This file is indexed.

/usr/share/pythoncad/PythonCAD/Generic/segjoint.py is in pythoncad 0.1.37.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
#
# Copyright (c) 2002, 2003, 2004, 2005, 2006 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#
#
# code for chamfer and fillet objects
#

from math import hypot, pi, sin, cos, tan, atan2

from PythonCAD.Generic import baseobject
from PythonCAD.Generic import graphicobject
from PythonCAD.Generic import intersections
from PythonCAD.Generic import segment
from PythonCAD.Generic import style
from PythonCAD.Generic import linetype
from PythonCAD.Generic import color
from PythonCAD.Generic import util

_dtr = 180.0/pi

class SegJoint(graphicobject.GraphicObject):
    """A base class for chamfers and fillets

A SegJoint object has the following methods:

validate(): Check the two segments can intersect.
getSegments(): Get the two segments joined by the SegJoint object.
getMovingPoints(): Get the segment points used by the SegJoint object.
getFixedPoints(): Get the segment points not used by the SegJoint object.
update(): Recheck the SegJoint's validity.
getIntersection(): Get the intersection point of the joined segments.
inRegion(): Determine if a SegJoint is located in some area.
    """

    #
    # The default style for the Segjoint class
    #

    __defstyle = None
    
    def __init__(self, s1, s2, st=None, lt=None, col=None, t=None, **kw):
        if not isinstance(s1, segment.Segment):
            raise TypeError, "Invalid first Segment for SegJoint: " + `type(s1)`
        if not isinstance(s2, segment.Segment):
            raise TypeError, "Invalid second Segment for SegJoint: " + `type(s2)`
        _st = st
        if _st is None:
            _st = self.getDefaultStyle()
        super(SegJoint, self).__init__(_st, lt, col, t, **kw)
        self.__s1 = s1
        self.__s2 = s2
        self.__xi = None # segment intersection x-coordinate
        self.__yi = None # segment intersection y-coordinate
        self.__s1_float = None # s1 endpoint at joint
        self.__s1_fixed = None # s1 other endpoint
        self.__s2_float = None # s2 endpoint at joint
        self.__s2_fixed = None # s2 other endpoint
        SegJoint.validate(self)
        s1.storeUser(self)
        # s1.connect('moved', self._moveSegment)
        # s1.connect('change_pending', self._segmentChanging')
        s2.storeUser(self)
        # s2.connect('moved', self._moveSegment)
        # s2.connect('change_pending', self._segmentChanging')

    def getDefaultStyle(cls):
        if cls.__defstyle is None:
            _s = style.Style(u'Segjoint Default Style',
                             linetype.Linetype(u'Solid', None),
                             color.Color(0xffffff),
                             1.0)
            cls.__defstyle = _s
        return cls.__defstyle

    getDefaultStyle = classmethod(getDefaultStyle)

    def setDefaultStyle(cls, s):
        if not isinstance(s, style.Style):
            raise TypeError, "Invalid style: " + `type(s)`
        cls.__defstyle = s

    setDefaultStyle = classmethod(setDefaultStyle)

    def finish(self):
        self.__s1.disconnect(self)
        self.__s1.freeUser(self)
        self.__s2.disconnect(self)
        self.__s2.freeUser(self)
        self.__s1 = self.__s2 = None
        super(SegJoint, self).finish()

    def setStyle(self, s):
        """Set the Style of the SegJoint.

setStyle(s)

This method extends GraphicObject::setStyle().
        """
        _s = s
        if _s is None:
            _s = self.getDefaultStyle()
        super(SegJoint, self).setStyle(_s)

