This file is indexed.

/usr/lib/python3/dist-packages/tables/description.py is in python3-tables 3.1.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
# -*- coding: utf-8 -*-

########################################################################
#
# License: BSD
# Created: September 21, 2002
# Author: Francesc Alted
#
# $Id$
#
########################################################################

"""Classes for describing columns for ``Table`` objects."""

# Imports
# =======
from __future__ import print_function
import sys
import copy
import warnings

import numpy

from tables import atom
from tables.path import check_name_validity

from tables._past import previous_api, previous_api_property

# Public variables
# ================
__docformat__ = 'reStructuredText'
"""The format of documentation strings in this module."""


# Private functions
# =================
def same_position(oldmethod):
    """Decorate `oldmethod` to also compare the `_v_pos` attribute."""
    def newmethod(self, other):
        try:
            other._v_pos
        except AttributeError:
            return False  # not a column definition
        return self._v_pos == other._v_pos and oldmethod(self, other)
    newmethod.__name__ = oldmethod.__name__
    newmethod.__doc__ = oldmethod.__doc__
    return newmethod


# Column classes
# ==============
class Col(atom.Atom, metaclass=type):
    """Defines a non-nested column.

    Col instances are used as a means to declare the different properties of a
    non-nested column in a table or nested column.  Col classes are descendants
    of their equivalent Atom classes (see :ref:`AtomClassDescr`), but their
    instances have an additional _v_pos attribute that is used to decide the
    position of the column inside its parent table or nested column (see the
    IsDescription class in :ref:`IsDescriptionClassDescr` for more information
    on column positions).

    In the same fashion as Atom, you should use a particular Col descendant
    class whenever you know the exact type you will need when writing your
    code. Otherwise, you may use one of the Col.from_*() factory methods.

    Each factory method inherited from the Atom class is available with the
    same signature, plus an additional pos parameter (placed in last position)
    which defaults to None and that may take an integer value.  This parameter
    might be used to specify the position of the column in the table.

    Besides, there are the next additional factory methods, available only for
    Col objects.

    The following parameters are available for most Col-derived constructors.

    Parameters
    ----------
    itemsize : int
        For types with a non-fixed size, this sets the size in bytes of
        individual items in the column.
    shape : tuple
        Sets the shape of the column. An integer shape of N is equivalent to
        the tuple (N,).
    dflt
        Sets the default value for the column.
    pos : int
        Sets the position of column in table.  If unspecified, the position
        will be randomly selected.

    """

    _class_from_prefix = {}  # filled as column classes are created
    """Maps column prefixes to column classes."""

    # Class methods
    # ~~~~~~~~~~~~~
    @classmethod
    def prefix(class_):
        """Return the column class prefix."""

        cname = class_.__name__
        return cname[:cname.rfind('Col')]

    @classmethod
    def from_atom(class_, atom, pos=None):
        """Create a Col definition from a PyTables atom.

        An optional position may be specified as the pos argument.

        """

        prefix = atom.prefix()
        kwargs = atom._get_init_args()
        colclass = class_._class_from_prefix[prefix]
        return colclass(pos=pos, **kwargs)

    @classmethod
    def from_sctype(class_, sctype, shape=(), dflt=None, pos=None):
        """Create a `Col` definition from a NumPy scalar type `sctype`.

        Optional shape, default value and position may be specified as
        the `shape`, `dflt` and `pos` arguments, respectively.
        Information in the `sctype` not represented in a `Col` is
        ignored.

        """

        newatom = atom.Atom.from_sctype(sctype, shape, dflt)
        return class_.from_atom(newatom, pos=pos)

    @classmethod
    def from_dtype(class_, dtype, dflt=None, pos=None):
        """Create a `Col` definition from a NumPy `dtype`.

        Optional default value and position may be specified as the
        `dflt` and `pos` arguments, respectively.  The `dtype` must have
        a byte order which is irrelevant or compatible with that of the
        system.  Information in the `dtype` not represented in a `Col`
        is ignored.

        """

        newatom = atom.Atom.from_dtype(dtype, dflt)
        return class_.from_atom(newatom, pos=pos)

    @classmethod
    def from_type(class_, type, shape=(), dflt=None, pos=None):
        """Create a `Col` definition from a PyTables `type`.

        Optional shape, default value and position may be specified as
        the `shape`, `dflt` and `pos` arguments, respectively.

        """

        newatom = atom.Atom.from_type(type, shape, dflt)
        return class_.from_atom(newatom, pos=pos)

    @classmethod
    def from_kind(class_, kind, itemsize=None, shape=(), dflt=None, pos=None):
        """Create a `Col` definition from a PyTables `kind`.

        Optional item size, shape, default value and position may be
        specified as the `itemsize`, `shape`, `dflt` and `pos`
        arguments, respectively.  Bear in mind that not all columns
        support a default item size.

        """

        newatom = atom.Atom.from_kind(kind, itemsize, shape, dflt)
        return class_.from_atom(newatom, pos=pos)

    @classmethod
    def _subclass_from_prefix(class_, prefix):
        """Get a column subclass for the given `prefix`."""

        cname = '%sCol' % prefix
        class_from_prefix = class_._class_from_prefix
        if cname in class_from_prefix:
            return class_from_prefix[cname]
        atombase = getattr(atom, '%sAtom' % prefix)

        class NewCol(class_, atombase):
            """Defines a non-nested column of a particular type.

            The constructor accepts the same arguments as the equivalent
            `Atom` class, plus an additional ``pos`` argument for
            position information, which is assigned to the `_v_pos`
            attribute.

            """

            def __init__(self, *args, **kwargs):
                pos = kwargs.pop('pos', None)
                class_from_prefix = self._class_from_prefix
                atombase.__init__(self, *args, **kwargs)
                # The constructor of an abstract atom may have changed
                # the class of `self` to something different of `NewCol`
                # and `atombase` (that's why the prefix map is saved).
                if self.__class__ is not NewCol:
                    colclass = class_from_prefix[self.prefix()]
                    self.__class__ = colclass
                self._v_pos = pos

            __eq__ = same_position(atombase.__eq__)
            _is_equal_to_atom = same_position(atombase._is_equal_to_atom)

            # XXX: API incompatible change for PyTables 3 line
            # Overriding __eq__ blocks inheritance of __hash__ in 3.x
            # def __hash__(self):
            #    return hash((self._v_pos, self.atombase))

            if prefix == 'Enum':
                _is_equal_to_enumatom = same_position(
                    atombase._is_equal_to_enumatom)

        NewCol.__name__ = cname

        class_from_prefix[prefix] = NewCol
        return NewCol

    # Special methods
    # ~~~~~~~~~~~~~~~
    def __repr__(self):
        # Reuse the atom representation.
        atomrepr = super(Col, self).__repr__()
        lpar = atomrepr.index('(')
        rpar = atomrepr.rindex(')')
        atomargs = atomrepr[lpar + 1:rpar]
        classname = self.__class__.__name__
        return '%s(%s, pos=%s)' % (classname, atomargs, self._v_pos)

    # Private methods
    # ~~~~~~~~~~~~~~~
    def _get_init_args(self):
        """Get a dictionary of instance constructor arguments."""

        kwargs = dict((arg, getattr(self, arg)) for arg in ('shape', 'dflt'))
        kwargs['pos'] = getattr(self, '_v_pos', None)
        return kwargs


def _generate_col_classes():
    """Generate all column classes."""

    # Abstract classes are not in the class map.
    cprefixes = ['Int', 'UInt', 'Float', 'Time']
    for (kind, kdata) in atom.atom_map.items():
        if hasattr(kdata, 'kind'):  # atom class: non-fixed item size
            atomclass = kdata
            cprefixes.append(atomclass.prefix())
        else:  # dictionary: fixed item size
            for atomclass in kdata.values():
                cprefixes.append(atomclass.prefix())

    # Bottom-level complex classes are not in the type map, of course.
    # We still want the user to get the compatibility warning, though.
    cprefixes.extend(['Complex32', 'Complex64', 'Complex128'])
    if hasattr(atom, 'Complex192Atom'):
        cprefixes.append('Complex192')
    if hasattr(atom, 'Complex256Atom'):
        cprefixes.append('Complex256')

    for cprefix in cprefixes:
        newclass = Col._subclass_from_prefix(cprefix)
        yield newclass

# Create all column classes.
for _newclass in _generate_col_classes():
    exec('%s = _newclass' % _newclass.__name__)
del _newclass


# Table description classes
# =========================
class Description(object):
    """This class represents descriptions of the structure of tables.

