/usr/share/scsh-0.6/scsh/procobj.scm is in scsh-common-0.6 0.6.7-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | ;;; Unix waitt & process objects for scsh
;;; Copyright (c) 1993, 1994, 1995 by Olin Shivers.
;;; This is a GC'd abstraction for Unix process id's.
; ;; The problem with Unix pids is (a) they clutter up the kernel
;;; process table until you wait(2) them, and (b) you can only
;;; wait(2) them once. Scsh's process objects are similar, but
;;; allow the storage to be allocated in the scsh address space,
;;; and out of the kernel process table, and they can be waited on
;;; multiple times.
;;; Process objects
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define-record proc ; A process object
pid ; Proc's pid.
(finished? #f) ; Running, stopped, done
(status (make-placeholder)) ; The cached exit status of the process
(zombie #t) ; Misnomer. Whether or not the process has
; (not) been waited on.
;; Make proc objects print like #{proc 2318}.
((disclose p) (list "proc" (proc:pid p) (proc:finished? p))))
;; Unfortunately there is no way to specify the name of the constructor-
;; function in Olins define-record macro, so I had to do this...
(define (make-procobj pid)
(let ((procobj (make-proc pid)))
(add-finalizer! procobj procobj-finalizer)
procobj))
;; Weak pointer tables. Much more efficient than populations.
;; Maps pids to processes. Unexited processes are strong pointers, exited
;; procs are weak pointers (to allow gc'ing).
;;
;; JMG: why ever unexited processes were strong pointer, this won't work
;; with (autoreap-policy 'late), since then gc waits for the strong pointer
;; until it wait(2)s and the strong pointer waits for wait(2) which is
;; nothing but a deadlock
(define process-table (make-integer-table))
(make-reinitializer (lambda ()
(set! process-table (make-integer-table))))
(define process-table-lock (make-lock))
(define (process-table-ref n)
(with-lock process-table-lock
(lambda ()
(weak-table-ref process-table n))))
(define (process-table-set! n val)
(with-lock process-table-lock
(lambda ()
(weak-table-set! process-table n val))))
(define (process-table-delete-procobj! procobj)
(with-lock process-table-lock
(lambda ()
(if (eq? (weak-table-ref process-table (proc:pid procobj))
procobj)
(weak-table-set! process-table (proc:pid procobj) #f)))))
(define (maybe-pid->proc pid)
(process-table-ref pid))
(define (pid->proc pid . maybe-probe?)
(let ((probe? (:optional maybe-probe? #f)))
(or (maybe-pid->proc pid)
(case probe?
((#f) (error "Pid has no corresponding process object" pid))
((create) (new-child-proc pid))
(else #f)))))
;;; Coerce pids and procs to procs.
(define (->proc proc/pid)
(cond ((proc? proc/pid) proc/pid)
((and (integer? proc/pid) (>= proc/pid 0))
(pid->proc proc/pid 'create))
(else (error "Illegal parameter" ->proc proc/pid))))
;;; Is X a pid or a proc?
(define (pid/proc? x) (or (proc? x) (and (integer? x) (>= x 0))))
;;; Process reaping
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; "Reaping" a process means using wait(2) to move its exit status from the
;;; kernel's process table into scsh, thus cleaning up the kernel's process
;;; table and saving the value in a gc'd data structure, where it can be
;;; referenced multiple times.
;;;
;;; - Stopped processes are never reaped, only dead ones. (May change -df)
;;;
;;; - Stopped process status codes are never cached in proc objects,
;;; only status codes for dead processes. So you can wait for a
;;; dead process multiple times, but only once per process-stop.
;;; (May change -df)
;;;
;;; - Unfortunately, reaping a process loses the information specifying its
;;; process group, so if a process is reaped into scsh, it cannot be
;;; waited for by WAIT-PROCESS-GROUP. Notice that only dead processes are
;;; reaped, not suspended ones. Programs almost never use WAIT-PROCESS-GROUP
;;; to wait for dead processes, so this is not likely to be a problem. If
;;; it is, turn autoreaping off with (autoreap-policy #f).
;;; (This never worked right, and it might be wiped out completely -fd)
;;;
;;; - Reaping can be encouraged by calling (REAP-ZOMBIES).
;;; (autoreap-policy [new-policy])
;;; Watch this area
;;; I'm really tired of opening everything (i.e. events) in scsh-level-0
;;; this is here until someone (Olin !!!) cleans up the scsh modules
(define next-sigevent (structure-ref sigevents next-sigevent))
(define most-recent-sigevent (structure-ref sigevents most-recent-sigevent))
(define *autoreap-policy* #f) ; Not exported from this module.
(define (autoreap-policy . maybe-policy)
(let ((old-policy *autoreap-policy*))
(if (pair? maybe-policy)
(let ((new-policy (car maybe-policy)))
(cond ((pair? (cdr maybe-policy))
(error "Too many args to autoreap-policy" maybe-policy))
((not (memq new-policy '(early late #f)))
(error "Illegal autoreap policy." new-policy))
(else (set! *autoreap-policy* new-policy)
(cond ((eq? new-policy 'early)
(set-sigchld-handler! early-sigchld-handler)
(set-post/gc-handler! reap-need-reaping))
((eq? new-policy 'late)
(set-sigchld-handler! late-sigchld-handler)
(set-post/gc-handler! reap-need-reaping))
(else
(set-sigchld-handler! noauto-sigchld-handler)
(set-post/gc-handler!
(lambda ()
#f))))))))
old-policy))
;;; we don't register the post/gc-handler until the first police change
;;; --- this made sense, but why?
(define *post/gc-handler*
(lambda () (error "*post/gc-handler* was not defined")))
(define (really-set-post/gc-handler! handler)
(set! *post/gc-handler* handler))
(define (start-set-post/gc-handler! handler)
(set! set-post/gc-handler! really-set-post/gc-handler!)
(set-post/gc-handler! handler)
(spawn (lambda ()
(let lp ((event (most-recent-sigevent)))
(let ((next-event (next-sigevent event interrupt/post-gc)))
(*post/gc-handler*)
(lp next-event))))
'*post/gc-handler*-thread))
(define set-post/gc-handler! start-set-post/gc-handler!)
(define (*sigchld-handler*) (early-sigchld-handler))
(define (set-sigchld-handler! handler)
(set! *sigchld-handler* handler))
(define (with-autoreaping thunk)
(set! *autoreap-policy* 'early)
(run-as-long-as
(lambda ()
(let lp ((event (most-recent-sigevent)))
(let ((next-event (next-sigevent event interrupt/chld)))
(*sigchld-handler*)
(lp next-event))))
thunk
(structure-ref threads-internal spawn-on-root)
'auto-reaping))
;;; This list contains pids whose proc-obj were gc'd before they died
;;; We try to reap them after every gc and maybe on every SIGCHLD
(define need-reaping '())
(define need-reaping-lock (make-lock))
(define (need-reaping-add! pid)
(obtain-lock need-reaping-lock)
(set! need-reaping (cons pid need-reaping))
(release-lock need-reaping-lock))
(define (need-reaping-remove! pid)
(obtain-lock need-reaping-lock)
(set! need-reaping (delete pid need-reaping))
(release-lock need-reaping-lock))
(define (reap-need-reaping)
(obtain-lock need-reaping-lock)
(set! need-reaping (filter (lambda (pid) (not (reap-pid pid))) need-reaping))
(release-lock need-reaping-lock))
;;; reap this special pid
;;; return status or #f
(define (reap-pid pid)
(with-lock
wait-lock
(lambda ()
(let ((status (atomic-wait pid wait/poll)))
(if status
(waited-by-reap pid status))
status))))
;;; Handler for SIGCHLD according policy
(define (late-sigchld-handler) #f)
(define (early-sigchld-handler)
(reap-zombies))
(define (noauto-sigchld-handler) #f)
;;; Finalizer for procobjs
;;;
(define (procobj-finalizer procobj)
(process-table-delete-procobj! procobj)
(if (not (proc:finished? procobj))
(need-reaping-add! (proc:pid procobj))))
;;; (reap-zombies) => bool
;;; Move any zombies from the kernel process table into scsh.
;;; Return true if no more outstanding children; #f if some still live.
(define (reap-zombies)
(let lp ()
(obtain-lock wait-lock)
(receive (pid status)
(%wait-any (bitwise-ior wait/poll wait/stopped-children))
(if (and pid (not (status:stop-sig status)))
(begin (waited-by-reap pid status)
(release-lock wait-lock)
; (format (current-error-port)
; "Reaping ~d[~d]~%" pid status)
(lp))
(begin
(release-lock wait-lock)
status)))))
(define (new-child-proc pid)
(let ((proc (make-procobj pid)))
(process-table-set! pid proc)
proc))
;;; (WAIT proc/pid [flags])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (wait proc/pid [flags]) => status or #f
;;;
;;; FLAGS (default 0) is the exclusive or of the following:
;;; wait/poll
;;; Return #f immediately if there are no
;;; unwaited children available.
;;; wait/stopped-children
;;; Report on suspended children as well.
;;;
;;; If the process hasn't terminated (or suspended, if wait/stopped
;;; is set) and wait/poll is set, return #f.
;;; (I'm working on the flags -df)
;;; JMG: We have to be careful about wait/poll and autoreap-policy:
;;; If it was 'late at anytime, we may missed the exit of pid/proc
;;; So we cannot just block and hope reap-zombies will give us the status
;;; With this lock, we ensure that only one thread may call
;;; really-wait for a given pid and manipulates the associated process object
(define wait-lock (make-lock))
(define (wait pid/proc . maybe-flags)
(let* ((flags (:optional maybe-flags 0))
(proc (->proc pid/proc))
(win (lambda (status)
(waited-by-wait proc status)
status)))
;; save the event before we check for finished
(let ((pre-event (most-recent-sigevent)))
(with-lock
wait-lock
(lambda ()
(cond ((atomic-wait proc (bitwise-ior flags wait/poll)) => win)
((zero? (bitwise-and flags wait/poll))
;; we have to block and hence use the event system
(let lp ((pre-event pre-event))
(cond ((atomic-wait proc (bitwise-ior flags wait/poll))
=> win)
(else
(release-lock wait-lock)
(let ((next-event (next-sigevent pre-event interrupt/chld)))
(obtain-lock wait-lock)
(lp next-event))))))
(else #f)))))))
;;; -> process-object proc status/#f
(define (atomic-wait proc flags)
(cond ((proc:finished? proc)
(placeholder-value (proc:status proc)))
(else (really-wait (proc:pid proc) (bitwise-ior flags wait/poll)))))
;;; This one is used, to wait on a positive pid
;;; We NEVER do a blocking wait syscall
(define (really-wait pid flags)
(if (zero? (bitwise-and flags wait/poll))
(error "really-wait without wait/poll"))
(if (< pid 1)
(error "really-wait on nonpos pid" pid))
(receive (return_pid status)
(%wait-pid pid flags)
(cond ((zero? return_pid) #f) ; failed wait/poll
((= pid return_pid) status) ; made it
(else (error "mismatch in really-wait"
return_pid pid)))))
;;; All you have to do, if pid was reaped
;;; proc_obj is maybe no longer alive
(define (waited-by-reap pid status)
(cond ((maybe-pid->proc pid) =>
(lambda (proc)
(obituary proc status)
(push-reaped-proc proc)
))))
;;; All you have to do, if a wait on proc was successful
(define (waited-by-wait proc status)
(if (not (status:stop-sig status))
(begin
(obituary proc status)
(mark-proc-waited! proc))))
;;; we know from somewhere that proc is dead
(define (obituary proc status)
(if (not (proc? proc))
(error "obituary: proc was not a procobj" proc))
(need-reaping-remove! (proc:pid proc)) ; in case it started during 'late
(placeholder-set! (proc:status proc) status)
(set-proc:finished? proc #t))
;;; (wait-any [flags]) => [proc status]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; [#f #f] => non-blocking, none ready.
;;; [#f #t] => no more.
(define (wait-any . maybe-flags)
(let ((flags (:optional maybe-flags 0)))
(if (zero? (bitwise-and flags wait/poll))
(begin
(receive (pid status)
;; before we maybe block via placeholder-value
;; do a really-wait-any for the ones, missed by 'late
(really-wait-any (bitwise-ior flags wait/poll))
(if (not pid)
(let ((win (get-reaped-proc!)))
(values win (placeholder-value (proc:status win))))
(values pid status))))
;; The rest of this is quite crude and can be safely ignored. -df
;; JMG: wait-any is crude and so its implementation
;; It got even worse, now that we have this fu*$#%g 'late
(if (maybe-obtain-lock reaped-proc-pop-lock)
(if (eq? reaped-proc-head reaped-proc-tail)
;;; due to 'late we cannot be sure, that they all have been
;;; reaped
(begin
(release-lock reaped-proc-pop-lock)
(really-wait-any flags))
(let* ((retnode (placeholder-value reaped-proc-head))
(retval (weak-pointer-ref (reaped-proc:proc retnode))))
(set! reaped-proc-head (reaped-proc:next retnode))
(release-lock reaped-proc-pop-lock)
(if retval
(values retval (placeholder-value (proc:status retval)))
(values #f #f))))
(values #f #f)))))
(define (really-wait-any flags)
(if (zero? (bitwise-and flags wait/poll))
(error "real-wait-any without wait/poll" flags))
(with-lock
wait-lock
(lambda ()
(receive (pid status)
(%wait-any flags)
(if pid
(let ((proc (new-child-proc pid)))
(waited-by-wait proc status)
(values proc status))
(values #f #f))))))
;;; (wait-process-group [proc-group flags]) => [proc status]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; [#f #f] => non-blocking, none ready.
;;; [#f #t] => no more.
;;;
;;;
;;; If you are doing process-group waits, you do *not* want to use
;;; early autoreaping, since the reaper loses process-group information.
;;; (I'm working on it -df)
(define (wait-process-group . args)
(let-optionals args ((proc-group 0) (flags 0))
(let ((proc-group (cond ((integer? proc-group) proc-group)
((proc? proc-group) (proc:pid proc-group))
(else (error "Illegal argument" wait-process-group
proc-group))))
(win (lambda (pid status)
(let ((proc (pid->proc pid 'create)))
(if proc (waited-by-wait proc status))
(values proc status)))))
;; save the event before we check for finished
(let ((pre-event (most-recent-sigevent)))
(receive (pid status)
(%wait-process-group proc-group (bitwise-ior flags wait/poll))
(cond (pid
(win pid status))
((zero? (bitwise-and flags wait/poll))
;; we have to block and hence use the event system
(let lp ((pre-event pre-event))
(receive (pid status)
(%wait-process-group proc-group (bitwise-ior flags wait/poll))
(if pid
(win pid status)
(lp (next-sigevent pre-event interrupt/chld))))))
(else
(values #f status))))))))
;;; (%wait-any flags) (%wait-pid pid flags) (%wait-process-group pgrp flags)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Direct interfaces to waitpid(2) call. As opposed to %wait-pid this
;;; waits on any child (using -1) and gets along if no child is alive
;;; at all (i.e. catches errno/child).
;;; [#f #f] means no processes ready on a non-blocking wait.
;;; [#f #t] means no waitable process on wait-any.
(define (%wait-any flags)
(with-errno-handler
((errno packet)
((errno/child)
(values #f #t)))
(receive (pid status)
(%wait-pid -1 flags)
(if (zero? pid)
(values #f #f) ; None ready.
(values pid status)))))
(define (%wait-process-group pgrp flags)
(if (zero? (bitwise-and flags wait/poll))
(error "really-wait without wait/poll"))
(with-errno-handler
((errno packet)
((errno/child)
(values #f #t)))
(receive (pid status)
(%wait-pid (- pgrp) flags)
(if (zero? pid)
(values #f #f) ; None ready.
(values pid status)))))
;;; Reaped process table
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; We keep track of procs that have been reaped but not yet waited on by
;;; the user's code. These proces are eligible for return by WAIT-ANY.
;;; We keep track of these so that WAIT-ANY will hand them out exactly once.
;;; What this code needs is traditional condition variables.
;;; This is (so far) reliable in the following ways:
;;; 1. No process will be returned twice by wait-any, ever. Even two different
;;; wait-anys.
;;; 2. Being un-reaped will not prevent garbage collection.
;;; (actually, there seems to be a problem with this -df)
;;; 3. If a process is waited on, or is gc'ed, wait-any will do the Right
;;; Thing.
;;; And UNreliable in the following ways:
;;; 1. If a wait and a wait-any are blocking simultaneously, the wait will
;;; always return the object. However, whether the wait-any will or not
;;; is based on racing semaphores.
;;; 2. While processes can still be garbage collected, the nodes on the
;;; wait-any list will not, and if the program never wait-any's, the queue
;;; will snake around, eating up memory like pac-man with the munchies.
;;; 3. The process may be garbage collected before wait-any gets to it, and
;;; that's just tough.
;;; -df
(define-record reaped-proc
proc
(next (make-placeholder))
prev)
(define reaped-proc-tail (make-reaped-proc (make-weak-pointer #f) 'head))
(define reaped-proc-head reaped-proc-tail)
(define reaped-proc-push-lock (make-lock))
(define reaped-proc-pop-lock (make-lock)) ;;; Zippy sez: pop lock!
(define (push-reaped-proc proc)
(obtain-lock reaped-proc-push-lock)
(let ((push-me (make-reaped-proc (make-weak-pointer proc) reaped-proc-tail)))
(placeholder-set! (reaped-proc:next reaped-proc-tail) push-me)
(add-finalizer! proc (make-reaped-proc-finalizer push-me))
(set! reaped-proc-tail push-me))
(release-lock reaped-proc-push-lock))
(define (make-reaped-proc-finalizer push-me)
(lambda ignore
(remove-reaped-proc push-me)))
(define (remove-reaped-proc reaped-proc)
(spawn (lambda () ;This is blocking, so should run by itself
(set-reaped-proc:prev
(placeholder-value (reaped-proc:next reaped-proc))
(reaped-proc:prev reaped-proc))
(set-reaped-proc:next
(reaped-proc:prev reaped-proc)
(reaped-proc:next reaped-proc)))
"reaped-proc-removing-thread"))
(define (pop-reaped-proc)
(obtain-lock reaped-proc-pop-lock) ;;; pop lock pop lock pop lock!
(let ((pop-me (placeholder-value (reaped-proc:next reaped-proc-head))))
(set! reaped-proc-head pop-me)
(release-lock reaped-proc-pop-lock)
(weak-pointer-ref (reaped-proc:proc pop-me))))
;;; Pop one off the list.
(define (get-reaped-proc!)
(let loop ((try (pop-reaped-proc)))
(if (and try (proc:zombie try))
try
(loop (pop-reaped-proc)))))
;;; PROC no longer eligible to be in the list. Delete it.
(define (mark-proc-waited! proc)
(set-proc:zombie proc #f))
|