    def validate(self):
        """
            Check that the two segments can intersect.
        """
        _p1, _p2 = self.__s1.getEndpoints()
        _p3, _p4 = self.__s2.getEndpoints()
        if _p1 is _p3 or _p2 is _p3 or _p1 is _p4 or _p2 is _p4:
            raise ValueError, "Shared segment endpoints in s1 and s2"
        _denom = intersections.denom(_p1, _p2, _p3, _p4)
        if abs(_denom) < 1e-10: # parallel
            raise ValueError, "Segments are parallel"
        _rn = intersections.rnum(_p1, _p2, _p3, _p4)
        # print "rn: %g" % _rn
        _sn = intersections.snum(_p1, _p2, _p3, _p4)
        # print "sn: %g" % _sn
        _r = _rn/_denom
        _s = _sn/_denom
        if 0.0 < _r < 1.0 or 0.0 < _s < 1.0:
            raise ValueError, "Invalid segment intersection point"
        _x1, _y1 = _p1.getCoords()
        _x2, _y2 = _p2.getCoords()
        self.__xi = _x1 + _r * (_x2 - _x1) # intersection "x" coordinate
        self.__yi = _y1 + _r * (_y2 - _y1) # intersection "y" coordinate
        # print "xi: %g; yi: %g" % (self.__xi, self.__yi)
        if _r < 1e-10:
            self.__s1_fixed = _p2
            self.__s1_float = _p1
        else:
            self.__s1_fixed = _p1
            self.__s1_float = _p2
        if _s < 1e-10:
            self.__s2_fixed = _p4
            self.__s2_float = _p3
        else:
            self.__s2_fixed = _p3
            self.__s2_float = _p4

    def getSegments(self):
        """Return the two segments joined by the SegJoint.

getSegments()

This method returns a tuple holding the two segments joined
by the SegJoint.
        """
        return self.__s1, self.__s2

    def getMovingPoints(self):
        """Return the joined segment points used by the SegJoint.

getMovingPoints()

This method returns a tuple of two points, the first point is the
used point on the SegJoint initial segment, and the second point
is the used point on the SegJoint secondary segment.
        """
        return self.__s1_float, self.__s2_float

    def getFixedPoints(self):
        """Return the joined segment points not used by the SegJoint.

getFixedPoints()

This method returns a tuple of two points, the first point is the
unused point on the SegJoint initial segment, and the second point
is the unused point on the SegJoint secondary segment.
        """
        return self.__s1_fixed, self.__s2_fixed

    def update(self):
        """Revalidate the SegJoint if it is modified.

update()
        """
        if self.isModified():
            self.validate()
            self.reset()

    def getIntersection(self):
        """Return the intersection points of the SegJoint segments.

getIntersection()

This method returns a tuple of two floats; the first is the
intersection 'x' coordinate, and the second is the 'y' coordinate.
        """
        self.update()
        return self.__xi, self.__yi

    def inRegion(self, xmin, ymin, xmax, ymax, fully=False):
        """Return whether or not a segjoint exists with a region.

isRegion(xmin, ymin, xmax, ymax)

The four arguments define the boundary of an area, and the
function returns True if the joint lies within that area.
Otherwise, the function returns False.
        """
        _xmin = util.get_float(xmin)
        _ymin = util.get_float(ymin)
        _xmax = util.get_float(xmax)
        if _xmax < _xmin:
            raise ValueError, "Illegal values: xmax < xmin"
        _ymax = util.get_float(ymax)
        if _ymax < _ymin:
            raise ValueError, "Illegal values: ymax < ymin"
        util.test_boolean(fully)
        _mp1, _mp2 = self.getMovingPoints()
        _mx1, _my1 = _mp1.getCoords()
        _mx2, _my2 = _mp2.getCoords()
        _fxmin = min(_mx1, _mx2)
        _fymin = min(_my1, _my2)
        _fxmax = max(_mx1, _mx2)
        _fymax = max(_my1, _my2)
        if ((_fxmax < _xmin) or
            (_fymax < _ymin) or
            (_fxmin > _xmax) or
            (_fymin > _ymax)):
            return False
        if fully:
            if ((_fxmin > _xmin) and
                (_fymin > _ymin) and
                (_fxmax < _xmax) and
                (_fymax < _ymax)):
                return True
            return False
        return util.in_region(_mx1, _my1, _mx2, _my2,
                              _xmin, _ymin, _xmax, _ymax)

    def _moveSegment(self, s, *args):
        _alen = len(args)
        if _alen < 4:
            raise ValueError, "Invalid argument count: %d" % _alen
        _x1 = util.get_float(args[0])
        _y1 = util.get_float(args[1])
        _x2 = util.get_float(args[2])
        _y2 = util.get_float(args[3])
        #
        # would it be better to resize the joint or to remove it?
        # we pass for now ...
        #
        if s is self.__s1:
            pass
        elif s is self.__s2:
            pass
        else:
            raise ValueError, "Unexpected segment in moveSegment" + `s`

    def getValues(self):
        """Return values comprising the SegJoint.

