This file is indexed.

/usr/lib/python3/dist-packages/tables/attributeset.py is in python3-tables 3.1.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
# -*- coding: utf-8 -*-

########################################################################
#
# License: BSD
# Created: May 26, 2003
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################

"""Here is defined the AttributeSet class."""

import re
import sys
import warnings
import pickle
import numpy

from tables import hdf5extension
from tables.utils import SizeType
from tables.registry import class_name_dict
from tables.exceptions import ClosedNodeError, PerformanceWarning
from tables.path import check_name_validity
from tables.undoredo import attr_to_shadow
from tables.filters import Filters

from tables._past import previous_api

# System attributes
SYS_ATTRS = ["CLASS", "VERSION", "TITLE", "NROWS", "EXTDIM",
             "ENCODING", "PYTABLES_FORMAT_VERSION",
             "FLAVOR", "FILTERS", "AUTO_INDEX",
             "DIRTY", "NODE_TYPE", "NODE_TYPE_VERSION",
             "PSEUDOATOM"]
# Prefixes of other system attributes
SYS_ATTRS_PREFIXES = ["FIELD_"]
# RO_ATTRS will be disabled and let the user modify them if they
# want to. The user is still not allowed to remove or rename
# system attributes. Francesc Alted 2004-12-19
# Read-only attributes:
# RO_ATTRS = ["CLASS", "FLAVOR", "VERSION", "NROWS", "EXTDIM",
#             "PYTABLES_FORMAT_VERSION", "FILTERS",
#             "NODE_TYPE", "NODE_TYPE_VERSION"]
# RO_ATTRS = []

# The next attributes are not meant to be copied during a Node copy process
SYS_ATTRS_NOTTOBECOPIED = ["CLASS", "VERSION", "TITLE", "NROWS", "EXTDIM",
                           "PYTABLES_FORMAT_VERSION", "FILTERS", "ENCODING"]
# Attributes forced to be copied during node copies
FORCE_COPY_CLASS = ['CLASS', 'VERSION']
# Regular expression for column default values.
_field_fill_re = re.compile('^FIELD_[0-9]+_FILL$')
# Regular expression for fixing old pickled filters.
_old_filters_re = re.compile(br'\(([ic])tables\.Leaf\n')
# Fixed version of the previous string.
_new_filters_sub = br'(\1tables.filters\n'


def issysattrname(name):
    "Check if a name is a system attribute or not"

    if (name in SYS_ATTRS or
            numpy.prod([name.startswith(prefix)
                        for prefix in SYS_ATTRS_PREFIXES])):
        return True
    else:
        return False


class AttributeSet(hdf5extension.AttributeSet, object):
    """Container for the HDF5 attributes of a Node.

    This class provides methods to create new HDF5 node attributes,
    and to get, rename or delete existing ones.

    Like in Group instances (see :ref:`GroupClassDescr`), AttributeSet
    instances make use of the *natural naming* convention, i.e. you can
    access the attributes on disk as if they were normal Python
    attributes of the AttributeSet instance.

    This offers the user a very convenient way to access HDF5 node
    attributes. However, for this reason and in order not to pollute the
    object namespace, one can not assign *normal* attributes to
    AttributeSet instances, and their members use names which start by
    special prefixes as happens with Group objects.

    .. rubric:: Notes on native and pickled attributes

    The values of most basic types are saved as HDF5 native data in the
    HDF5 file.  This includes Python bool, int, float, complex and str
    (but not long nor unicode) values, as well as their NumPy scalar
    versions and homogeneous or *structured* NumPy arrays of them.  When
    read, these values are always loaded as NumPy scalar or array
    objects, as needed.

    For that reason, attributes in native HDF5 files will be always
    mapped into NumPy objects.  Specifically, a multidimensional
    attribute will be mapped into a multidimensional ndarray and a
    scalar will be mapped into a NumPy scalar object (for example, a
    scalar H5T_NATIVE_LLONG will be read and returned as a numpy.int64
    scalar).

    However, other kinds of values are serialized using pickle, so you
    only will be able to correctly retrieve them using a Python-aware
    HDF5 library.  Thus, if you want to save Python scalar values and
    make sure you are able to read them with generic HDF5 tools, you
    should make use of *scalar or homogeneous/structured array NumPy
    objects* (for example, numpy.int64(1) or numpy.array([1, 2, 3],
    dtype='int16')).

