This file is indexed.

/usr/lib/python3/dist-packages/pandas/tools/rplot.py is in python3-pandas 0.14.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
import random
from copy import deepcopy
from pandas.core.common import _values_from_object

import numpy as np
from pandas.compat import range, zip
#
# TODO:
# * Make sure legends work properly
#

class Scale:
    """
    Base class for mapping between graphical and data attributes.
    """
    pass

class ScaleGradient(Scale):
    """
    A mapping between a data attribute value and a
    point in colour space between two specified colours.
    """
    def __init__(self, column, colour1, colour2):
        """Initialize ScaleGradient instance.

        Parameters:
        -----------
        column: string, pandas DataFrame column name
        colour1: tuple, 3 element tuple with float values representing an RGB colour
        colour2: tuple, 3 element tuple with float values representing an RGB colour
        """
        self.column = column
        self.colour1 = colour1
        self.colour2 = colour2
        self.categorical = False

    def __call__(self, data, index):
        """Return a colour corresponding to data attribute value.

        Parameters:
        -----------
        data: pandas DataFrame
        index: pandas DataFrame row index

        Returns:
        --------
        A three element tuple representing an RGB somewhere between colour1 and colour2
        """
        x = data[self.column].iget(index)
        a = min(data[self.column])
        b = max(data[self.column])
        r1, g1, b1 = self.colour1
        r2, g2, b2 = self.colour2
        x_scaled = (x - a) / (b - a)
        return (r1 + (r2 - r1) * x_scaled,
                g1 + (g2 - g1) * x_scaled,
                b1 + (b2 - b1) * x_scaled)

class ScaleGradient2(Scale):
    """
    Create a mapping between a data attribute value and a
    point in colour space in a line of three specified colours.
    """
    def __init__(self, column, colour1, colour2, colour3):
        """Initialize ScaleGradient2 instance.

        Parameters:
        -----------
        column: string, pandas DataFrame column name
        colour1: tuple, 3 element tuple with float values representing an RGB colour
        colour2: tuple, 3 element tuple with float values representing an RGB colour
        colour3: tuple, 3 element tuple with float values representing an RGB colour
        """
        self.column = column
        self.colour1 = colour1
        self.colour2 = colour2
        self.colour3 = colour3
        self.categorical = False

    def __call__(self, data, index):
        """Return a colour corresponding to data attribute value.

        Parameters:
        -----------
        data: pandas DataFrame
        index: pandas DataFrame row index

        Returns:
        --------
        A three element tuple representing an RGB somewhere along the line
        of colour1, colour2 and colour3
        """
        x = data[self.column].iget(index)
        a = min(data[self.column])
        b = max(data[self.column])
        r1, g1, b1 = self.colour1
        r2, g2, b2 = self.colour2
        r3, g3, b3 = self.colour3
        x_scaled = (x - a) / (b - a)
        if x_scaled < 0.5:
            x_scaled *= 2.0
            return (r1 + (r2 - r1) * x_scaled,
                    g1 + (g2 - g1) * x_scaled,
                    b1 + (b2 - b1) * x_scaled)
        else:
            x_scaled = (x_scaled - 0.5) * 2.0
            return (r2 + (r3 - r2) * x_scaled,
                    g2 + (g3 - g2) * x_scaled,
                    b2 + (b3 - b2) * x_scaled)

class ScaleSize(Scale):
    """
    Provide a mapping between a DataFrame column and matplotlib
    scatter plot shape size.
    """
    def __init__(self, column, min_size=5.0, max_size=100.0, transform=lambda x: x):
        """Initialize ScaleSize instance.

        Parameters:
        -----------
        column: string, a column name
        min_size: float, minimum point size
        max_size: float, maximum point size
        transform: a one argument function of form float -> float (e.g. lambda x: log(x))
        """
        self.column = column
        self.min_size = min_size
        self.max_size = max_size
        self.transform = transform
        self.categorical = False

    def __call__(self, data, index):
        """Return matplotlib scatter plot marker shape size.

        Parameters:
        -----------
        data: pandas DataFrame
        index: pandas DataFrame row index
        """
        x = data[self.column].iget(index)
        a = float(min(data[self.column]))
        b = float(max(data[self.column]))
        return self.transform(self.min_size + ((x - a) / (b - a)) *
            (self.max_size - self.min_size))

class ScaleShape(Scale):
    """
    Provides a mapping between matplotlib marker shapes
    and attribute values.
    """
    def __init__(self, column):
        """Initialize ScaleShape instance.

        Parameters:
        -----------
        column: string, pandas DataFrame column name
        """
        self.column = column
        self.shapes = ['o', '+', 's', '*', '^', '<', '>', 'v', '|', 'x']
        self.legends = set([])
        self.categorical = True

    def __call__(self, data, index):
        """Returns a matplotlib marker identifier.

        Parameters:
        -----------
        data: pandas DataFrame
        index: pandas DataFrame row index

        Returns:
        --------
        a matplotlib marker identifier
        """
        values = sorted(list(set(data[self.column])))
        if len(values) > len(self.shapes):
            raise ValueError("Too many different values of the categorical attribute for ScaleShape")
        x = data[self.column].iget(index)
        return self.shapes[values.index(x)]

class ScaleRandomColour(Scale):
    """
    Maps a random colour to a DataFrame attribute.
    """
    def __init__(self, column):
        """Initialize ScaleRandomColour instance.

        Parameters:
        -----------
        column: string, pandas DataFrame column name
        """
        self.column = column
        self.categorical = True

    def __call__(self, data, index):
        """Return a tuple of three floats, representing
        an RGB colour.

        Parameters:
        -----------
        data: pandas DataFrame
        index: pandas DataFrame row index
        """
        random.seed(data[self.column].iget(index))
        return [random.random() for _ in range(3)]

class ScaleConstant(Scale):
    """
    Constant returning scale. Usually used automatically.
    """
    def __init__(self, value):
        """Initialize ScaleConstant instance.

        Parameters:
        -----------
        value: any Python value to be returned when called
        """
        self.value = value
        self.categorical = False

    def __call__(self, data, index):
        """Return the constant value.

        Parameters:
        -----------
        data: pandas DataFrame
        index: pandas DataFrame row index

        Returns:
        --------
        A constant value specified during initialisation
        """
        return self.value

def default_aes(x=None, y=None):
    """Create the default aesthetics dictionary.

    Parameters:
    -----------
    x: string, DataFrame column name
    y: string, DataFrame column name

    Returns:
    --------
    a dictionary with aesthetics bindings
    """
    return {
        'x' : x,
        'y' : y,
        'size' : ScaleConstant(40.0),
        'colour' : ScaleConstant('grey'),
        'shape' : ScaleConstant('o'),
        'alpha' : ScaleConstant(1.0),
    }

def make_aes(x=None, y=None, size=None, colour=None, shape=None, alpha=None):
    """Create an empty aesthetics dictionary.

    Parameters:
    -----------
    x: string, DataFrame column name
    y: string, DataFrame column name
    size: function, binding for size attribute of Geoms
    colour: function, binding for colour attribute of Geoms
    shape: function, binding for shape attribute of Geoms
    alpha: function, binding for alpha attribute of Geoms

    Returns:
    --------
    a dictionary with aesthetics bindings
    """
    if not hasattr(size, '__call__') and size is not None:
        size = ScaleConstant(size)
    if not hasattr(colour, '__call__') and colour is not None:
        colour = ScaleConstant(colour)
    if not hasattr(shape, '__call__') and shape is not None:
        shape = ScaleConstant(shape)
    if not hasattr(alpha, '__call__') and alpha is not None:
        alpha = ScaleConstant(alpha)
    if any([isinstance(size, scale) for scale in [ScaleConstant, ScaleSize]]) or size is None:
        pass
    else:
        raise ValueError('size mapping should be done through ScaleConstant or ScaleSize')
    if any([isinstance(colour, scale) for scale in [ScaleConstant, ScaleGradient, ScaleGradient2, ScaleRandomColour]]) or colour is None:
        pass
    else:
        raise ValueError('colour mapping should be done through ScaleConstant, ScaleRandomColour, ScaleGradient or ScaleGradient2')
    if any([isinstance(shape, scale) for scale in [ScaleConstant, ScaleShape]]) or shape is None:
        pass
    else:
        raise ValueError('shape mapping should be done through ScaleConstant or ScaleShape')
    if any([isinstance(alpha, scale) for scale in [ScaleConstant]]) or alpha is None:
        pass
    else:
        raise ValueError('alpha mapping should be done through ScaleConstant')
    return {
        'x' : x,
        'y' : y,
        'size' : size,
        'colour' : colour,
        'shape' : shape,
        'alpha' : alpha,
    }

class Layer:
    """
    Layer object representing a single plot layer.
    """
    def __init__(self, data=None, **kwds):
        """Initialize layer object.

        Parameters:
        -----------
        data: pandas DataFrame instance
        aes: aesthetics dictionary with bindings
        """
        self.data = data
        self.aes = make_aes(**kwds)
        self.legend = {}

    def work(self, fig=None, ax=None):
        """Do the drawing (usually) work.

        Parameters:
        -----------
        fig: matplotlib figure
        ax: matplotlib axis object

        Returns:
        --------
        a tuple with the same figure and axis instances
        """
        return fig, ax

class GeomPoint(Layer):
    def work(self, fig=None, ax=None):
        """Render the layer on a matplotlib axis.
        You can specify either a figure or an axis to draw on.

        Parameters:
        -----------
        fig: matplotlib figure object
        ax: matplotlib axis object to draw on

        Returns:
        --------
        fig, ax: matplotlib figure and axis objects
        """
        if ax is None:
            if fig is None:
                return fig, ax
            else:
                ax = fig.gca()
        for index in range(len(self.data)):
            row = self.data.irow(index)
            x = row[self.aes['x']]
            y = row[self.aes['y']]
            size_scaler = self.aes['size']
            colour_scaler = self.aes['colour']
            shape_scaler = self.aes['shape']
            alpha = self.aes['alpha']
            size_value = size_scaler(self.data, index)
            colour_value = colour_scaler(self.data, index)
            marker_value = shape_scaler(self.data, index)
            alpha_value = alpha(self.data, index)
            patch = ax.scatter(x, y,
                    s=size_value,
                    c=colour_value,
                    marker=marker_value,
                    alpha=alpha_value)
            label = []
            if colour_scaler.categorical:
                label += [colour_scaler.column, row[colour_scaler.column]]
            if shape_scaler.categorical:
                label += [shape_scaler.column, row[shape_scaler.column]]
            self.legend[tuple(label)] = patch
        ax.set_xlabel(self.aes['x'])
        ax.set_ylabel(self.aes['y'])
        return fig, ax

class GeomPolyFit(Layer):
    """
    Draw a polynomial fit of specified degree.
    """
    def __init__(self, degree, lw=2.0, colour='grey'):
        """Initialize GeomPolyFit object.

        Parameters:
        -----------
        degree: an integer, polynomial degree
        lw: line width
        colour: matplotlib colour
        """
        self.degree = degree
        self.lw = lw
        self.colour = colour
        Layer.__init__(self)

    def work(self, fig=None, ax=None):
        """Draw the polynomial fit on matplotlib figure or axis

        Parameters:
        -----------
        fig: matplotlib figure
        ax: matplotlib axis

        Returns:
        --------
        a tuple with figure and axis objects
        """
        if ax is None:
            if fig is None:
                return fig, ax
            else:
                ax = fig.gca()
        from numpy.polynomial.polynomial import polyfit
        from numpy.polynomial.polynomial import polyval
        x = self.data[self.aes['x']]
        y = self.data[self.aes['y']]
        min_x = min(x)
        max_x = max(x)
        c = polyfit(x, y, self.degree)
        x_ = np.linspace(min_x, max_x, len(x))
        y_ = polyval(x_, c)
        ax.plot(x_, y_, lw=self.lw, c=self.colour)
        return fig, ax

class GeomScatter(Layer):
    """
    An efficient scatter plot, use this instead of GeomPoint for speed.
    """
    def __init__(self, marker='o', colour='lightblue', alpha=1.0):
        """Initialize GeomScatter instance.

        Parameters:
        -----------
        marker: matplotlib marker string
        colour: matplotlib colour
        alpha: matplotlib alpha
        """
        self.marker = marker
        self.colour = colour
        self.alpha = alpha
        Layer.__init__(self)

    def work(self, fig=None, ax=None):
        """Draw a scatter plot on matplotlib figure or axis

        Parameters:
        -----------
        fig: matplotlib figure
        ax: matplotlib axis

        Returns:
        --------
        a tuple with figure and axis objects
        """
        if ax is None:
            if fig is None:
                return fig, ax
            else:
                ax = fig.gca()
        x = self.data[self.aes['x']]
        y = self.data[self.aes['y']]
        ax.scatter(x, y, marker=self.marker, c=self.colour, alpha=self.alpha)
        return fig, ax

class GeomHistogram(Layer):
    """
    An efficient histogram, use this instead of GeomBar for speed.
    """
    def __init__(self, bins=10, colour='lightblue'):
        """Initialize GeomHistogram instance.

        Parameters:
        -----------
        bins: integer, number of histogram bins
        colour: matplotlib colour
        """
        self.bins = bins
        self.colour = colour
        Layer.__init__(self)

    def work(self, fig=None, ax=None):
        """Draw a histogram on matplotlib figure or axis

        Parameters:
        -----------
        fig: matplotlib figure
        ax: matplotlib axis

        Returns:
        --------
        a tuple with figure and axis objects
        """
        if ax is None:
            if fig is None:
                return fig, ax
            else:
                ax = fig.gca()
        x = self.data[self.aes['x']]
        ax.hist(_values_from_object(x), self.bins, facecolor=self.colour)
        ax.set_xlabel(self.aes['x'])
        return fig, ax

class GeomDensity(Layer):
    """
    A kernel density estimation plot.
    """
    def work(self, fig=None, ax=None):
        """Draw a one dimensional kernel density plot.
        You can specify either a figure or an axis to draw on.

        Parameters:
        -----------
        fig: matplotlib figure object
        ax: matplotlib axis object to draw on

        Returns:
        --------
        fig, ax: matplotlib figure and axis objects
        """
        if ax is None:
            if fig is None:
                return fig, ax
            else:
                ax = fig.gca()
        from scipy.stats import gaussian_kde
        x = self.data[self.aes['x']]
        gkde = gaussian_kde(x)
        ind = np.linspace(x.min(), x.max(), 200)
        ax.plot(ind, gkde.evaluate(ind))
        return fig, ax

class GeomDensity2D(Layer):
    def work(self, fig=None, ax=None):
        """Draw a two dimensional kernel density plot.
        You can specify either a figure or an axis to draw on.

        Parameters:
        -----------
        fig: matplotlib figure object
        ax: matplotlib axis object to draw on

        Returns:
        --------
        fig, ax: matplotlib figure and axis objects
        """
        if ax is None:
            if fig is None:
                return fig, ax
            else:
                ax = fig.gca()
        x = self.data[self.aes['x']]
        y = self.data[self.aes['y']]
        rvs = np.array([x, y])
        x_min = x.min()
        x_max = x.max()
        y_min = y.min()
        y_max = y.max()
        X, Y = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
        positions = np.vstack([X.ravel(), Y.ravel()])
        values = np.vstack([x, y])
        import scipy.stats as stats
        kernel = stats.gaussian_kde(values)
        Z = np.reshape(kernel(positions).T, X.shape)
        ax.contour(Z, extent=[x_min, x_max, y_min, y_max])
        return fig, ax

class TrellisGrid(Layer):
    def __init__(self, by):
        """Initialize TreelisGrid instance.

        Parameters:
        -----------
        by: column names to group by
        """
        if len(by) != 2:
            raise ValueError("You must give a list of length 2 to group by")
        elif by[0] == '.' and by[1] == '.':
            raise ValueError("At least one of grouping attributes must be not a dot")
        self.by = by

    def trellis(self, layers):
        """Create a trellis structure for a list of layers.
        Each layer will be cloned with different data in to a two dimensional grid.

        Parameters:
        -----------
        layers: a list of Layer objects

        Returns:
        --------
        trellised_layers: Clones of each layer in the list arranged in a trellised latice
        """
        trellised_layers = []
        for layer in layers:
            data = layer.data
            if self.by[0] == '.':
                grouped = data.groupby(self.by[1])
            elif self.by[1] == '.':
                grouped = data.groupby(self.by[0])
            else:
                grouped = data.groupby(self.by)
            groups = list(grouped.groups.keys())
            if self.by[0] == '.' or self.by[1] == '.':
                shingle1 = set([g for g in groups])
            else:
                shingle1 = set([g[0] for g in groups])
                shingle2 = set([g[1] for g in groups])
            if self.by[0] == '.':
                self.rows = 1
                self.cols = len(shingle1)
            elif self.by[1] == '.':
                self.rows = len(shingle1)
                self.cols = 1
            else:
                self.rows = len(shingle1)
                self.cols = len(shingle2)
            trellised = [[None for _ in range(self.cols)] for _ in range(self.rows)]
            self.group_grid = [[None for _ in range(self.cols)] for _ in range(self.rows)]
            row = 0
            col = 0
            for group, data in grouped:
                new_layer = deepcopy(layer)
                new_layer.data = data
                trellised[row][col] = new_layer
                self.group_grid[row][col] = group
                col += 1
                if col >= self.cols:
                    col = 0
                    row += 1
            trellised_layers.append(trellised)
        return trellised_layers

def dictionary_union(dict1, dict2):
    """Take two dictionaries, return dictionary union.

    Parameters:
    -----------
    dict1: Python dictionary
    dict2: Python dictionary

    Returns:
    --------
    A union of the dictionaries. It assumes that values
    with the same keys are identical.
    """
    keys1 = list(dict1.keys())
    keys2 = list(dict2.keys())
    result = {}
    for key1 in keys1:
        result[key1] = dict1[key1]
    for key2 in keys2:
        result[key2] = dict2[key2]
    return result

def merge_aes(layer1, layer2):
    """Merges the aesthetics dictionaries for the two layers.
    Look up sequence_layers function. Which layer is first and which
    one is second is important.

    Parameters:
    -----------
    layer1: Layer object
    layer2: Layer object
    """
    for key in layer2.aes.keys():
        if layer2.aes[key] is None:
            layer2.aes[key] = layer1.aes[key]

def sequence_layers(layers):
    """Go through the list of layers and fill in the missing bits of information.
    The basic rules are this:
    * If the current layer has data set to None, take the data from previous layer.
    * For each aesthetic mapping, if that mapping is set to None, take it from previous layer.

    Parameters:
    -----------
    layers: a list of Layer objects
    """
    for layer1, layer2 in zip(layers[:-1], layers[1:]):
        if layer2.data is None:
            layer2.data = layer1.data
        merge_aes(layer1, layer2)
    return layers

def sequence_grids(layer_grids):
    """Go through the list of layer girds and perform the same thing as sequence_layers.

    Parameters:
    -----------
    layer_grids: a list of two dimensional layer grids
    """
    for grid1, grid2 in zip(layer_grids[:-1], layer_grids[1:]):
        for row1, row2 in zip(grid1, grid2):
            for layer1, layer2 in zip(row1, row2):
                if layer2.data is None:
                    layer2.data = layer1.data
                merge_aes(layer1, layer2)
    return layer_grids

def work_grid(grid, fig):
    """Take a two dimensional grid, add subplots to a figure for each cell and do layer work.

    Parameters:
    -----------
    grid: a two dimensional grid of layers
    fig: matplotlib figure to draw on

    Returns:
    --------
    axes: a two dimensional list of matplotlib axes
    """
    nrows = len(grid)
    ncols = len(grid[0])
    axes = [[None for _ in range(ncols)] for _ in range(nrows)]
    for row in range(nrows):
        for col in range(ncols):
            axes[row][col] = fig.add_subplot(nrows, ncols, ncols * row + col + 1)
            grid[row][col].work(ax=axes[row][col])
    return axes

def adjust_subplots(fig, axes, trellis, layers):
    """Adjust the subtplots on matplotlib figure with the
    fact that we have a trellis plot in mind.

    Parameters:
    -----------
    fig: matplotlib figure
    axes: a two dimensional grid of matplotlib axes
    trellis: TrellisGrid object
    layers: last grid of layers in the plot
    """
    # Flatten the axes grid
    axes = [ax for row in axes for ax in row]
    min_x = min([ax.get_xlim()[0] for ax in axes])
    max_x = max([ax.get_xlim()[1] for ax in axes])
    min_y = min([ax.get_ylim()[0] for ax in axes])
    max_y = max([ax.get_ylim()[1] for ax in axes])
    [ax.set_xlim(min_x, max_x) for ax in axes]
    [ax.set_ylim(min_y, max_y) for ax in axes]
    for index, axis in enumerate(axes):
        if index % trellis.cols == 0:
            pass
        else:
            axis.get_yaxis().set_ticks([])
            axis.set_ylabel('')
        if index / trellis.cols == trellis.rows - 1:
            pass
        else:
            axis.get_xaxis().set_ticks([])
            axis.set_xlabel('')
        if trellis.by[0] == '.':
            label1 = "%s = %s" % (trellis.by[1], trellis.group_grid[index // trellis.cols][index % trellis.cols])
            label2 = None
        elif trellis.by[1] == '.':
            label1 = "%s = %s" % (trellis.by[0], trellis.group_grid[index // trellis.cols][index % trellis.cols])
            label2 = None
        else:
            label1 = "%s = %s" % (trellis.by[0], trellis.group_grid[index // trellis.cols][index % trellis.cols][0])
            label2 = "%s = %s" % (trellis.by[1], trellis.group_grid[index // trellis.cols][index % trellis.cols][1])
        if label2 is not None:
            axis.table(cellText=[[label1], [label2]],
                loc='top', cellLoc='center',
                cellColours=[['lightgrey'], ['lightgrey']])
        else:
            axis.table(cellText=[[label1]], loc='top', cellLoc='center', cellColours=[['lightgrey']])
    # Flatten the layer grid
    layers = [layer for row in layers for layer in row]
    legend = {}
    for layer in layers:
        legend = dictionary_union(legend, layer.legend)
    patches = []
    labels = []
    if len(list(legend.keys())) == 0:
        key_function = lambda tup: tup
    elif len(list(legend.keys())[0]) == 2:
        key_function = lambda tup: (tup[1])
    else:
        key_function = lambda tup: (tup[1], tup[3])
    for key in sorted(list(legend.keys()), key=key_function):
        value = legend[key]
        patches.append(value)
        if len(key) == 2:
            col, val = key
            labels.append("%s" % str(val))
        elif len(key) == 4:
            col1, val1, col2, val2 = key
            labels.append("%s, %s" % (str(val1), str(val2)))
        else:
            raise ValueError("Maximum 2 categorical attributes to display a lengend of")
    if len(legend):
        fig.legend(patches, labels, loc='upper right')
    fig.subplots_adjust(wspace=0.05, hspace=0.2)

class RPlot:
    """
    The main plot object. Add layers to an instance of this object to create a plot.
    """
    def __init__(self, data, x=None, y=None):
        """Initialize RPlot instance.

        Parameters:
        -----------
        data: pandas DataFrame instance
        x: string, DataFrame column name
        y: string, DataFrame column name
        """
        self.layers = [Layer(data, **default_aes(x=x, y=y))]
        trellised = False

    def add(self, layer):
        """Add a layer to RPlot instance.

        Parameters:
        -----------
        layer: Layer instance
        """
        if not isinstance(layer, Layer):
            raise TypeError("The operand on the right side of + must be a Layer instance")
        self.layers.append(layer)

    def render(self, fig=None):
        """Render all the layers on a matplotlib figure.

        Parameters:
        -----------
        fig: matplotlib figure
        """
        import matplotlib.pyplot as plt
        if fig is None:
            fig = plt.gcf()
        # Look for the last TrellisGrid instance in the layer list
        last_trellis = None
        for layer in self.layers:
            if isinstance(layer, TrellisGrid):
                last_trellis = layer
        if last_trellis is None:
            # We have a simple, non-trellised plot
            new_layers = sequence_layers(self.layers)
            for layer in new_layers:
                layer.work(fig=fig)
            legend = {}
            for layer in new_layers:
                legend = dictionary_union(legend, layer.legend)
            patches = []
            labels = []
            if len(list(legend.keys())) == 0:
                key_function = lambda tup: tup
            elif len(list(legend.keys())[0]) == 2:
                key_function = lambda tup: (tup[1])
            else:
                key_function = lambda tup: (tup[1], tup[3])
            for key in sorted(list(legend.keys()), key=key_function):
                value = legend[key]
                patches.append(value)
                if len(key) == 2:
                    col, val = key
                    labels.append("%s" % str(val))
                elif len(key) == 4:
                    col1, val1, col2, val2 = key
                    labels.append("%s, %s" % (str(val1), str(val2)))
                else:
                    raise ValueError("Maximum 2 categorical attributes to display a lengend of")
            if len(legend):
                fig.legend(patches, labels, loc='upper right')
        else:
            # We have a trellised plot.
            # First let's remove all other TrellisGrid instances from the layer list,
            # including this one.
            new_layers = []
            for layer in self.layers:
                if not isinstance(layer, TrellisGrid):
                    new_layers.append(layer)
            new_layers = sequence_layers(new_layers)
            # Now replace the old layers by their trellised versions
            new_layers = last_trellis.trellis(new_layers)
            # Prepare the subplots and draw on them
            new_layers = sequence_grids(new_layers)
            axes_grids = [work_grid(grid, fig) for grid in new_layers]
            axes_grid = axes_grids[-1]
            adjust_subplots(fig, axes_grid, last_trellis, new_layers[-1])
        # And we're done
        return fig