getValues()

This method extends the GraphicObject::getValues() method.
        """
        _data = super(SegJoint, self).getValues()
        return _data

class Chamfer(SegJoint):
    """A Chamfer class

A chamfer is a small distance taken off a sharp
corner in a drawing. For the chamfer to be valid,
the chamfer length must be less than the length of
either segment, and the two segments must be extendable
so they could share a common endpoint.

A Chamfer is derived from a SegJoint, so it shares all
the methods and attributes of that class. A Chamfer has
the following additional methods:

{set/get}Length(): Set/Get the Chamfer length.

A Chamfer has the following attributes:

length: The Chamfer length.
    """

    __defstyle = None
    
    __messages = {
        'length_changed' : True,
        'moved' : True
        }
    
    def __init__(self, s1, s2, l, st=None, lt=None, col=None, t=None, **kw):
        super(Chamfer, self).__init__(s1, s2, st, lt, col, t, **kw)
        _len = util.get_float(l)
        if _len < 0.0:
            raise ValueError, "Invalid chamfer length: %g" % _len
        if _len > s1.length():
            raise ValueError, "Chamfer is longer than first Segment."
        if _len > s2.length():
            raise ValueError, "Chamfer is longer than second Segment."
        _xi, _yi = SegJoint.getIntersection(self)
        # print "xi: %g; yi: %g" % (_xi, _yi)
        _sp1, _sp2 = SegJoint.getMovingPoints(self)
        _xp, _yp = _sp1.getCoords()
        _sep = hypot((_yp - _yi), (_xp - _xi))
        if _sep > (_len + 1e-10):
            # print "sep: %g" % _sep
            # print "xp: %g; yp: %g" % (_xp, _yp)
            raise ValueError, "First segment too far from intersection point."
        _xp, _yp = _sp2.getCoords()
        _sep = hypot((_yp - _yi), (_xp - _xi))
        if _sep > (_len + 1e-10):
            # print "sep: %g" % _sep
            # print "xp: %g; yp: %g" % (_xp, _yp)
            raise ValueError, "Second segment too far from intersection point."
        self.__length = _len
        self.ignore('moved')
        try:
            self._moveSegmentPoints(_len)
        finally:
            self.receive('moved')

    def finish(self):
        self.__length = None
        super(Chamfer, self).finish()
        
    def __eq__(self, obj):
        if not isinstance(obj, Chamfer):
            return False
        if obj is self:
            return True
        _s1, _s2 = self.getSegments()
        _os1, _os2 = obj.getSegments()
        return (((_s1 == _os1 and _s2 == _os2) or
                 (_s1 == _os2 and _s2 == _os1)) and
                abs(self.__length - obj.getLength()) < 1e-10)

    def __ne__(self, obj):
        if not isinstance(obj, Chamfer):
            return True
        if obj is self:
            return False
        _s1, _s2 = self.getSegments()
        _os1, _os2 = obj.getSegments()
        return (((_s1 != _os1 or _s2 == _os2) and
                 (_s1 != _os2 or _s2 == _os1)) or
                abs(self.__length - obj.getLength()) > 1e-10)

    def getDefaultStyle(cls):
        if cls.__defstyle is None:
            _s = style.Style(u'Chamfer Default Style',
                             linetype.Linetype(u'Solid', None),
                             color.Color(0xffffff),
                             1.0)
            cls.__defstyle = _s
        return cls.__defstyle

    getDefaultStyle = classmethod(getDefaultStyle)

    def setDefaultStyle(cls, s):
        if not isinstance(s, style.Style):
            raise TypeError, "Invalid style: " + `type(s)`
        cls.__defstyle = s

    setDefaultStyle = classmethod(setDefaultStyle)

    def getValues(self):
        """Return values comprising the Chamfer.

getValues()

This method extends the SegJoint::getValues() method.
        """
        _data = super(Chamfer, self).getValues()
        _data.setValue('type', 'chamfer')
        _s1, _s2 = self.getSegments()
        _data.setValue('s1', _s1.getID())
        _data.setValue('s2', _s2.getID())
        _data.setValue('length', self.__length)
        return _data

    def getLength(self):
        """Return the Chamfer length.

getLength()
        """
        return self.__length

    def setLength(self, l):
        """Set the Chamfer length.

setLength(l)

The length should be a positive float value.
        """
        _s1, _s2 = self.getSegments()        
        if (self.isLocked() or
            _s1.isLocked() or
            _s2.isLocked()):
            raise RuntimeError, "Setting length not allowed - object locked."
        _l = util.get_float(l)
        if _l < 0.0:
            raise ValueError, "Invalid chamfer length: %g" % _l
        if _l > _s1.length():
            raise ValueError, "Chamfer is larger than first Segment."
        if _l > _s2.length():
            raise ValueError, "Chamfer is larger than second Segment."
        _ol = self.__length
        if abs(_l - _ol) > 1e-10:
            self.startChange('length_changed')
            self.__length = _l
            self.endChange('length_changed')
            self.sendMessage('length_changed', _ol)
            self._moveSegmentPoints(_l)
            self.modified()

    length = property(getLength, setLength, None, "Chamfer length.")

    def _moveSegmentPoints(self, dist):
        """Set the Chamfer endpoints at the correct location

moveSegmentPoints(dist)

The argument 'dist' is the chamfer length. This method is private
the the Chamfer object.
        """
        _d = util.get_float(dist)
        #
        # process segment 1
        #
        _xi, _yi = self.getIntersection()
        # print "xi: %g; yi: %g" % (xi, yi)
        _mp1, _mp2 = self.getMovingPoints()
        _sp1, _sp2 = self.getFixedPoints()
        _sx, _sy = _sp1.getCoords()
        _slen = hypot((_yi - _sy), (_xi - _sx))
        # print "slen: %g" % slen
        _newlen = (_slen - _d)/_slen
        # print "newlen: %g" % _newlen
        _xs, _ys = _sp1.getCoords()
        _xm, _ym = _mp1.getCoords()
        _xn = _xs + _newlen * (_xi - _xs)
        _yn = _ys + _newlen * (_yi - _ys)
        # print "xn: %g; yn: %g" % (_xn, _yn)
        _mp1.setCoords(_xn, _yn)
        #
        # process segment 2
        #
        _sx, _sy = _sp2.getCoords()
        _slen = hypot((_yi - _sy), (_xi - _sx))
        # print "slen: %g" % _slen
        _newlen = (_slen - _d)/_slen
        # print "newlen: %g" % _newlen
        _xs, _ys = _sp2.getCoords()
        _xm, _ym = _mp2.getCoords()
        _xn = _xs + _newlen * (_xi - _xs)
        _yn = _ys + _newlen * (_yi - _ys)
        # print "xn: %g; yn: %g" % (_xn, _yn)
        _mp2.setCoords(_xn, _yn)

    def clone(self):
        _s1, _s2 = self.getSegments()
        _l = self.__length
        _s = self.getStyle()
        _ch = Chamfer(_s1, _s2, _l, _s)
        _ch.setColor(self.getColor())
        _ch.setLinetype(self.getLinetype())
        _ch.setThickness(self.getThickness())
        return _ch

    def sendsMessage(self, m):
        if m in Chamfer.__messages:
            return True
        return super(Chamfer, self).sendsMessage(m)

#
# Chamfer history class
#

class ChamferLog(graphicobject.GraphicObjectLog):
    def __init__(self, c):
        if not isinstance(c, Chamfer):
            raise TypeError, "Invalid chamfer: " + `type(c)`
        super(ChamferLog, self).__init__(c)
        c.connect('length_changed', self._lengthChange)

    def _lengthChange(self, c, *args):
        _alen = len(args)
        if _alen < 1:
            raise ValueError, "Invalid argument count: %d" % _alen
        _l = args[0]
        if not isinstance(_l, float):
            raise TypeError, "Unexpected type for length: " + `type(_l)`
        self.saveUndoData('length_changed', _l)

    def execute(self, undo, *args):
        util.test_boolean(undo)
        _alen = len(args)
        if _alen == 0:
            raise ValueError, "No arguments to execute()"
        _c = self.getObject()
        _op = args[0]
        if _op == 'length_changed':
            if len(args) < 2:
                raise ValueError, "Invalid argument count: %d" % _alen
            _l = args[1]
            if not isinstance(_l, float):
                raise TypeError, "Unexpected type for length: " + `type(_l)`
            _sdata = _c.getLength()
            self.ignore(_op)
            try:
                if undo:
                    _c.startUndo()
                    try:
                        _c.setLength(_l)
                    finally:
                        _c.endUndo()
                else:
                    _c.startRedo()
                    try:
                        _c.setLength(_l)
                    finally:
                        _c.endRedo()
            finally:
                self.receive(_op)
            self.saveData(undo, _op, _sdata)
        else:
            super(ChamferLog, self).execute(undo, *args)

class Fillet(SegJoint):
    """
        A fillet is a curved joining of two segments. For a filleted
        joint to be valid, the radius must fall within some distance
        determined by the segment endpoints and segment intersection
        point, and the two segments must be extendable so they can
        share a common endpoint.
        A Fillet is derived from a SegJoint, so it shares the methods
        and attributes of that class. 
    """
    __defstyle = None
    __messages = {'radius_changed' : True,'moved' : True}
    
    def __init__(self, s1, s2, r, st=None, lt=None, col=None, t=None, **kw):
        super(Fillet, self).__init__(s1, s2, st, lt, col, t, **kw)
        _r = util.get_float(r)
        if _r < 0.0:
            raise ValueError, "Invalid fillet radius: %g" % _r
        self._calculateLimits()
        _rmin, _rmax = self.getRadialLimits()
        if _r < _rmin or _r > _rmax:
            raise ValueError, "Invalid radius: %g" % _r
        self.__radius = _r
        self.__center = (0.0, 0.0)
        self._calculateCenter()
        self.ignore('moved')
        try:
            self._moveSegmentPoints()
        finally:
            self.receive('moved')

    def finish(self):
        self.__radius = self.__center = None
        super(Fillet, self).finish()

    def __eq__(self, obj):
        if not isinstance(obj, Fillet):
            return False
        if obj is self:
            return True
        _s1, _s2 = self.getSegments()
        _os1, _os2 = obj.getSegments()
        return (((_s1 == _os1 and _s2 == _os2) or
                 (_s1 == _os2 and _s2 == _os1)) and
                abs(self.__radius - obj.getRadius()) < 1e-10)

    def __ne__(self, obj):
        if not isinstance(obj, Fillet):
            return True
        if obj is self:
            return False
        _s1, _s2 = self.getSegments()
        _os1, _os2 = obj.getSegments()
        return (((_s1 != _os1 or _s2 != _os2) and
                 (_s1 != _os2 or _s2 != _os1)) or
                abs(self.__radius - obj.getRadius()) > 1e-10)

    def getDefaultStyle(cls):
        if cls.__defstyle is None:
            _s = style.Style(u'Fillet Default Style',
                             linetype.Linetype(u'Solid', None),
                             color.Color(0xffffff),
                             1.0)
            cls.__defstyle = _s
        return cls.__defstyle

    getDefaultStyle = classmethod(getDefaultStyle)

    def setDefaultStyle(cls, s):
        if not isinstance(s, style.Style):
            raise TypeError, "Invalid style: " + `type(s)`
        cls.__defstyle = s

    setDefaultStyle = classmethod(setDefaultStyle)

    def getValues(self):
        """Return values comprising the Fillet.

getValues()

This method extends the SegJoint::getValues() method.
        """
        _data = super(Fillet, self).getValues()
        _data.setValue('type', 'fillet')
        _s1, _s2 = self.getSegments()
        _data.setValue('s1', _s1.getID())
        _data.setValue('s2', _s2.getID())
        _data.setValue('radius', self.__radius)
        return _data

    def getRadius(self):
        """Return the Fillet radius.

getRadius()
        """
        return self.__radius

    def setRadius(self, r):
        """Set the Fillet radius.

setRadius(r)

The radius should be a positive float value.
        """
        _s1, _s2 = self.getSegments()        
        if (self.isLocked() or
            _s1.isLocked() or
            _s2.isLocked()):
            raise RuntimeError, "Setting length not allowed - object locked."
        _r = util.get_float(r)
        if _r < 0.0:
            raise ValueError, "Invalid fillet radius: %g" % _r
        self._calculateLimits()
        _rmin, _rmax = self.getRadialLimits()
        if _r < _rmin or _r > _rmax:
            raise ValueError, "Invalid radius: %g" % _r
        _or = self.__radius
        if abs(_r - _or) > 1e-10:
            self.startChange('radius_changed')
            self.__radius = _r
            self.endChange('radius_changed')
            self._calculateCenter()
            self._moveSegmentPoints()
            self.sendMessage('radius_changed', _or)
            self.modified()

    radius = property(getRadius, setRadius, None, "Chamfer radius.")

    def _calculateCenter(self):
        """Find the center point of the radius

_calculateCenter()

This method is private to the Fillet object.
        """
        _r = self.__radius
        _p1, _p3 = self.getMovingPoints()
        _p2, _p4 = self.getFixedPoints()
        _as1 = atan2((_p2.y - _p1.y), (_p2.x - _p1.x)) # _as1 in radians
        _as2 = atan2((_p4.y - _p3.y), (_p4.x - _p3.x)) # _as2 in radians
        if abs(abs(_as1) - pi) < 1e-10:
            if _as1 > 0.0 and _as2 < 0.0:
                _as1 = -pi
            if _as1 < 0.0 and _as2 > 0.0:
                _as1 = pi
        if abs(abs(_as2) - pi) < 1e-10:
            if _as2 > 0.0 and _as2 < 0.0:
                _as2 = -pi
            if _as2 < 0.0 and _as1 > 0.0:
                _as2 = pi
        _acl = (_as1 + _as2)/2.0
        _acc = abs(_as1 - _as2)/2.0
        if (_as1 > 0.0 and _as2 < 0.0) or (_as1 < 0.0 and _as2 > 0.0):
            _amin = min(_as1, _as2)
            _amax = max(_as1, _as2)
            #print "_amax: %g" % _amax
            #print "_amin: %g" % _amin
            if _amax - _amin > pi: # radians
                if _acl < 0.0:
                    _acl = _acl + pi
                else:
                    _acl = _acl - pi
                _acc = ((pi - _amax) + (_amin + pi))/2.0
        #print "_acl: %g" % (_acl * _dtr)
        #print "_acc: %g" % (_acc * _dtr)
        _rc = hypot((_r/tan(_acc)), _r)
        #print "_rc: %g" % _rc
        _xi, _yi = self.getIntersection()
        _xc = _xi + _rc * cos(_acl)
        _yc = _yi + _rc * sin(_acl)
        self.__center = (_xc, _yc)
        #print "center: %s" % str(self.__center)

    def getCenter(self):
        """Return the center location of the Fillet.

getCenter()

This method returns a tuple of two floats; the first is the
center 'x' coordinate, the second is the 'y' coordinate.
        """
        return self.__center

    def _calculateLimits(self):
        """Determine the radial limits of the fillet.

_calculateLimits()

This method is private to the Fillet.
        """
        _p1, _p3 = self.getMovingPoints()
        _p2, _p4 = self.getFixedPoints()
        _as1 = atan2((_p2.y - _p1.y), (_p2.x - _p1.x)) # radians
        _as2 = atan2((_p4.y - _p3.y), (_p4.x - _p3.x)) # radians
        if abs(abs(_as1) - pi) < 1e-10:
            if _as1 > 0.0 and _as2 < 0.0:
                _as1 = -pi
            if _as1 < 0.0 and _as2 > 0.0:
                _as1 = pi
        if abs(abs(_as2) - pi) < 1e-10:
            if _as2 > 0.0 and _as2 < 0.0:
                _as2 = -pi
            if _as2 < 0.0 and _as1 > 0.0:
                _as2 = pi
        #print "_as1: %g" % (_as1 * _dtr)
        #print "_as2: %g" % (_as2 * _dtr)
        _acl = (_as1 + _as2)/2.0
        _acc = abs(_as1 - _as2)/2.0
        if (_as1 > 0.0 and _as2 < 0.0) or (_as1 < 0.0 and _as2 > 0.0):
            _amin = min(_as1, _as2)
            _amax = max(_as1, _as2)
            #print "_amax: %g" % _amax
            #print "_amin: %g" % _amin
            if _amax - _amin > pi: # radians
                if _acl < 0.0:
                    _acl = _acl + pi
                else:
                    _acl = _acl - pi
                _acc = ((pi - _amax) + (_amin + pi))/2.0
        #print "_acl: %g" % (_acl * _dtr)
        #print "_acc: %g" % (_acc * _dtr)
        _xi, _yi = self.getIntersection()
        _pf1, _pf2 = self.getFixedPoints()
        _d1 = hypot((_xi - _pf1.x), (_yi - _pf1.y))
        _d2 = hypot((_xi - _pf2.x), (_yi - _pf2.y))
        _c4 = min(_d1, _d2)
        self.__rmax = _c4 * tan(_acc) + 1e-10
        #print "rmax: %g" % self.__rmax
        _pm1, _pm2 = self.getMovingPoints()
        _d1 = hypot((_xi - _pm1.x), (_yi - _pm1.y))
        _d2 = hypot((_xi - _pm2.x), (_yi - _pm2.y))
        _c4 = max(_d1, _d2)
        self.__rmin = _c4 * tan(_acc) - 1e-10
        #print "rmin: %g" % self.__rmin

    def getRadialLimits(self):
        """Return the radial limits of the fillet.

getRadialLimits()

This method returns a tuple of two floats; the first is
the minimal radius for the fillet between two segments,
and the second is the maximum radius.
        """
        return self.__rmin, self.__rmax

    def _moveSegmentPoints(self):
        """Position the segment endpoints used in the Fillet.

_moveSegmentPoints()

This method is private to the Fillet.
        """
        _p1, _p3 = self.getMovingPoints()
        _p2, _p4 = self.getFixedPoints()
        _xc, _yc = self.__center
        #
        # segment 1
        #
        _l = _p2 - _p1
        _x1, _y1 = _p1.getCoords()
        _x2, _y2 = _p2.getCoords()
        _r = ((_xc - _x1)*(_x2 - _x1) + (_yc - _y1)*(_y2 - _y1))/pow(_l, 2)
        _px = _x1 + _r * (_x2 - _x1)
        _py = _y1 + _r * (_y2 - _y1)
        _p1.setCoords(_px, _py)
        #
        # segment 2
        #
        _l = _p4 - _p3
        _x1, _y1 = _p3.getCoords()
        _x2, _y2 = _p4.getCoords()
        _r = ((_xc - _x1)*(_x2 - _x1) + (_yc - _y1)*(_y2 - _y1))/pow(_l, 2)
        _px = _x1 + _r * (_x2 - _x1)
        _py = _y1 + _r * (_y2 - _y1)
        _p3.setCoords(_px, _py)

    def getAngles(self):
        """Return the angles that the fillet sweeps through.

getAngles()

This method returns a tuple of two floats, the first is the
start angle of the fillet, and the second is the end angle.
        """
        _ms1, _ms2 = self.getMovingPoints()
        _xc, _yc = self.__center
        _x, _y = _ms1.getCoords()
        _as1 = _dtr * atan2((_y - _yc), (_x - _xc))
        if _as1 < 0.0:
            _as1 = _as1 + 360.0
        _x, _y = _ms2.getCoords()
        _as2 = _dtr * atan2((_y - _yc), (_x - _xc))
        if _as2 < 0.0:
            _as2 = _as2 + 360.0
        return _as1, _as2

    def inRegion(self, xmin, ymin, xmax, ymax, fully=False):
        """Return whether or not a fillet exists with a region.

isRegion(xmin, ymin, xmax, ymax)

The four arguments define the boundary of an area, and the
function returns True if the joint lies within that area.
Otherwise, the function returns False.
        """
        _xmin = util.get_float(xmin)
        _ymin = util.get_float(ymin)
        _xmax = util.get_float(xmax)
        if _xmax < _xmin:
            raise ValueError, "Illegal values: xmax < xmin"
        _ymax = util.get_float(ymax)
        if _ymax < _ymin:
            raise ValueError, "Illegal values: ymax < ymin"
        util.test_boolean(fully)
        _mp1, _mp2 = self.getMovingPoints()
        _mx1, _my1 = _mp1.getCoords()
        _mx2, _my2 = _mp2.getCoords()
        _r = self.__radius
        _xc, _yc = self.__center
        _a1, _a2 = self.getAngles()
        _xl = [_mx1, _mx2, _xc]
        _yl = [_my1, _my2, _yc]
        if fully:
            if ((min(_xl) > _xmin) and
                (min(_yl) > _ymin) and
                (max(_xl) < _xmax) and
                (max(_yl) < _ymax)):
                return True
            return False
        #
        # fixme - need to use the arc and endpoints and not
        # a line connecting the endpoints ...
        #
        return util.in_region(_mx1, _my1, _mx2, _my2,
                              _xmin, _ymin, _xmax, _ymax)

    def clone(self):
        _s1, _s2 = self.getSegments()
        _r = self.__radius
        _s = self.getStyle()
        _f = Fillet(_s1, _s2, _r, _s)
        _f.setColor(self.getColor())
        _f.setLinetype(self.getLinetype())
        _f.setThickness(self.getThickness())
        return _f

    def sendsMessage(self, m):
        if m in Fillet.__messages:
            return True
        return super(Fillet, self).sendsMessage(m)

#
# Fillet history class
#

class FilletLog(graphicobject.GraphicObjectLog):
    def __init__(self, f):
        if not isinstance(f, Fillet):
            raise TypeError, "Invalid fillet: " + `type(f)`
        super(FilletLog, self).__init__(f)
        f.connect('radius_changed', self._radiusChange)

    def _radiusChange(self, f, *args):
        _alen = len(args)
        if _alen < 1:
            raise ValueError, "Invalid argument count: %d" % _alen
        _r = args[0]
        if not isinstance(_r, float):
            raise TypeError, "Unexpected type for radius: " + `type(_r)`
        self.saveUndoData('radius_changed', _r)

    def execute(self, undo, *args):
        util.test_boolean(undo)
        _alen = len(args)
        if _alen == 0:
            raise ValueError, "No arguments to execute()"
        _f = self.getObject()
        _op = args[0]
        if _op == 'radius_changed':
            if len(args) < 2:
                raise ValueError, "Invalid argument count: %d" % _alen
            _r = args[1]
            if not isinstance(_r, float):
                raise TypeError, "Unexpected type for radius: " + `type(_r)`
            _sdata = _f.getRadius()
            self.ignore(_op)
            try:
                if undo:
                    _f.startUndo()
                    try:
                        _f.setRadius(_r)
                    finally:
                        _f.endUndo()
                else:
                    _f.startRedo()
                    try:
                        _f.setRadius(_r)
                    finally:
                        _f.endRedo()
            finally:
                self.receive(_op)
            self.saveData(undo, _op, _sdata)
        else:
            super(FilletLog, self).execute(undo, *args)