    One more advice: because of the various potential difficulties in
    restoring a Python object stored in an attribute, you may end up
    getting a pickle string where a Python object is expected. If this
    is the case, you may wish to run pickle.loads() on that string to
    get an idea of where things went wrong, as shown in this example::

        >>> import os, tempfile
        >>> import tables
        >>>
        >>> class MyClass(object):
        ...   foo = 'bar'
        ...
        >>> myObject = MyClass()  # save object of custom class in HDF5 attr
        >>> h5fname = tempfile.mktemp(suffix='.h5')
        >>> h5f = tables.open_file(h5fname, 'w')
        >>> h5f.root._v_attrs.obj = myObject  # store the object
        >>> print(h5f.root._v_attrs.obj.foo)  # retrieve it
        bar
        >>> h5f.close()
        >>>
        >>> del MyClass, myObject  # delete class of object and reopen file
        >>> h5f = tables.open_file(h5fname, 'r')
        >>> print(repr(h5f.root._v_attrs.obj))
        'ccopy_reg\\n_reconstructor...
        >>> import pickle  # let's unpickle that to see what went wrong
        >>> pickle.loads(h5f.root._v_attrs.obj)
        Traceback (most recent call last):
        ...
        AttributeError: 'module' object has no attribute 'MyClass'
        >>> # So the problem was not in the stored object,
        ... # but in the *environment* where it was restored.
        ... h5f.close()
        >>> os.remove(h5fname)


    .. rubric:: Notes on AttributeSet methods

    Note that this class overrides the __getattr__(), __setattr__() and
    __delattr__() special methods.  This allows you to read, assign or
    delete attributes on disk by just using the next constructs::

        leaf.attrs.myattr = 'str attr'    # set a string (native support)
        leaf.attrs.myattr2 = 3            # set an integer (native support)
        leaf.attrs.myattr3 = [3, (1, 2)]  # a generic object (Pickled)
        attrib = leaf.attrs.myattr        # get the attribute ``myattr``
        del leaf.attrs.myattr             # delete the attribute ``myattr``

    In addition, the dictionary-like __getitem__(), __setitem__() and
    __delitem__() methods are available, so you may write things like
    this::

        for name in :attr:`Node._v_attrs`._f_list():
            print("name: %s, value: %s" % (name, :attr:`Node._v_attrs`[name]))

    Use whatever idiom you prefer to access the attributes.

    If an attribute is set on a target node that already has a large
    number of attributes, a PerformanceWarning will be issued.


    .. rubric:: AttributeSet attributes

    .. attribute:: _v_attrnames

        A list with all attribute names.

    .. attribute:: _v_attrnamessys

        A list with system attribute names.

    .. attribute:: _v_attrnamesuser

        A list with user attribute names.

    .. attribute:: _v_unimplemented

        A list of attribute names with unimplemented native HDF5 types.

    """

    def _g_getnode(self):
        return self._v__nodefile._get_node(self._v__nodepath)

    _v_node = property(_g_getnode, None, None,
                       "The :class:`Node` instance this attribute set is "
                       "associated with.")

    def __init__(self, node):
        """Create the basic structures to keep the attribute information.

        Reads all the HDF5 attributes (if any) on disk for the node "node".

        Parameters
        ----------
        node
            The parent node

        """

        # Refuse to create an instance of an already closed node
        if not node._v_isopen:
            raise ClosedNodeError("the node for attribute set is closed")

        mydict = self.__dict__

        self._g_new(node)
        mydict["_v__nodefile"] = node._v_file
        mydict["_v__nodepath"] = node._v_pathname
        mydict["_v_attrnames"] = self._g_list_attr(node)
        # The list of unimplemented attribute names
        mydict["_v_unimplemented"] = []

        # Get the file version format. This is an optimization
        # in order to avoid accessing it too much.
        try:
            format_version = node._v_file.format_version
        except AttributeError:
            parsed_version = None
        else:
            if format_version == 'unknown':
                parsed_version = None
            else:
                parsed_version = tuple(map(int, format_version.split('.')))
        mydict["_v__format_version"] = parsed_version
        # Split the attribute list in system and user lists
        mydict["_v_attrnamessys"] = []
        mydict["_v_attrnamesuser"] = []
        for attr in self._v_attrnames:
            # put the attributes on the local dictionary to allow
            # tab-completion
            self.__getattr__(attr)
            if issysattrname(attr):
                self._v_attrnamessys.append(attr)
            else:
                self._v_attrnamesuser.append(attr)

        # Sort the attributes
        self._v_attrnames.sort()
        self._v_attrnamessys.sort()
        self._v_attrnamesuser.sort()

    def _g_update_node_location(self, node):
        """Updates the location information about the associated `node`."""

        myDict = self.__dict__
        myDict['_v__nodefile'] = node._v_file
        myDict['_v__nodepath'] = node._v_pathname
        # hdf5extension operations:
        self._g_new(node)

    _g_updateNodeLocation = previous_api(_g_update_node_location)

    def _f_list(self, attrset='user'):
        """Get a list of attribute names.

        The attrset string selects the attribute set to be used.  A
        'user' value returns only user attributes (this is the default).
        A 'sys' value returns only system attributes.  Finally, 'all'
        returns both system and user attributes.

        """

        if attrset == "user":
            return self._v_attrnamesuser[:]
        elif attrset == "sys":
            return self._v_attrnamessys[:]
        elif attrset == "all":
            return self._v_attrnames[:]

    def __getattr__(self, name):
        """Get the attribute named "name"."""

        # If attribute does not exist, raise AttributeError
        if not name in self._v_attrnames:
            raise AttributeError("Attribute '%s' does not exist in node: "
                                 "'%s'" % (name, self._v__nodepath))

        # Read the attribute from disk. This is an optimization to read
        # quickly system attributes that are _string_ values, but it
        # takes care of other types as well as for example NROWS for
        # Tables and EXTDIM for EArrays
        format_version = self._v__format_version
        value = self._g_getattr(self._v_node, name)

        # Check whether the value is pickled
        # Pickled values always seems to end with a "."
        maybe_pickled = (
            isinstance(value, numpy.generic) and  # NumPy scalar?
            value.dtype.type == numpy.bytes_ and  # string type?
            value.itemsize > 0 and value.endswith(b'.'))

        if (maybe_pickled and value in [b"0", b"0."]):
            # Workaround for a bug in many versions of Python (starting
            # somewhere after Python 2.6.1).  See ticket #253.
            retval = value
        elif (maybe_pickled and _field_fill_re.match(name)
              and format_version == (1, 5)):
            # This format was used during the first 1.2 releases, just
            # for string defaults.
            try:
                retval = pickle.loads(value)
                retval = numpy.array(retval)
            except ImportError:
                retval = None  # signal error avoiding exception
        elif maybe_pickled and name == 'FILTERS' and format_version < (2, 0):
            # This is a big hack, but we don't have other way to recognize
            # pickled filters of PyTables 1.x files.
            value = _old_filters_re.sub(_new_filters_sub, value, 1)
            retval = pickle.loads(value)  # pass unpickling errors through
        elif maybe_pickled:
            try:
                retval = pickle.loads(value)
            # except cPickle.UnpicklingError:
            # It seems that pickle may raise other errors than UnpicklingError
            # Perhaps it would be better just an "except:" clause?
            # except (cPickle.UnpicklingError, ImportError):
            # Definitely (see SF bug #1254636)
            except:
                # ivb (2005-09-07): It is too hard to tell
                # whether the unpickling failed
                # because of the string not being a pickle one at all,
                # because of a malformed pickle string,
                # or because of some other problem in object reconstruction,
                # thus making inconvenient even the issuing of a warning here.
                # The documentation contains a note on this issue,
                # explaining how the user can tell where the problem was.
                retval = value
            # Additional check for allowing a workaround for #307
            if isinstance(retval, str) and retval == '':
                retval = numpy.array(retval)[()]
        elif name == 'FILTERS' and format_version >= (2, 0):
            retval = Filters._unpack(value)
        elif (issysattrname(name) and isinstance(value, (bytes, str)) and
              not isinstance(value, str) and not _field_fill_re.match(name)):
            # system attributes should always be str
            if sys.version_info[0] < 3:
                retval = value.encode()
            else:
                # python 3, bytes and not "FIELD_[0-9]+_FILL"
                retval = value.decode('utf-8')
        else:
            retval = value

        # Put this value in local directory
        self.__dict__[name] = retval
        return retval

    def _g__setattr(self, name, value):
        """Set a PyTables attribute.

        Sets a (maybe new) PyTables attribute with the specified `name`
        and `value`.  If the attribute already exists, it is simply
        replaced.

        It does not log the change.

        """

        # Save this attribute to disk
        # (overwriting an existing one if needed)
        stvalue = value
        if issysattrname(name):
            if name in ["EXTDIM", "AUTO_INDEX", "DIRTY", "NODE_TYPE_VERSION"]:
                stvalue = numpy.array(value, dtype=numpy.int32)
                value = stvalue[()]
            elif name == "NROWS":
                stvalue = numpy.array(value, dtype=SizeType)
                value = stvalue[()]
            elif name == "FILTERS" and self._v__format_version >= (2, 0):
                stvalue = value._pack()
                # value will remain as a Filters instance here
        # Convert value from a Python scalar into a NumPy scalar
        # (only in case it has not been converted yet)
        # Fixes ticket #59
        if (stvalue is value and
                type(value) in (bool, bytes, int, float, complex, str,
                                numpy.unicode_)):
            # Additional check for allowing a workaround for #307
            if value == '':
                stvalue = numpy.array('')
            else:
                stvalue = numpy.array(value)
            value = stvalue[()]

        self._g_setattr(self._v_node, name, stvalue)

        # New attribute or value. Introduce it into the local
        # directory
        self.__dict__[name] = value

        # Finally, add this attribute to the list if not present
        attrnames = self._v_attrnames
        if not name in attrnames:
            attrnames.append(name)
            attrnames.sort()
            if issysattrname(name):
                attrnamessys = self._v_attrnamessys
                attrnamessys.append(name)
                attrnamessys.sort()
            else:
                attrnamesuser = self._v_attrnamesuser
                attrnamesuser.append(name)
                attrnamesuser.sort()

    def __setattr__(self, name, value):
        """Set a PyTables attribute.

        Sets a (maybe new) PyTables attribute with the specified `name`
        and `value`.  If the attribute already exists, it is simply
        replaced.

        A ``ValueError`` is raised when the name starts with a reserved
        prefix or contains a ``/``.  A `NaturalNameWarning` is issued if
        the name is not a valid Python identifier.  A
        `PerformanceWarning` is issued when the recommended maximum
        number of attributes in a node is going to be exceeded.

        """

        nodeFile = self._v__nodefile
        attrnames = self._v_attrnames

        # Check for name validity
        check_name_validity(name)

        nodeFile._check_writable()

        # Check if there are too many attributes.
        maxNodeAttrs = nodeFile.params['MAX_NODE_ATTRS']
        if len(attrnames) >= maxNodeAttrs:
            warnings.warn("""\
node ``%s`` is exceeding the recommended maximum number of attributes (%d);\
be ready to see PyTables asking for *lots* of memory and possibly slow I/O"""
                          % (self._v__nodepath, maxNodeAttrs),
                          PerformanceWarning)

        undoEnabled = nodeFile.is_undo_enabled()
        # Log old attribute removal (if any).
        if undoEnabled and (name in attrnames):
            self._g_del_and_log(name)

        # Set the attribute.
        self._g__setattr(name, value)

        # Log new attribute addition.
        if undoEnabled:
            self._g_log_add(name)

    def _g_log_add(self, name):
        self._v__nodefile._log('ADDATTR', self._v__nodepath, name)

    _g_logAdd = previous_api(_g_log_add)

    def _g_del_and_log(self, name):
        nodeFile = self._v__nodefile
        nodePathname = self._v__nodepath
        # Log *before* moving to use the right shadow name.
        nodeFile._log('DELATTR', nodePathname, name)
        attr_to_shadow(nodeFile, nodePathname, name)

    _g_delAndLog = previous_api(_g_del_and_log)

    def _g__delattr(self, name):
        """Delete a PyTables attribute.

        Deletes the specified existing PyTables attribute.

        It does not log the change.

        """

        # Delete the attribute from disk
        self._g_remove(self._v_node, name)

        # Delete the attribute from local lists
        self._v_attrnames.remove(name)
        if name in self._v_attrnamessys:
            self._v_attrnamessys.remove(name)
        else:
            self._v_attrnamesuser.remove(name)

        # Delete the attribute from the local directory
        # closes (#1049285)
        del self.__dict__[name]

    def __delattr__(self, name):
        """Delete a PyTables attribute.

        Deletes the specified existing PyTables attribute from the
        attribute set.  If a nonexistent or system attribute is
        specified, an ``AttributeError`` is raised.

        """

        nodeFile = self._v__nodefile

        # Check if attribute exists
        if name not in self._v_attrnames:
            raise AttributeError(
                "Attribute ('%s') does not exist in node '%s'"
                % (name, self._v__nodepath))

        nodeFile._check_writable()

        # Remove the PyTables attribute or move it to shadow.
        if nodeFile.is_undo_enabled():
            self._g_del_and_log(name)
        else:
            self._g__delattr(name)

    def __getitem__(self, name):
        """The dictionary like interface for __getattr__()."""

        try:
            return self.__getattr__(name)
        except AttributeError:
            # Capture the AttributeError an re-raise a KeyError one
            raise KeyError(
                "Attribute ('%s') does not exist in node '%s'"
                % (name, self._v__nodepath))

    def __setitem__(self, name, value):
        """The dictionary like interface for __setattr__()."""

        self.__setattr__(name, value)

    def __delitem__(self, name):
        """The dictionary like interface for __delattr__()."""

        try:
            self.__delattr__(name)
        except AttributeError:
            # Capture the AttributeError an re-raise a KeyError one
            raise KeyError(
                "Attribute ('%s') does not exist in node '%s'"
                % (name, self._v__nodepath))

    def __contains__(self, name):
        """Is there an attribute with that name?

        A true value is returned if the attribute set has an attribute
        with the given name, false otherwise.

        """

        return name in self._v_attrnames

    def _f_rename(self, oldattrname, newattrname):
        """Rename an attribute from oldattrname to newattrname."""

        if oldattrname == newattrname:
            # Do nothing
            return

        # First, fetch the value of the oldattrname
        attrvalue = getattr(self, oldattrname)

        # Now, create the new attribute
        setattr(self, newattrname, attrvalue)

        # Finally, remove the old attribute
        delattr(self, oldattrname)

    def _g_copy(self, newset, set_attr=None, copyclass=False):
        """Copy set attributes.

        Copies all user and allowed system PyTables attributes to the
        given attribute set, replacing the existing ones.

        You can specify a *bound* method of the destination set that
        will be used to set its attributes.  Else, its `_g__setattr`
        method will be used.

        Changes are logged depending on the chosen setting method.  The
        default setting method does not log anything.

        .. versionchanged:: 3.0
           The *newSet* parameter has been renamed into *newset*.

        .. versionchanged:: 3.0
           The *copyClass* parameter has been renamed into *copyclass*.

        """

        copysysattrs = newset._v__nodefile.params['PYTABLES_SYS_ATTRS']
        if set_attr is None:
            set_attr = newset._g__setattr

        for attrname in self._v_attrnamesuser:
            # Do not copy the unimplemented attributes.
            if attrname not in self._v_unimplemented:
                set_attr(attrname, getattr(self, attrname))
        # Copy the system attributes that we are allowed to.
        if copysysattrs:
            for attrname in self._v_attrnamessys:
                if ((attrname not in SYS_ATTRS_NOTTOBECOPIED) and
                    # Do not copy the FIELD_ attributes in tables as this can
                    # be really *slow* (don't know exactly the reason).
                    # See #304.
                        not attrname.startswith("FIELD_")):
                    set_attr(attrname, getattr(self, attrname))
            # Copy CLASS and VERSION attributes if requested
            if copyclass:
                for attrname in FORCE_COPY_CLASS:
                    if attrname in self._v_attrnamessys:
                        set_attr(attrname, getattr(self, attrname))

    def _f_copy(self, where):
        """Copy attributes to the where node.

        Copies all user and certain system attributes to the given where
        node (a Node instance - see :ref:`NodeClassDescr`), replacing
        the existing ones.

        """

        # AttributeSet must be defined in order to define a Node.
        # However, we need to know Node here.
        # Using class_name_dict avoids a circular import.
        if not isinstance(where, class_name_dict['Node']):
            raise TypeError("destination object is not a node: %r" % (where,))
        self._g_copy(where._v_attrs, where._v_attrs.__setattr__)

    def _g_close(self):
        # Nothing will be done here, as the existing instance is completely
        # operative now.
        pass

    def __str__(self):
        """The string representation for this object."""

        # The pathname
        pathname = self._v__nodepath
        # Get this class name
        classname = self.__class__.__name__
        # The attribute names
        attrnumber = len([n for n in self._v_attrnames])
        return "%s._v_attrs (%s), %s attributes" % \
               (pathname, classname, attrnumber)

    def __repr__(self):
        """A detailed string representation for this object."""

        # print additional info only if there are attributes to show
        attrnames = [n for n in self._v_attrnames]
        if len(attrnames):
            rep = ['%s := %r' % (attr, getattr(self, attr))
                   for attr in attrnames]
            attrlist = '[%s]' % (',\n    '.join(rep))

            return "%s:\n   %s" % (str(self), attrlist)
        else:
            return str(self)


class NotLoggedAttributeSet(AttributeSet):
    def _g_log_add(self, name):
        pass

    _g_logAdd = previous_api(_g_log_add)

    def _g_del_and_log(self, name):
        self._g__delattr(name)

    _g_delAndLog = previous_api(_g_del_and_log)

## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End: