/usr/share/scsh-0.6/scsh/awk.scm is in scsh-common-0.6 0.6.7-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 | ;;; An awk loop, after the design of David Albertz and Olin Shivers.
;;; Copyright (c) 1994 by Olin Shivers. See file COPYING.
;;; This uses the new RX SRE syntax. Defines a Clinger-Rees expander for
;;; the old, pre-SRE syntax AWK, and one for the new SRE-syntax AWK.
;;; Imports:
;;; - Requires RECEIVE from RECEIVING package.
;;; - Would require DESTRUCTURE from DESTRUCTURING package, but it appears
;;; to be broken, so we hack it w/cars and cdrs.
;;; - Requires STRING-MATCH and STRING-MATCH? from RE-EXPORTS package.
;;; - Requires regexp manipulation stuff from SRE-SYNTAX-TOOLS
;;; - Requires ERROR from ERROR-PACKAGE.
;;; - Requires ANY and FILTER frm SCSH-UTILITIES.
;;;
;;; Needs error-package receiving sre-syntax-tools scsh-utilities
;;;
;;; Exports:
;;; (expand-awk exp r c) Clinger-Rees macro expander, new syntax
;;; (expand-awk/obsolete exp r c) Clinger-Rees macro expander, old syntax
;;;
;;; next-range next-:range These four functions are used in the
;;; next-range: next-:range: code output by the expander.
;;; Examples:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; ;;; Filter -- pass only lines containing my name.
;;; (awk (read-line) (line) ()
;;; ("Olin" (display line) (newline)))
;;;
;;; ;;; Count the number of non-comment lines of code in my Scheme source.
;;; (awk (read-line) (line) ((nlines 0))
;;; ((: bos (* white) ";") nlines) ; A comment line.
;;; (else (+ nlines 1))) ; Not a comment line.
;;;
;;; ;;; Read numbers, counting the evens and odds,
;;; ;;; and printing out sign information.
;;; (awk (read) (val) ((evens 0) (odds 0))
;;; ((zero? val) (display "zero ") (values evens odds))
;;; ((> val 0) (display "pos ") (values evens odds))
;;; (else (display "neg ") (values evens odds))
;;;
;;; ((even? val) (values (+ evens 1) odds))
;;; (else (values evens (+ odds 1))))
;;; Syntax:
;;; (awk <reader-exp> <rec&field-vars> [<rec-counter>] <state-var-inits>
;;; <clause1>
;;; .
;;; .
;;; <clausen>)
;;;
;;; <clause> ::= (ELSE body ...)
;;; | (:RANGE test1 test2 body ...) ; RANGE :RANGE RANGE: :RANGE:
;;; | (AFTER body ...)
;;; | (test => proc)
;;; | (test ==> vars body ...)
;;; | (test body ...)
;;;
;;; test ::= integer | sre | (WHEN exp) | exp
;;; (sre/exp ambiguities resolved in favor of SRE)
;;; This macro is written using Clinger/Rees explicit-renaming low-level
;;; macros. So it is pretty ugly. It takes a little care to generate
;;; cosmetically attractive code, for two reasons:
;;; - It makes it easier for humans to examine the expanded code.
;;; - It helps low-tech compilers compile the code well. Some of the
;;; optimisations the expander implements would be hard for even a
;;; sophisticated compiler to perform automatically. For example, it doesn't
;;; introduce a record-counter variable unless required to do so. It's a
;;; non-trivial analysis to spot and remove an unused loop variable (I show
;;; how to do so in my dissertation; I don't know of any production
;;; compilers that do it). Same remarks apply to the variable that tracks
;;; the state bit for ELSE clauses -- we don't introduce one unless the loop
;;; actually contains ELSE clauses. The lesson here is that loop macros
;;; by definition have information about the data-flow of their bodies that
;;; compilers have to work hard to spot by analysis of their expanded forms.
;;; The macro can exploit this knowledge at the high-level.
;;;
;;; Interesting research issue: Could one design a macro system that would
;;; allow the macro to communicate this knowledge to the compiler? Could
;;; the macro's assertions be verified by the compiler, as well?
;;;
;;; In any even, there's a down-side to this cosmetic clean-up:
;;; all of this optimisation definitely makes the macro a lot more hairy
;;; than it would otherwise be. The expanded code is easier to read; the
;;; macro itself is harder to read.
;;; Simple syntax-hacking utilities.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Return a form that produces multiple values.
;;; () => (values)
;;; (v) => v
;;; (v1 v2 ...) => (values v1 v2 ...)
(define (mult-values vals rename)
(if (or (not (pair? vals)) (pair? (cdr vals)))
`(,(rename 'values) . ,vals)
(car vals)))
;;; () => ()
;;; (v1) => (v1)
;;; (v1 v2) => ((VALUES v1 v2))
;;;
;;; Return an expression list, not an expression. (Either 1 or 0 expressions.)
;;; Use this one when we don't care what happens if we are returning 0 vals.
;;; It pairs up with MV-LET below, which ignores the number of values
;;; returned to it when expecting zero values.
(define (sloppy-mult-values vals rename)
(if (and (pair? vals) (pair? (cdr vals)))
`((,(rename 'values) . ,vals))
vals))
;; DEBLOCK maps an expression to a list of expressions, flattening BEGINS.
;; (deblock '(begin (begin 3 4) 5 6 (begin 7 8))) => (3 4 5 6 7 8)
(define (deblock exp rename compare)
(let ((%block (rename 'begin)))
(let deblock1 ((exp exp))
(if (and (pair? exp)
; (name? (car exp))
(compare %block (car exp)))
(apply append (map deblock1 (cdr exp)))
(list exp)))))
;; BLOCKIFY maps an expression list to a BEGIN form, flattening nested BEGINS.
;; (blockify '( (begin 3 4) 5 (begin 6) )) => (begin 3 4 5 6)
(define (blockify exps rename compare)
(let ((new-exps (apply append
(map (lambda (exp) (deblock exp rename compare))
exps))))
(cond ((null? new-exps)
(error "Empty BEGIN" exps))
((null? (cdr new-exps)) ; (begin exp) => exp
(car new-exps))
(else `(,(rename 'begin) . ,new-exps)))))
(define (mv-let r c vars exp body)
(if (pair? vars)
(if (pair? (cdr vars))
`(,(r 'receive) ,vars ,exp . ,(deblock body r c))
`(,(r 'let) ((,(car vars) ,exp)) . ,(deblock body r c)))
(blockify (list exp body) r c)))
;;; Is X one of the keywords {range, :range, range:, :range:}?
(define (range-keyword? x rename compare)
(or (compare x (rename 'range))
(compare x (rename ':range))
(compare x (rename 'range:))
(compare x (rename ':range:))))
;;; Apply PRED to every element of VALS. Collect & return all the non-#f
;;; values produced.
(define (all-trues pred vals)
(let lp ((vals vals) (ans '()))
(if (pair? vals)
(lp (cdr vals)
(cond ((pred (car vals)) => (lambda (elt) (cons elt ans)))
(else ans)))
(reverse ans))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; If STRING-REGEXPS? is true, we use the old, obsolete syntax, where
;;; a test form that is a string, such as "shivers|bdc", is treated as
;;; a regular expression in the Posix string syntax. Otherwise, we use the
;;; new SRE syntax, where strings are treated as SRE constants.
(define (expand-awk exp r c) (really-expand-awk exp r c #f))
(define (expand-awk/obsolete exp r c) (really-expand-awk exp r c #t))
(define (really-expand-awk exp r c string-regexps?)
(let* ((%lambda (r 'lambda)) ; Bind a mess of keywords.
(%let (r 'let))
(%if (r 'if))
(%eof-object? (r 'eof-object?))
(%after (r 'after))
(%else (r 'else))
(%+ (r '+))
(%rx (r 'rx))
(gensym (let ((i 0))
(lambda (s)
(set! i (+ i 1))
(string->symbol (string-append s (number->string i))))))
;; Is the clause a range-test clause?
(range? (lambda (clause) (range-keyword? (car clause) r c)))
;; Make some standard vars we'll need.
(lp-var (r 'lp))
(reader (r 'read-rec))
;; If I throw in an abort-loop or abort-iteration macro,
;; I'll also need to make two vars for the continuations.
;; Rip the form apart.
(reader-exp (cadr exp))
;; Replace #F's with gensym'd variables in the record/field vars.
(rec/field-vars (map (lambda (v) (or v (r (gensym "anon-rfval"))))
(caddr exp)))
(rec-var (car rec/field-vars)) ; The var bound to the record.
(rest (cdddr exp))) ; Stuff after the rec&field-vars.
(receive (rec-counter state-inits clauses) ; Parse out the last
(if (list? (car rest)) ; three parts of the
(values #f (car rest) (cdr rest)) ; form.
(values (car rest) (cadr rest) (cddr rest)))
;; If we are doing the old, obsolete Posix-string syntax, map
;; the clause tests over to the new syntax.
(let* ((clauses (if string-regexps?
(map (lambda (clause)
(hack-clause-for-posix-string-syntax clause r c))
clauses)
clauses))
;; Some analysis: what have we got?
;; Range clauses, else clauses, line num tests,...
(recnum-tests? ; Do any of the clauses test the record
(any (lambda (clause) ; count? (I.e., any integer tests?)
(let ((test (car clause)))
(or (integer? test)
(and (range? clause)
(or (integer? (cadr clause))
(integer? (caddr clause)))))))
clauses))
;; If any ELSE clauses, bind this to the var in which we
;; will keep the else state, otherwise #f.
(else-var (and (any (lambda (clause)
(c (car clause) %else))
clauses)
(r 'else-state)))
;; We compile all of the *static* regexp patterns into regexp
;; data structures outside the AWK loop. So we need to
;; make a list of all the regexps that are used as tests.
(patterns (apply append
(map (lambda (clause)
(let ((test (car clause)))
(cond ((sre-form? test r c) (list test))
((range? clause)
(let ((t1 (cadr clause))
(t2 (caddr clause)))
(append (if (sre-form? t1 r c)
(list t1)
'())
(if (sre-form? t2 r c)
(list t2)
'()))))
(else '()))))
clauses)))
;; Gratuitous optimisation: uniquify the patterns.
(patterns (let recur ((pats patterns))
(if (pair? pats)
(let ((pat (car pats))
(ans (recur (cdr pats))))
(if (member pat ans) ans (cons pat ans)))
'())))
(pats-static? (map (lambda (sre)
(static-regexp? (parse-sre sre r c)))
patterns))
;; An alist matching each pattern with the exp that refers
;; to it -- a var if it's static, a Scheme (RX ...) exp otw.
(pats/refs (map (lambda (pat static?)
(cons pat
(if static?
(r (gensym "re."))
`(,%rx ,pat))))
patterns pats-static?))
;; A LET-list binding the regexp vars to their
;; compiled static regexps.
(regexp-inits (apply append
(map (lambda (p/r static?)
(if static?
`((,(cdr p/r) (,%rx ,(car p/r))))
'()))
pats/refs
pats-static?)))
;; Make a list of state vars for the range clauses.
;; For each range clause, we need a boolean var to track
;; whether or not the range is activated.
(range-vars (all-trues (lambda (clause)
(and (range? clause)
(r (gensym "r."))))
clauses))
(svars (map car state-inits)) ; The user's state variables.
;; If the user didn't declare a record-counter var,
;; but he is testing line numbers (with integer test forms),
;; go ahead and generate a record-counter of our own.
(rec-counter (or rec-counter
(and recnum-tests?
(r (gensym "record-count.")))))
;; Generate the loop vars & their inits.
;; These are: the record counter, the range vars,
;; and the user's state vars.
;; All of these different sets are optional.
(loop-vars (append (if rec-counter (list rec-counter) '())
range-vars
svars))
(loop-var-init-values (append (if rec-counter '(0) '())
(map (lambda (x) #f) range-vars)
(map cadr state-inits)))
;; A LET list initialising all the loop vars.
(loop-var-init (map list loop-vars loop-var-init-values))
;; Build the clause that computes the loop's return value.
;; If the user gave an AFTER clause, use its body. Otherwise,
;; it's (values ,@svars).
(after-clause? (lambda (clause) (c (car clause) %after)))
(after-exp (let ((after-clauses (filter after-clause? clauses)))
(cond ((null? after-clauses)
(mult-values svars r))
((null? (cdr after-clauses))
(blockify (cdar after-clauses) r c))
(else (error "Multiple AFTER clauses in awk body."
after-clauses exp)))))
(loop-body (awk-loop-body lp-var rec-var else-var
rec-counter range-vars svars
clauses pats/refs r c))
;; Variables that have to be updated per-iteration, as a LET list.
;; Note that we are careful not to increment the record counter
;; until after we've verified the new record isn't EOF.
(per-iteration-updates
(append (if else-var `((,else-var #t)) '()) ; Else state.
(if rec-counter ; Record count.
`((,rec-counter (,%+ ,rec-counter 1)))
'())))
(loop-body (if (pair? per-iteration-updates)
`(,%let ,per-iteration-updates
. ,(deblock loop-body r c))
loop-body)))
`(,%let ((,reader (,%lambda () ,reader-exp))
. ,regexp-inits)
(,%let ,lp-var ,loop-var-init
,(mv-let r c rec/field-vars `(,reader)
`(,%if (,%eof-object? ,rec-var) ,after-exp
,loop-body))))))))
;;; This maps a clause in the old, obsolete syntax over to a clause
;;; in the new, SRE syntax.
(define (hack-clause-for-posix-string-syntax clause r c)
(let ((hack-simple-test (lambda (test)
(cond ((string? test)
`(,(r 'posix-string) ,test))
((integer? test) test)
(else `(,(r 'when) ,test)))))
(test (car clause)))
(cond ((range-keyword? test r c)
`(,test ,(hack-simple-test (cadr clause))
,(hack-simple-test (caddr clause))
. ,(cdddr clause)))
((or (c test (r 'else))
(c test (r 'after)))
clause)
(else `(,(hack-simple-test test) . ,(cdr clause))))))
;;; Expand into the body of the awk loop -- the code that tests & executes
;;; each clause, and then jumps to the top of the loop.
(define (awk-loop-body lp-var rec-var else-var rec-counter
range-vars svars clauses pats/refs r c)
(let ((clause-vars (if else-var (cons else-var svars) svars))
(loop-vars (append (if rec-counter (list rec-counter) '())
range-vars
svars))
(range-clause? (lambda (clause) (range-keyword? (car clause) r c)))
(%after (r 'after))
(%else (r 'else)))
(let expand ((clauses clauses) (range-vars range-vars))
(if (pair? clauses)
(let* ((clause (car clauses))
(test (car clause)))
(cond ((range-keyword? test r c)
(let ((tail (expand (cdr clauses) (cdr range-vars))))
(expand-range-clause clause tail (car range-vars)
rec-var else-var rec-counter svars
pats/refs
r c)))
((c test %after) ; An AFTER clause. Skip it.
(expand (cdr clauses) range-vars))
((c test %else) ; An ELSE clause.
(let ((tail (expand (cdr clauses) range-vars)))
(expand-else-clause clause tail else-var svars r c)))
(else ; A simple clause.
(let ((tail (expand (cdr clauses) range-vars)))
(expand-simple-clause clause tail
rec-var else-var rec-counter svars
pats/refs r c)))))
;; No clauses -- just jump to top of loop.
`(,lp-var . ,loop-vars)))))
;;; Make a Scheme expression out of a test form.
;;; Integer i => (= i <record-counter>)
;;; SRE s => (regexp-search <re> <record>)
;;; (when e) => e
;;; Expression e => e
;;;
;;; If FOR-VALUE? is true, then we do regexp searches with REGEXP-SEARCH,
;;; otherwise, we use the cheaper REGEXP-SEARCH?.
(define (->simple-clause-test test-form for-value? rec-var rec-counter pats/refs r c)
(cond ((integer? test-form) `(,(r '=) ,rec-counter ,test-form))
((sre-form? test-form r c)
`(,(r (if for-value? 'regexp-search 'regexp-search?))
,(cdr (assoc test-form pats/refs))
,rec-var))
((and (pair? test-form)
(c (r 'when) (car test-form)))
(if (= 2 (length test-form)) (cadr test-form)
(error "Illegal WHEN test in AWK" test-form)))
(else test-form)))
(define (expand-simple-clause clause tail
rec-var else-var rec-counter svars
pats/refs r c)
(let* ((%let (r 'let))
(%arrow (r '=>))
(%long-arrow (r '==>))
(%if (r 'if))
(%mss (r 'match:substring))
(test (car clause))
(mktest (lambda (for-value?)
(->simple-clause-test test for-value? rec-var
rec-counter pats/refs r c)))
;; Is clause of the form (test => proc)
(arrow? (and (= 3 (length clause))
(c (cadr clause) %arrow)))
;; How about (test ==> (var ...) body ...)?
(long-arrow? (and (< 3 (length clause))
(c (cadr clause) %long-arrow)))
(null-clause-list (null-clause-action else-var svars r))
;; The core form conditionally executes the body.
;; It returns the new else var and the new state vars, if any.
(core (cond (arrow?
(let* ((tv (r 'tval)) ; APP is the actual
(app `(,(caddr clause) ,tv)) ; body: (proc tv).
(test (mktest #t)))
`(,%let ((,tv ,test))
(,%if ,tv
,(clause-action (list app) else-var svars r c)
. ,null-clause-list))))
(long-arrow?
(let* ((tv (r 'tval))
(test (mktest #t))
(bindings ; List of LET bindings for submatches.
(let lp ((i 0)
(vars (caddr clause))
(bindings '()))
(if (pair? vars)
(let ((var (car vars)))
(lp (+ i 1) (cdr vars)
(if var
`((,var (,%mss ,tv ,i)) . ,bindings)
bindings))) ; #F = "don't-care"
bindings))))
`(,%let ((,tv ,test))
(,%if ,tv
(,%let ,bindings ; Bind submatches.
. ,(deblock (clause-action (cdddr clause)
else-var svars
r c)
r c))
. ,null-clause-list))))
(else
`(,%if ,(mktest #f) ,(clause-action (cdr clause)
else-var svars r c)
. ,null-clause-list))))
(loop-vars (if else-var (cons else-var svars) svars)))
;; Do the core computation, update the iteration vars,
;; and then do the tail in the scope of the updated environment.
(core-then-tail loop-vars core tail r c)))
(define (core-then-tail loop-vars core tail r c)
(mv-let r c loop-vars core tail))
(define (expand-range-clause clause tail range-var
rec-var else-var rec-counter svars
pats/refs r c)
(let* ((start-test (cadr clause))
(stop-test (caddr clause))
(body (cdddr clause))
(%receive (r 'receive))
(%if (r 'if))
(%lambda (r 'lambda))
(keyword (car clause)) ; range or :range or range: or :range:
(tester (r (cond ((c keyword (r 'range)) 'next-range)
((c keyword (r ':range)) 'next-:range)
((c keyword (r 'range:)) 'next-range:)
((c keyword (r ':range:)) 'next-:range:)
(else (error "Unrecognised range keyword!" clause)))))
;; Convert the start and stop test forms to code.
(start-test (->simple-clause-test start-test #f rec-var
rec-counter pats/refs r c))
(stop-test (->simple-clause-test stop-test #f rec-var
rec-counter pats/refs r c))
(start-thunk `(,%lambda () ,start-test)) ; ...and thunkate them.
(stop-thunk `(,%lambda () ,stop-test))
(loop-vars (if else-var (cons else-var svars) svars))
(this-rec (r 'this-record?))
(core `(,%if ,this-rec
,(clause-action body else-var svars r c)
. ,(null-clause-action else-var svars r))))
`(,%receive (,this-rec ,range-var)
(,tester ,start-thunk ,stop-thunk ,range-var)
,(core-then-tail loop-vars core tail r c))))
(define (expand-else-clause clause tail else-var svars r c)
(let* ((body (cdr clause))
(tail-exps (deblock tail r c))
(%if (r 'if))
(%let (r 'let))
;; We are hard-wiring the else var to #t after this, so the core
;; expression doesn't need to return it -- just the new values
;; of the user's state vars.
(core `(,%if ,else-var
,(clause-action body #f svars r c)
. ,(sloppy-mult-values svars r))))
(mv-let r c svars core `(,%let ((,else-var #t)) . ,tail-exps))))
;;; BODY is a list of expressions from a loop clause. We want to evaluate it,
;;; under some conditions.
;;; - The body evaluates to multiple values, one for each state variable.
;;; However, if there are no state variables, we want to *ignore* the
;;; values produced by the body, and explicitly return 0 values,
;;; not blow up if the body should happen not to return exactly zero values.
;;; - If we are tracking an else-variable, then the body firing will turn
;;; it off by returning its new #f value.
(define (clause-action body else-var svars r c)
(let ((%values (r 'values))
(%receive (r 'receive)))
(blockify (if (pair? svars)
(if else-var
(if (pair? (cdr svars)) ; state vars and an else var.
`((,%receive ,svars ,(blockify body r c)
(,%values #f . ,svars)))
`((,%values #f ,(blockify body r c)))) ; Gratuitous.
body) ; State vars, but no else var.
;; No state vars -- ignore value computed by BODY forms.
`(,@body . ,(if else-var '(#f) `())))
r c)))
;;; The clause didn't execute. Return the svars unchanged, and also
;;; return the current else-value if we are tracking one. We return
;;; a 0 or 1 element expression list -- if no values are being expected
;;; this returns the empty list.
(define (null-clause-action else-var svars r)
(sloppy-mult-values (if else-var (cons else-var svars) svars)
r))
;;; These procs are for handling RANGE clauses.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; First return value tells whether this line is active;
;;; next value tells whether region is active after this line.
;;;
;;; (:range 0 4) = 0 1 2 3 This is the most useful one.
;;; (range: 0 4) = 1 2 3 4
;;; (range 0 4) = 1 2 3
;;; (:range: 0 4) = 0 1 2 3 4
;;; If these were inlined and the test thunks substituted, it would
;;; be acceptably efficient. But who writes Scheme compilers that good
;;; in the 90's?
(define (next-:range start-test stop-test state)
(let ((new-state (if state
(or (not (stop-test)) ; Stop,
(start-test)) ; but restart.
(and (start-test) ; Start,
(not (stop-test)))))) ; but stop, too.
(values new-state new-state)))
(define (next-range: start-test stop-test state)
(values state
(if state
(or (not (stop-test)) ; Stop,
(start-test)) ; but restart.
(and (start-test) ; Start,
(not (stop-test)))))) ; but stop, too.
(define (next-range start-test stop-test state)
(if state
(let ((not-stop (not (stop-test))))
(values not-stop
(or not-stop ; Stop,
(start-test)))) ; but restart.
(values #f
(and (start-test) ; Start,
(not (stop-test)))))) ; but stop, too.
(define (next-:range: start-test stop-test state)
(if state
(values #t
(or (not (stop-test)) ; Stop
(start-test))) ; but restart.
(let ((start? (start-test)))
(values start?
(and start? ; Start,
(not (stop-test))))))) ; but stop, too.
|