    An instance of this class is automatically bound to Table (see
    :ref:`TableClassDescr`) objects when they are created.  It provides a
    browseable representation of the structure of the table, made of non-nested
    (Col - see :ref:`ColClassDescr`) and nested (Description) columns.

    Column definitions under a description can be accessed as attributes of it
    (*natural naming*). For instance, if table.description is a Description
    instance with a column named col1 under it, the later can be accessed as
    table.description.col1. If col1 is nested and contains a col2 column, this
    can be accessed as table.description.col1.col2. Because of natural naming,
    the names of members start with special prefixes, like in the Group class
    (see :ref:`GroupClassDescr`).


    .. rubric:: Description attributes

    .. attribute:: _v_colobjects

        A dictionary mapping the names of the columns hanging
        directly from the associated table or nested column to their
        respective descriptions (Col - see :ref:`ColClassDescr` or
        Description - see :ref:`DescriptionClassDescr` instances).

        .. versionchanged:: 3.0
           The *_v_colObjects* attobute has been renamed into
           *_v_colobjects*.

    .. attribute:: _v_dflts

        A dictionary mapping the names of non-nested columns
        hanging directly from the associated table or nested column
        to their respective default values.

    .. attribute:: _v_dtype

        The NumPy type which reflects the structure of this
        table or nested column.  You can use this as the
        dtype argument of NumPy array factories.

    .. attribute:: _v_dtypes

        A dictionary mapping the names of non-nested columns
        hanging directly from the associated table or nested column
        to their respective NumPy types.

    .. attribute:: _v_is_nested

        Whether the associated table or nested column contains
        further nested columns or not.

    .. attribute:: _v_itemsize

        The size in bytes of an item in this table or nested column.

    .. attribute:: _v_name

        The name of this description group. The name of the
        root group is '/'.

    .. attribute:: _v_names

        A list of the names of the columns hanging directly
        from the associated table or nested column. The order of the
        names matches the order of their respective columns in the
        containing table.

    .. attribute:: _v_nested_descr

        A nested list of pairs of (name, format) tuples for all the columns
        under this table or nested column. You can use this as the dtype and
        descr arguments of NumPy array factories.

        .. versionchanged:: 3.0
           The *_v_nestedDescr* attribute has been renamed into
           *_v_nested_descr*.

    .. attribute:: _v_nested_formats

        A nested list of the NumPy string formats (and shapes) of all the
        columns under this table or nested column. You can use this as the
        formats argument of NumPy array factories.

        .. versionchanged:: 3.0
           The *_v_nestedFormats* attribute has been renamed into
           *_v_nested_formats*.

    .. attribute:: _v_nestedlvl

        The level of the associated table or nested column in the nested
        datatype.

    .. attribute:: _v_nested_names

        A nested list of the names of all the columns under this table or
        nested column. You can use this as the names argument of NumPy array
        factories.

        .. versionchanged:: 3.0
           The *_v_nestedNames* attribute has been renamed into
           *_v_nested_names*.

    .. attribute:: _v_pathname

        Pathname of the table or nested column.

    .. attribute:: _v_pathnames

        A list of the pathnames of all the columns under this table or nested
        column (in preorder).  If it does not contain nested columns, this is
        exactly the same as the :attr:`Description._v_names` attribute.

    .. attribute:: _v_types

        A dictionary mapping the names of non-nested columns hanging directly
        from the associated table or nested column to their respective PyTables
        types.

    """

    _v_colObjects = previous_api_property('_v_colobjects')
    _v_nestedFormats = previous_api_property('_v_nested_formats')
    _v_nestedNames = previous_api_property('_v_nested_names')
    _v_nestedDesct = previous_api_property('_v_nested_descr')

    def __init__(self, classdict, nestedlvl=-1, validate=True):

        if not classdict:
            raise ValueError("cannot create an empty data type")

        # Do a shallow copy of classdict just in case this is going to
        # be shared by other instances
        newdict = self.__dict__
        newdict["_v_name"] = "/"   # The name for root descriptor
        newdict["_v_names"] = []
        newdict["_v_dtypes"] = {}
        newdict["_v_types"] = {}
        newdict["_v_dflts"] = {}
        newdict["_v_colobjects"] = {}
        newdict["_v_is_nested"] = False
        nestedFormats = []
        nestedDType = []

        if not hasattr(newdict, "_v_nestedlvl"):
            newdict["_v_nestedlvl"] = nestedlvl + 1

        cols_with_pos = []  # colum (position, name) pairs
        cols_no_pos = []  # just column names

        # Check for special variables and convert column descriptions
        for (name, descr) in classdict.items():
            if name.startswith('_v_'):
                if name in newdict:
                    # print("Warning!")
                    # special methods &c: copy to newdict, warn about conflicts
                    warnings.warn("Can't set attr %r in description class %r"
                                  % (name, self))
                else:
                    # print("Special variable!-->", name, classdict[name])
                    newdict[name] = descr
                continue  # This variable is not needed anymore

            columns = None
            if (type(descr) == type(IsDescription) and
                    issubclass(descr, IsDescription)):
                # print("Nested object (type I)-->", name)
                columns = descr().columns
            elif (type(descr.__class__) == type(IsDescription) and
                  issubclass(descr.__class__, IsDescription)):
                # print("Nested object (type II)-->", name)
                columns = descr.columns
            elif isinstance(descr, dict):
                # print("Nested object (type III)-->", name)
                columns = descr
            else:
                # print("Nested object (type IV)-->", name)
                descr = copy.copy(descr)
            # The copies above and below ensure that the structures
            # provided by the user will remain unchanged even if we
            # tamper with the values of ``_v_pos`` here.
            if columns is not None:
                descr = Description(copy.copy(columns), self._v_nestedlvl)
            classdict[name] = descr

            pos = getattr(descr, '_v_pos', None)
            if pos is None:
                cols_no_pos.append(name)
            else:
                cols_with_pos.append((pos, name))

        # Sort field names:
        #
        # 1. Fields with explicit positions, according to their
        #    positions (and their names if coincident).
        # 2. Fields with no position, in alfabetical order.
        cols_with_pos.sort()
        cols_no_pos.sort()
        keys = [name for (pos, name) in cols_with_pos] + cols_no_pos

        pos = 0
        # Get properties for compound types
        for k in keys:
            if validate:
                # Check for key name validity
                check_name_validity(k)
            # Class variables
            object = classdict[k]
            newdict[k] = object    # To allow natural naming
            if not (isinstance(object, Col) or
                    isinstance(object, Description)):
                raise TypeError('Passing an incorrect value to a table column.'
                                ' Expected a Col (or subclass) instance and '
                                'got: "%s". Please make use of the Col(), or '
                                'descendant, constructor to properly '
                                'initialize columns.' % object)
            object._v_pos = pos  # Set the position of this object
            object._v_parent = self  # The parent description
            pos += 1
            newdict['_v_colobjects'][k] = object
            newdict['_v_names'].append(k)
            object.__dict__['_v_name'] = k

            if not isinstance(k, str):
                # numpy only accepts "str" for field names
                if sys.version_info[0] < 3:
                    # Python 2.x: unicode --> str
                    kk = k.encode()  # use the default encoding
                else:
                    # Python 3.x: bytes --> str (unicode)
                    kk = k.decode()
            else:
                kk = k

            if isinstance(object, Col):
                dtype = object.dtype
                newdict['_v_dtypes'][k] = dtype
                newdict['_v_types'][k] = object.type
                newdict['_v_dflts'][k] = object.dflt
                nestedFormats.append(object.recarrtype)
                baserecarrtype = dtype.base.str[1:]
                nestedDType.append((kk, baserecarrtype, dtype.shape))
            else:  # A description
                nestedFormats.append(object._v_nested_formats)
                nestedDType.append((kk, object._v_dtype))

        # Assign the format list to _v_nested_formats
        newdict['_v_nested_formats'] = nestedFormats
        newdict['_v_dtype'] = numpy.dtype(nestedDType)
        # _v_itemsize is derived from the _v_dtype that already computes this
        newdict['_v_itemsize'] = newdict['_v_dtype'].itemsize
        if self._v_nestedlvl == 0:
            # Get recursively nested _v_nested_names and _v_nested_descr attrs
            self._g_set_nested_names_descr()
            # Get pathnames for nested groups
            self._g_set_path_names()
            # Check the _v_byteorder has been used an issue an Error
            if hasattr(self, "_v_byteorder"):
                raise ValueError(
                    "Using a ``_v_byteorder`` in the description is obsolete. "
                    "Use the byteorder parameter in the constructor instead.")

    def _g_set_nested_names_descr(self):
        """Computes the nested names and descriptions for nested datatypes."""

        names = self._v_names
        fmts = self._v_nested_formats
        self._v_nested_names = names[:]  # Important to do a copy!
        self._v_nested_descr = [(names[i], fmts[i]) for i in range(len(names))]
        for i in range(len(names)):
            name = names[i]
            new_object = self._v_colobjects[name]
            if isinstance(new_object, Description):
                new_object._g_set_nested_names_descr()
                # replace the column nested name by a correct tuple
                self._v_nested_names[i] = (name, new_object._v_nested_names)
                self._v_nested_descr[i] = (name, new_object._v_nested_descr)
                # set the _v_is_nested flag
                self._v_is_nested = True

    _g_setNestedNamesDescr = previous_api(_g_set_nested_names_descr)

    def _g_set_path_names(self):
        """Compute the pathnames for arbitrary nested descriptions.

        This method sets the ``_v_pathname`` and ``_v_pathnames``
        attributes of all the elements (both descriptions and columns)
        in this nested description.

        """

        def get_cols_in_order(description):
            return [description._v_colobjects[colname]
                    for colname in description._v_names]

        def join_paths(path1, path2):
            if not path1:
                return path2
            return '%s/%s' % (path1, path2)

        # The top of the stack always has a nested description
        # and a list of its child columns
        # (be they nested ``Description`` or non-nested ``Col`` objects).
        # In the end, the list contains only a list of column paths
        # under this one.
        #
        # For instance, given this top of the stack::
        #
        #   (<Description X>, [<Column A>, <Column B>])
        #
        # After computing the rest of the stack, the top is::
        #
        #   (<Description X>, ['a', 'a/m', 'a/n', ... , 'b', ...])

        stack = []

        # We start by pushing the top-level description
        # and its child columns.
        self._v_pathname = ''
        stack.append((self, get_cols_in_order(self)))

        while stack:
            desc, cols = stack.pop()
            head = cols[0]

            # What's the first child in the list?
            if isinstance(head, Description):
                # A nested description.  We remove it from the list and
                # push it with its child columns.  This will be the next
                # handled description.
                head._v_pathname = join_paths(desc._v_pathname, head._v_name)
                stack.append((desc, cols[1:]))  # alter the top
                stack.append((head, get_cols_in_order(head)))  # new top
            elif isinstance(head, Col):
                # A non-nested column.  We simply remove it from the
                # list and append its name to it.
                head._v_pathname = join_paths(desc._v_pathname, head._v_name)
                cols.append(head._v_name)  # alter the top
                stack.append((desc, cols[1:]))  # alter the top
            else:
                # Since paths and names are appended *to the end* of
                # children lists, a string signals that no more children
                # remain to be processed, so we are done with the
                # description at the top of the stack.
                assert isinstance(head, str)
                # Assign the computed set of descendent column paths.
                desc._v_pathnames = cols
                if len(stack) > 0:
                    # Compute the paths with respect to the parent node
                    # (including the path of the current description)
                    # and append them to its list.
                    descName = desc._v_name
                    colPaths = [join_paths(descName, path) for path in cols]
                    colPaths.insert(0, descName)
                    parentCols = stack[-1][1]
                    parentCols.extend(colPaths)
                # (Nothing is pushed, we are done with this description.)

    _g_setPathNames = previous_api(_g_set_path_names)

    def _f_walk(self, type='All'):
        """Iterate over nested columns.

        If type is 'All' (the default), all column description objects (Col and
        Description instances) are yielded in top-to-bottom order (preorder).

        If type is 'Col' or 'Description', only column descriptions of that
        type are yielded.

        """

        if type not in ["All", "Col", "Description"]:
            raise ValueError("""\
type can only take the parameters 'All', 'Col' or 'Description'.""")

        stack = [self]
        while stack:
            object = stack.pop(0)  # pop at the front so as to ensure the order
            if type in ["All", "Description"]:
                yield object  # yield description
            names = object._v_names
            for i in range(len(names)):
                new_object = object._v_colobjects[names[i]]
                if isinstance(new_object, Description):
                    stack.append(new_object)
                else:
                    if type in ["All", "Col"]:
                        yield new_object  # yield column

    def __repr__(self):
        """Gives a detailed Description column representation."""

        rep = ['%s\"%s\": %r' %
               ("  " * self._v_nestedlvl, k, self._v_colobjects[k])
               for k in self._v_names]
        return '{\n  %s}' % (',\n  '.join(rep))

    def __str__(self):
        """Gives a brief Description representation."""

        return 'Description(%s)' % self._v_nested_descr


class MetaIsDescription(type):
    """Helper metaclass to return the class variables as a dictionary."""

    def __new__(cls, classname, bases, classdict):
        """Return a new class with a "columns" attribute filled."""

        newdict = {"columns": {}, }
        if '__doc__' in classdict:
            newdict['__doc__'] = classdict['__doc__']
        for b in bases:
            if "columns" in b.__dict__:
                newdict["columns"].update(b.__dict__["columns"])
        for k in classdict:
            # if not (k.startswith('__') or k.startswith('_v_')):
            # We let pass _v_ variables to configure class behaviour
            if not (k.startswith('__')):
                newdict["columns"][k] = classdict[k]

        # Return a new class with the "columns" attribute filled
        return type.__new__(cls, classname, bases, newdict)

metaIsDescription = previous_api(MetaIsDescription)


class IsDescription(object, metaclass=MetaIsDescription):
    """Description of the structure of a table or nested column.

    This class is designed to be used as an easy, yet meaningful way to
    describe the structure of new Table (see :ref:`TableClassDescr`) datasets
    or nested columns through the definition of *derived classes*. In order to
    define such a class, you must declare it as descendant of IsDescription,
    with as many attributes as columns you want in your table. The name of each
    attribute will become the name of a column, and its value will hold a
    description of it.

    Ordinary columns can be described using instances of the Col class (see
    :ref:`ColClassDescr`). Nested columns can be described by using classes
    derived from IsDescription, instances of it, or name-description
    dictionaries. Derived classes can be declared in place (in which case the
    column takes the name of the class) or referenced by name.

    Nested columns can have a _v_pos special attribute which sets the
    *relative* position of the column among sibling columns *also having
    explicit positions*.  The pos constructor argument of Col instances is used
    for the same purpose.  Columns with no explicit position will be placed
    afterwards in alphanumeric order.

    Once you have created a description object, you can pass it to the Table
    constructor, where all the information it contains will be used to define
    the table structure.

    .. rubric:: IsDescription attributes

    .. attribute:: _v_pos

        Sets the position of a possible nested column description among its
        sibling columns.  This attribute can be specified *when declaring*
        an IsDescription subclass to complement its *metadata*.

    .. attribute:: columns

        Maps the name of each column in the description to its own descriptive
        object. This attribute is *automatically created* when an IsDescription
        subclass is declared.  Please note that declared columns can no longer
        be accessed as normal class variables after its creation.

    """


def descr_from_dtype(dtype_):
    """Get a description instance and byteorder from a (nested) NumPy dtype."""

    fields = {}
    fbyteorder = '|'
    for name in dtype_.names:
        dtype, pos = dtype_.fields[name][:2]
        kind = dtype.base.kind
        byteorder = dtype.base.byteorder
        if byteorder in '><=':
            if fbyteorder not in ['|', byteorder]:
                raise NotImplementedError(
                    "structured arrays with mixed byteorders "
                    "are not supported yet, sorry")
            fbyteorder = byteorder
        # Non-nested column
        if kind in 'biufSc':
            col = Col.from_dtype(dtype, pos=pos)
        # Nested column
        elif kind == 'V' and dtype.shape in [(), (1,)]:
            col, _ = descr_from_dtype(dtype)
            col._v_pos = pos
        else:
            raise NotImplementedError(
                "structured arrays with columns with type description ``%s`` "
                "are not supported yet, sorry" % dtype)
        fields[name] = col

    return Description(fields), fbyteorder


def dtype_from_descr(descr, byteorder=None):
    """Get a (nested) NumPy dtype from a description instance and byteorder.

    The descr parameter can be a Description or IsDescription
    instance, sub-class of IsDescription or a dictionary.

    """

    if isinstance(descr, dict):
        descr = Description(descr)
    elif (type(descr) == type(IsDescription)
          and issubclass(descr, IsDescription)):
        descr = Description(descr().columns)
    elif isinstance(descr, IsDescription):
        descr = Description(descr.columns)
    elif not isinstance(descr, Description):
        raise ValueError('invalid description: %r' % descr)

    dtype_ = descr._v_dtype

    if byteorder and byteorder != '|':
        dtype_ = dtype_.newbyteorder(byteorder)

    return dtype_


if __name__ == "__main__":
    """Test code."""

    class Info(IsDescription):
        _v_pos = 2
        Name = UInt32Col()
        Value = Float64Col()

    class Test(IsDescription):
        """A description that has several columns."""

        x = Col.from_type("int32", 2, 0, pos=0)
        y = Col.from_kind('float', dflt=1, shape=(2, 3))
        z = UInt8Col(dflt=1)
        color = StringCol(2, dflt=" ")
        # color = UInt32Col(2)
        Info = Info()

        class info(IsDescription):
            _v_pos = 1
            name = UInt32Col()
            value = Float64Col(pos=0)
            y2 = Col.from_kind('float', dflt=1, shape=(2, 3), pos=1)
            z2 = UInt8Col(dflt=1)

            class info2(IsDescription):
                y3 = Col.from_kind('float', dflt=1, shape=(2, 3))
                z3 = UInt8Col(dflt=1)
                name = UInt32Col()
                value = Float64Col()

                class info3(IsDescription):
                    name = UInt32Col()
                    value = Float64Col()
                    y4 = Col.from_kind('float', dflt=1, shape=(2, 3))
                    z4 = UInt8Col(dflt=1)

#     class Info(IsDescription):
#         _v_pos = 2
#         Name = StringCol(itemsize=2)
#         Value = ComplexCol(itemsize=16)

#     class Test(IsDescription):
#         """A description that has several columns"""
#         x = Col.from_type("int32", 2, 0, pos=0)
#         y = Col.from_kind('float', dflt=1, shape=(2,3))
#         z = UInt8Col(dflt=1)
#         color = StringCol(2, dflt=" ")
#         Info = Info()
#         class info(IsDescription):
#             _v_pos = 1
#             name = StringCol(itemsize=2)
#             value = ComplexCol(itemsize=16, pos=0)
#             y2 = Col.from_kind('float', dflt=1, shape=(2,3), pos=1)
#             z2 = UInt8Col(dflt=1)
#             class info2(IsDescription):
#                 y3 = Col.from_kind('float', dflt=1, shape=(2,3))
#                 z3 = UInt8Col(dflt=1)
#                 name = StringCol(itemsize=2)
#                 value = ComplexCol(itemsize=16)
#                 class info3(IsDescription):
#                     name = StringCol(itemsize=2)
#                     value = ComplexCol(itemsize=16)
#                     y4 = Col.from_kind('float', dflt=1, shape=(2,3))
#                     z4 = UInt8Col(dflt=1)

    # example cases of class Test
    klass = Test()
    # klass = Info()
    desc = Description(klass.columns)
    print("Description representation (short) ==>", desc)
    print("Description representation (long) ==>", repr(desc))
    print("Column names ==>", desc._v_names)
    print("Column x ==>", desc.x)
    print("Column Info ==>", desc.Info)
    print("Column Info.value ==>", desc.Info.Value)
    print("Nested column names  ==>", desc._v_nested_names)
    print("Defaults ==>", desc._v_dflts)
    print("Nested Formats ==>", desc._v_nested_formats)
    print("Nested Descriptions ==>", desc._v_nested_descr)
    print("Nested Descriptions (info) ==>", desc.info._v_nested_descr)
    print("Total size ==>", desc._v_dtype.itemsize)

    # check _f_walk
    for object in desc._f_walk():
        if isinstance(object, Description):
            print("******begin object*************", end=' ')
            print("name -->", object._v_name)
            # print("name -->", object._v_dtype.name)
            # print("object childs-->", object._v_names)
            # print("object nested childs-->", object._v_nested_names)
            print("totalsize-->", object._v_dtype.itemsize)
        else:
            # pass
            print("leaf -->", object._v_name, object.dtype)

    class testDescParent(IsDescription):
        c = Int32Col()

    class testDesc(testDescParent):
        pass

    assert 'c' in testDesc.columns

## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End: