist-update key val alist)
(cons (cons key val)
(alist-delete key alist)))
;;; Remove shadowed entries from ALIST. Preserves element order.
;;; (This version shares no structure.)
(define (alist-compress alist)
(reverse (let compress ((alist alist) (ans '()))
(if (pair? alist)
(let ((key/val (car alist))
(alist (cdr alist)))
(compress alist (if (assoc (car key/val) ans) ans
(cons key/val ans))))
ans))))
(define (add-before elt before list)
(let rec ((list list))
(if (pair? list)
(let ((x (car list)))
(if (equal? x before)
(cons elt list)
(cons x (rec (cdr list)))))
(cons elt list))))
;;; In ADD-AFTER, the labelled LET adds ELT after the last occurrence of AFTER
;;; in LIST, and returns the list. However, if the LET finds no occurrence
;;; of AFTER in LIST, it returns #F instead.
(define (add-after elt after list)
(or (let rec ((list list))
(if (pair? list)
(let* ((x (car list))
(tail (cdr list))
(ans (rec tail))) ; #f if AFTER wasn't encountered.
(cond (ans (cons x ans))
((equal? x after)
(cons x (cons elt tail)))
(else #f))) ; AFTER doesn't appear in LIST.
#f)) ; AFTER doesn't appear in LIST.
(cons elt list)))
;;; Sugar:
(define-simple-syntax (with-cwd dir . body)
(with-cwd* dir (lambda () . body)))
(define-simple-syntax (with-umask mask . body)
(with-umask* mask (lambda () . body)))
(define-simple-syntax (with-env delta . body)
(with-env* `delta (lambda () . body)))
(define-simple-syntax (with-total-env env . body)
(with-total-env* `env (lambda () . body)))
(define-simple-syntax (with-user-effective-uid uid . body)
(with-user-effective-uid* uid (lambda () . body)))
(define-simple-syntax (with-user-effective-gid gid . body)
(with-user-effective-gid* gid (lambda () . body)))
(define (call/temp-file writer user)
(let ((fname #f))
(dynamic-wind
(lambda () (if fname (error "Can't wind back into a CALL/TEMP-FILE")
(set! fname (create-temp-file))))
(lambda ()
(with-output-to-file fname writer)
(user fname))
(lambda () (if fname (delete-file fname))))))
;;; Create a new temporary file and return its name.
;;; The optional argument specifies the filename prefix to use, and defaults
;;; to "/tmp/<pid>.", where <pid> is the current process' id. The procedure
;;; scans through the files named <prefix>0, <prefix>1, ... until it finds a
;;; filename that doesn't exist in the filesystem. It creates the file with
;;; permission #o600, and returns the filename.
;;;
(define (create-temp-file . maybe-prefix)
(let ((oflags (bitwise-ior open/write
(bitwise-ior open/create open/exclusive))))
(apply temp-file-iterate
(lambda (fname)
(close-fdes (open-fdes fname oflags #o600))
fname)
(if (null? maybe-prefix) '()
(list (string-append (constant-format-string (car maybe-prefix))
".~a"))))))
(define (initial-temp-file)
(let ((tmpdir (getenv "TMPDIR")))
(string-append
(if tmpdir
tmpdir
"/var/tmp")
"/"
(number->string (pid))
"~a")))
(define *temp-file-template* (make-fluid 'not-initialized-temp-file-template))
(define temp-file-reinitializer
(make-reinitializer
(lambda ()
(set-fluid! *temp-file-template* (initial-temp-file)))))
(define (temp-file-iterate maker . maybe-template)
(let ((template (:optional maybe-template (fluid *temp-file-template*))))
(let loop ((i 0))
(if (> i 1000) (error "Can't create temp-file")
(let ((fname (format #f template (number->string i))))
(receive retvals (with-errno-handler
((errno data)
((errno/exist errno/acces) #f))
(maker fname))
(if (car retvals) (apply values retvals)
(loop (+ i 1)))))))))
;; Double tildes in S.
;; Using the return value as a format string will output exactly S.
(define (constant-format-string s) ; Ugly code. Would be much clearer
(let* ((len (string-length s)) ; if written with string SRFI.
(tilde? (lambda (s i) (char=? #\~ (string-ref s i))))
(newlen (do ((i (- len 1) (- i 1))
(ans 0 (+ ans (if (tilde? s i) 2 1))))
((< i 0) ans)))
(fs (make-string newlen)))
(let lp ((i 0) (j 0))
(cond ((< i len)
(let ((j (cond ((tilde? s i) (string-set! fs j #\~) (+ j 1))
(else j))))
(string-set! fs j (string-ref s i))
(lp (+ i 1) (+ j 1))))))
fs))
;;; Roughly equivalent to (pipe).
;;; Returns two file ports [iport oport] open on a temp file.
;;; Use this when you may have to buffer large quantities between
;;; writing and reading. Note that if the consumer gets ahead of the
;;; producer, it won't hang waiting for input, it will just return
;;; EOF. To play it safe, make sure that the producer runs to completion
;;; before starting the consumer.
;;;
;;; The temp file is deleted before TEMP-FILE-CHANNEL returns, so as soon
;;; as the ports are closed, the file's disk storage is reclaimed.
(define (temp-file-channel)
(let* ((fname (create-temp-file))
(iport (open-input-file fname))
(oport (open-output-file fname)))
(delete-file fname)
(values iport oport)))
;; Return a Unix port such that reads on it get the chars produced by
;; DISPLAYing OBJ. For example, if OBJ is a string, then reading from
;; the port produces the characters of OBJ.
;;
;; This implementation works by writing the string out to a temp file,
;; but that isn't necessary. It could work, for example, by forking off a
;; writer process that outputs to a pipe, i.e.,
;; (run/port (begin (display obj (fdes->outport 1))))
(define (open-string-source obj)
(receive (inp outp) (temp-file-channel)
(display obj outp)
(close-output-port outp)
inp))
;;;; Process->Scheme interface forms: run/collecting, run/port, run/string, ...
;;; (run/collecting FDS . EPF)
;;; --------------------------
;;; RUN/COLLECTING and RUN/COLLECTING* run processes that produce multiple
;;; output streams and return ports open on these streams.
;;;
;;; To avoid issues of deadlock, RUN/COLLECTING first runs the process
;;; with output to temp files, then returns the ports open on the temp files.
;;;
;;; (run/collecting (1 2) (ls))
;;; runs ls with stdout (fd 1) and stderr (fd 2) redirected to temporary files.
;;; When ls is done, RUN/COLLECTING returns two ports open on the temporary
;;; files. The files are deleted before RUN/COLLECTING returns, so when
;;; the ports are closed, they vanish.
;;;
;;; The FDS list of file descriptors is implicitly backquoted.
;;;
;;; RUN/COLLECTING* is the procedural abstraction of RUN/COLLECTING.
(define (run/collecting* fds thunk)
;; First, generate a pair of ports for each communications channel.
;; Each channel buffers through a temp file.
(let* ((channels (map (lambda (ignore)
(call-with-values temp-file-channel cons))
fds))
(read-ports (map car channels))
(write-ports (map cdr channels))
;; In a subprocess, close the read ports, redirect input from
;; the write ports, and run THUNK.
(status (run (begin (for-each close-input-port read-ports)
(for-each move->fdes write-ports fds)
(thunk)))))
;; In this process, close the write ports and return the exit status
;; and all the the read ports.
(for-each close-output-port write-ports)
(apply values status read-ports)))
;;; Single-stream collectors:
;;; Syntax: run/port, run/file, run/string, run/strings, run/sexp, run/sexps
;;; Procedures: run/port*, run/file*, run/string*, run/strings*, run/sexp*,
;;; run/sexps*
;;; port->string, port->string-list, port->sexp-list,
;;; port->list
;;;
;;; Syntax:
;;; (run/port . epf)
;;; Fork off the process EPF and return a port on its stdout.
;;; (run/file . epf)
;;; Run process EPF with stdout redirected into a temp file.
;;; When the process exits, return the name of the file.
;;; (run/string . epf)
;;; Read the process' stdout into a string and return it.
;;; (run/strings . epf)
;;; Run process EPF, reading newline-terminated strings from its stdout
;;; until EOF. After process exits, return list of strings read. Delimiting
;;; newlines are trimmed from the strings.
;;; (run/sexp . epf)
;;; Run process EPF, read and return one sexp from its stdout with READ.
;;; (run/sexps . epf)
;;; Run process EPF, read sexps from its stdout with READ until EOF.
;;; After process exits, return list of items read.
;;;
;;; Procedural abstractions:
;;; run/port*, run/file*, run/string*, run/strings*, run/sexp*, run/sexps*
;;;
;;; These are all procedural equivalents for the macros. They all take
;;; one argument: the process to be executed passed as a thunk. For example,
;;; (RUN/PORT . epf) expands into (RUN/PORT* (LAMBDA () (EXEC-EPF . epf)))
;;;
;;; Other useful procedures:
;;;
;;; (port->string port)
;;; Read characters from port until EOF; return string collected.
;;; (port->string-list port)
;;; Read newline-terminated strings from port until EOF. Return
;;; the list of strings collected.
;;; (port->sexp-list port)
;;; Read sexps from port with READ until EOF. Return list of items read.
;;; (port->list reader port)
;;; Repeatedly applies READER to PORT, accumulating results into a list.
;;; On EOF, returns the list of items thus collected.
;;; (port-fold port reader op . seeds)
;;; Repeatedly read things from PORT with READER. Each time you read
;;; some value V, compute a new set of seeds with (apply OP V SEEDS).
;;; (More than 1 seed means OP must return multiple values).
;;; On eof, return the seeds: (apply value SEEDS).
;;; PORT->LIST is just (PORT-FOLD PORT READ CONS '())
(define (run/port+proc* thunk)
(receive (r w) (pipe)
(let ((proc (fork (lambda ()
(close r)
(move->fdes w 1)
(with-current-output-port* w thunk)))))
(close w)
(values r proc))))
(define (run/port* thunk)
(receive (port proc) (run/port+proc* thunk)
port))
(define (run/file* thunk)
(let ((fname (create-temp-file)))
(run (begin (thunk)) (> ,fname))
fname))
(define (run/string* thunk)
(close-after (run/port* thunk) port->string))
(define (run/sexp* thunk)
(close-after (run/port* thunk) read))
(define (run/sexps* thunk)
(close-after (run/port* thunk) port->sexp-list))
(define (run/strings* thunk)
(close-after (run/port* thunk) port->string-list))
;;; Read characters from PORT until EOF, collect into a string.
(define (port->string port)
(let ((sc (make-string-collector)))
(letrec ((lp (lambda ()
(cond ((read-string 1024 port) =>
(lambda (s)
(collect-string! sc s)
(lp)))
(else (string-collector->string sc))))))
(lp))))
;;; (loop (initial (sc (make-string-collector)))
;;; (bind (s (read-string 1024 port)))
;;; (while s)
;;; (do (collect-string! sc s))
;;; (result (string-collector->string sc)))
;;; Read items from PORT with READER until EOF. Collect items into a list.
(define (port->list reader port)
(let lp ((ans '()))
(let ((x (reader port)))
(if (eof-object? x) (reverse! ans)
(lp (cons x ans))))))
(define (port->sexp-list port)
(port->list read port))
(define (port->string-list port)
(port->list read-line port))
(define (port-fold port reader op . seeds)
(letrec ((fold (lambda seeds
(let ((x (reader port)))
(if (eof-object? x) (apply values seeds)
(call-with-values (lambda () (apply op x seeds))
fold))))))
(apply fold seeds)))
(define reduce-port
(deprecated-proc port-fold 'reduce-port "Use port-fold instead."))
;;; Not defined:
;;; (field-reader field-delims record-delims)
;;; Returns a reader that reads strings delimited by 1 or more chars from
;;; the string FIELD-DELIMS. These strings are collected in a list until
;;; eof or until 1 or more chars from RECORD-DELIMS are read. Then the
;;; accumulated list of strings is returned. For example, if we want
;;; a procedure that reads one line of input, splitting it into
;;; whitespace-delimited strings, we can use
;;; (field-reader " \t" "\n")
;;; for a reader.
;; Loop until EOF reading characters or strings and writing (FILTER char)
;; or (FILTER string). Useful as an arg to FORK or FORK/PIPE.
(define (make-char-port-filter filter)
(lambda ()
(let lp ()
(let ((c (read-char)))
(if (not (eof-object? c))
(begin (write-char (filter c))
(lp)))))))
(define (make-string-port-filter filter . maybe-buflen)
(let* ((buflen (:optional maybe-buflen 1024))
(buf (make-string buflen)))
(lambda ()
(let lp ()
(cond ((read-string! buf (current-input-port) 0 buflen) =>
(lambda (nread)
(display (filter (if (= nread buflen) buf
(substring buf 0 nread)))) ; last one.
(lp))))))))
(define (y-or-n? question . maybe-eof-value)
(let loop ((count *y-or-n-eof-count*))
(display question)
(display " (y/n)? ")
(let ((line (read-line)))
(cond ((eof-object? line)
(newline)
(if (= count 0)
(:optional maybe-eof-value (error "EOF in y-or-n?"))
(begin (display "I'll only ask another ")
(write count)
(display " times.")
(newline)
(loop (- count 1)))))
((< (string-length line) 1) (loop count))
((char=? (string-ref line 0) #\y) #t)
((char=? (string-ref line 0) #\n) #f)
(else (loop count))))))
(define *y-or-n-eof-count* 100)
;;; Stdio/stdport sync procedures
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (stdio->stdports)
(set-current-input-port! (fdes->inport 0))
(set-current-output-port! (fdes->outport 1))
(set-current-error-port! (fdes->outport 2)))
(define (with-stdio-ports* thunk)
(with-current-input-port (fdes->inport 0)
(with-current-output-port (fdes->outport 1)
(with-current-error-port (fdes->outport 2)
(thunk)))))
(define-simple-syntax (with-stdio-ports body ...)
(with-stdio-ports* (lambda () body ...)))
(define (stdports->stdio)
(dup (current-input-port) 0)
(dup (current-output-port) 1)
(dup (current-error-port) 2))
;;; Command-line argument access
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some globals.
(define %command-line '()) ; Includes program.
(define command-line-arguments #f) ; Doesn't include program.
(define (set-command-line-args! args)
(set! %command-line args)
(set! command-line-arguments (append (cdr args) '())))
(define (arg* arglist n . maybe-default-thunk)
(let ((oops (lambda () (error "argument out of bounds" arglist n))))
(if (< n 1) (oops)
(let lp ((al arglist) (n n))
(if (pair? al)
(if (= n 1) (car al)
(lp (cdr al) (- n 1)))
(if (and (pair? maybe-default-thunk)
(null? (cdr maybe-default-thunk)))
((car maybe-default-thunk))
(oops)))))))
(define (arg arglist n . maybe-default)
(if maybe-default (arg* arglist n (lambda () (car maybe-default)))
(arg* arglist n)))
(define (argv n . maybe-default)
(apply arg %command-line (+ n 1) maybe-default))
(define (command-line) (append %command-line '()))
;;; EXEC support
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Assumes a low-level %exec procedure:
;;; (%exec prog arglist env)
;;; ENV is either #t, meaning the current environment, or a string->string
;;; alist.
;;; %EXEC stringifies PROG and the elements of ARGLIST.
(define (stringify thing)
(cond ((string? thing) thing)
((symbol? thing)
(symbol->string thing))
; ((symbol? thing)
; (list->string (map char-downcase
; (string->list (symbol->string thing)))))
((integer? thing)
(number->string thing))
(else (error "Can only stringify strings, symbols, and integers."
thing))))
(define (exec-path-search prog path-list)
(cond
((not (file-name-absolute? prog))
(let loop ((path-list path-list))
(if (not (null? path-list))
(let* ((dir (car path-list))
(fname (string-append dir "/" prog)))
(if (file-executable? fname)
fname
(loop (cdr path-list)))))))
((file-executable? prog)
prog)
(else #f)))
(define (exec/env prog env . arglist)
(flush-all-ports)
(with-resources-aligned
(list environ-resource cwd-resource umask-resource euid-resource egid-resource)
(lambda ()
(%exec prog (cons prog arglist) env))))
;(define (exec-path/env prog env . arglist)
; (cond ((exec-path-search (stringify prog) (fluid exec-path-list)) =>
; (lambda (binary)
; (apply exec/env binary env arglist)))
; (else (error "No executable found." prog arglist))))
;;; This procedure is bummed by tying in directly to %%exec/errno
;;; and pulling some of %exec's code out of the inner loop so that
;;; the inner loop will be fast. Folks don't like waiting...
(define (exec-path/env prog env . arglist)
(flush-all-ports)
(with-resources-aligned
(list environ-resource cwd-resource umask-resource euid-resource egid-resource)
(lambda ()
(let ((prog (stringify prog)))
(if (string-index prog #\/)
;; Contains a slash -- no path search.
(%exec prog (cons prog arglist) env)
;; Try each directory in PATH-LIST.
(let ((argv (list->vector (cons prog (map stringify arglist)))))
(for-each (lambda (dir)
(let ((binary (string-append dir "/" prog)))
(%%exec binary argv env)))
(thread-fluid exec-path-list)))))
(error "No executable found." prog arglist))))
(define (exec-path prog . arglist)
(apply exec-path/env prog #t arglist))
(define (exec prog . arglist)
(apply exec/env prog #t arglist))
;;; Assumes niladic primitive %%FORK.
(define (fork . stuff)
(apply fork-1 #t stuff))
(define (%fork . stuff)
(apply fork-1 #f stuff))
(define (fork-1 clear-interactive? . rest)
(let-optionals rest ((maybe-thunk #f)
(dont-narrow? #f))
(really-fork clear-interactive?
(not dont-narrow?)
maybe-thunk)))
(define (preserve-ports thunk)
(let ((current-input (current-input-port))
(current-output (current-output-port))
(current-error (current-error-port)))
(lambda ()
(with-current-input-port*
current-input
(lambda ()
(with-current-output-port*
current-output
(lambda ()
(with-current-error-port*
current-error
thunk))))))))
(define (really-fork clear-interactive? narrow? maybe-thunk)
(let ((proc #f)
(maybe-narrow
(if narrow?
(lambda (thunk)
;; narrow loses the thread fluids and the dynamic environment
(narrow (preserve-ports (preserve-thread-fluids thunk))
'forking))
(lambda (thunk) (thunk)))))
(maybe-narrow
(lambda ()
(if clear-interactive?
(flush-all-ports))
;; There was an atomicity problem/race condition -- if a child
;; process died after it was forked, but before the scsh fork
;; procedure could register the child's procobj in the
;; pid/procobj table, then when the SIGCHLD signal-handler reaped
;; the process, there would be no procobj for it. We now lock
;; out interrupts across the %%FORK and NEW-CHILD-PROC
;; operations.
(((structure-ref interrupts with-interrupts-inhibited)
(lambda ()
;; with-env-aligned is not neccessary here but it will
;; create the environ object in the parent process which
;; could reuse it on further forks
(let ((pid (with-resources-aligned
(list environ-resource)
%%fork)))
(if (zero? pid)
;; Child
(lambda () ; Do all this outside the WITH-INTERRUPTS.
(if narrow?
(begin
;; ugly kludge:
;; the REPL thread is not running any more,
;; hence unlock its command ports
(release-port-lock (command-input))
(release-port-lock (command-output))
(release-port-lock (command-error-output))))
;; There is no session if parent was started in batch-mode
(if (and (session-started?) clear-interactive?)
(set-batch-mode?! #t)) ; Children are non-interactive.
(if maybe-thunk
(call-terminally maybe-thunk)))
;; Parent
(begin
(set! proc (new-child-proc pid))
(lambda ()
(values))))))))))
proc))
(define (exit . maybe-status)
(let ((status (:optional maybe-status 0)))
(if (not (integer? status))
(error "non-integer argument to exit"))
(call-exit-hooks-and-narrow
(lambda ()
(exit/errno status)
(display "The evil undead walk the earth." 2)
(if #t (error "(exit) returned."))))))
;;; The classic T 2.0 primitive.
;;; This definition works for procedures running on top of Unix systems.
(define (halts? proc) #t)
;;; Low-level init absolutely required for any scsh program.
(define (init-scsh-hindbrain relink-ff?)
(if #t (error "call to init-scsh-hindbrain which is dead"))
; (if relink-ff? (lookup-all-externals)) ; Re-link C calls.
; (init-fdports!)
; (%install-unix-scsh-handlers)
)
;;; Some globals:
(define home-directory "")
(define exec-path-list)
(define (init-scsh-vars quietly?)
(set! home-directory
(cond ((getenv "HOME") => ensure-file-name-is-nondirectory)
;; loosing at this point would be really bad, so some
;; paranoia comes in order
(else (call-with-current-continuation
(lambda (k)
(with-handler
(lambda (condition more)
(cond ((not quietly?)
(display "Starting up with no home directory ($HOME).")
(newline)))
(k "/"))
(lambda ()
(user-info:home-dir (user-info (user-uid))))))))))
(set! exec-path-list
(make-preserved-thread-fluid
(cond ((getenv "PATH") => split-colon-list)
(else (if (not quietly?)
(warn "Starting up with no path ($PATH)."))
'())))))
; SIGTSTP blows s48 away. ???
(define (suspend) (signal-process 0 signal/stop))
|