This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/differentiation.py is in python-ufl 1.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"Differential operators."

# Copyright (C) 2008-2014 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.

from ufl.log import warning, error
from ufl.assertions import ufl_assert
from ufl.common import subdict, mergedicts, EmptyDict
from ufl.expr import Expr
from ufl.terminal import Terminal
from ufl.operatorbase import Operator
from ufl.exprcontainers import ExprList, ExprMapping
from ufl.constantvalue import Zero
from ufl.indexing import Index, FixedIndex, MultiIndex, as_multi_index
from ufl.indexed import Indexed
from ufl.indexutils import unique_indices
from ufl.variable import Variable
from ufl.precedence import parstr

#--- Basic differentiation objects ---

class Derivative(Operator):
    "Base class for all derivative types."
    __slots__ = ()
    def __init__(self):
        Operator.__init__(self)

class CoefficientDerivative(Derivative):
    """Derivative of the integrand of a form w.r.t. the
    degrees of freedom in a discrete Coefficient."""
    __slots__ = ("_integrand", "_coefficients", "_arguments",
                 "_coefficient_derivatives")

    def __new__(cls, integrand, coefficients, arguments, coefficient_derivatives):
        ufl_assert(isinstance(coefficients, ExprList),
                   "Expecting ExprList instance with Coefficients.")
        ufl_assert(isinstance(arguments, ExprList),
                   "Expecting ExprList instance with Arguments.")
        ufl_assert(isinstance(coefficient_derivatives, ExprMapping),
                   "Expecting ExprMapping for coefficient derivatives.")
        if isinstance(integrand, Zero):
            return integrand
        return Derivative.__new__(cls)

    def __init__(self, integrand, coefficients, arguments, coefficient_derivatives):
        Derivative.__init__(self)
        self._integrand = integrand
        self._coefficients = coefficients
        self._arguments = arguments
        if isinstance(coefficient_derivatives, ExprMapping):
            self._coefficient_derivatives = coefficient_derivatives
        else:
            self._coefficient_derivatives = ExprMapping(coefficient_derivatives)

    def operands(self):
        return (self._integrand, self._coefficients, self._arguments, self._coefficient_derivatives)

    def shape(self):
        return self._integrand.shape()

    def free_indices(self):
        return self._integrand.free_indices()

    def index_dimensions(self):
        return self._integrand.index_dimensions()

    def __str__(self):
        return "d/dfj { %s }, with fh=%s, dfh/dfj = %s, and coefficient derivatives %s"\
            % (self._integrand, self._coefficients, self._arguments, self._coefficient_derivatives)

    def __repr__(self):
        return "CoefficientDerivative(%r, %r, %r, %r)"\
            % (self._integrand, self._coefficients, self._arguments, self._coefficient_derivatives)

def split_indices(expression, idx):
    idims = dict(expression.index_dimensions())
    if isinstance(idx, Index) and idims.get(idx) is None:
        idims[idx] = expression.geometric_dimension()
    fi = unique_indices(expression.free_indices() + (idx,))
    return fi, idims

class VariableDerivative(Derivative):
    __slots__ = ("_f", "_v", "_free_indices", "_index_dimensions", "_shape",)
    def __new__(cls, f, v):
        # Return zero if expression is trivially independent of variable
        if isinstance(f, Terminal):
            free_indices = tuple(set(f.free_indices()) ^ set(v.free_indices()))
            index_dimensions = mergedicts([f.index_dimensions(), v.index_dimensions()])
            index_dimensions = subdict(index_dimensions, free_indices)
            return Zero(f.shape() + v.shape(), free_indices, index_dimensions)
        return Derivative.__new__(cls)

    def __init__(self, f, v):
        Derivative.__init__(self)
        ufl_assert(isinstance(f, Expr), "Expecting an Expr in VariableDerivative.")
        if isinstance(v, Indexed):
            ufl_assert(isinstance(v._expression, Variable), \
                "Expecting a Variable in VariableDerivative.")
            error("diff(f, v[i]) isn't handled properly in all code.") # TODO: Should we allow this? Can do diff(f, v)[..., i], which leads to additional work but does the same.
        else:
            ufl_assert(isinstance(v, Variable), \
                "Expecting a Variable in VariableDerivative.")
        self._f = f
        self._v = v
        fi = f.free_indices()
        vi = v.free_indices()
        fid = f.index_dimensions()
        vid = v.index_dimensions()
        #print "set(fi)", set(fi)
        #print "set(vi)", set(vi)
        #print "^", (set(fi) ^ set(vi))
        ufl_assert(not (set(fi) & set(vi)), \
            "Repeated indices not allowed in VariableDerivative.") # TODO: Allow diff(f[i], v[i]) = sum_i VariableDerivative(f[i], v[i])? Can implement direct expansion in diff as a first approximation.
        self._free_indices = tuple(fi + vi)
        self._index_dimensions = dict(fid)
        self._index_dimensions.update(vid)
        self._shape = f.shape() + v.shape()

    def operands(self):
        return (self._f, self._v)

    def free_indices(self):
        return self._free_indices

    def index_dimensions(self):
        return self._index_dimensions

    def shape(self):
        return self._shape

    def __str__(self):
        if isinstance(self._f, Terminal):
            return "d%s/d[%s]" % (self._f, self._v)
        return "d/d[%s] %s" % (self._v, parstr(self._f, self))

    def __repr__(self):
        return "VariableDerivative(%r, %r)" % (self._f, self._v)

#--- Compound differentiation objects ---

class CompoundDerivative(Derivative):
    "Base class for all compound derivative types."
    __slots__ = ()
    def __init__(self):
        Derivative.__init__(self)

class Grad(CompoundDerivative):
    __slots__ = ("_f", "_dim",)

    def __new__(cls, f):
        # Return zero if expression is trivially constant
        if f.is_cellwise_constant():
            dim = f.geometric_dimension()
            free_indices = f.free_indices()
            index_dimensions = subdict(f.index_dimensions(), free_indices)
            return Zero(f.shape() + (dim,), free_indices, index_dimensions)
        return CompoundDerivative.__new__(cls)

    def __init__(self, f):
        CompoundDerivative.__init__(self)
        self._f = f
        self._dim = f.geometric_dimension()

    def reconstruct(self, op):
        "Return a new object of the same type with new operands."
        if op.is_cellwise_constant():
            ufl_assert(op.shape() == self._f.shape(),
                       "Operand shape mismatch in Grad reconstruct.")
            ufl_assert(self._f.free_indices() == op.free_indices(),
                       "Free index mismatch in Grad reconstruct.")
            return Zero(self.shape(), self.free_indices(),
                        self.index_dimensions())
        return self.__class__._uflclass(op)

    def evaluate(self, x, mapping, component, index_values, derivatives=()):
        "Get child from mapping and return the component asked for."
        r = len(component)
        component, i = component[:-1], component[-1]
        derivatives = derivatives + (i,)
        result = self._f.evaluate(x, mapping, component, index_values,
                                  derivatives=derivatives)
        return result

    def operands(self):
        return (self._f,)

    def free_indices(self):
        return self._f.free_indices()

    def index_dimensions(self):
        return self._f.index_dimensions()

    def shape(self):
        return self._f.shape() + (self._dim,)

    def __str__(self):
        return "grad(%s)" % self._f

    def __repr__(self):
        return "Grad(%r)" % self._f

class ReferenceGrad(CompoundDerivative): # FIXME: Check implementation!
    __slots__ = ("_f", "_dim",)

    def __new__(cls, f):
        # Return zero if expression is trivially constant
        if f.is_cellwise_constant():
            domain = f.domain()
            dim = domain.topological_dimension()
            free_indices = f.free_indices()
            index_dimensions = subdict(f.index_dimensions(), free_indices)
            return Zero(f.shape() + (dim,), free_indices, index_dimensions)
        return CompoundDerivative.__new__(cls)

    def __init__(self, f):
        CompoundDerivative.__init__(self)
        domain = f.domain()
        dim = domain.topological_dimension()
        self._f = f
        self._dim = dim

    def reconstruct(self, op):
        "Return a new object of the same type with new operands."
        if op.is_cellwise_constant():
            ufl_assert(op.shape() == self._f.shape(),
                       "Operand shape mismatch in ReferenceGrad reconstruct.")
            ufl_assert(self._f.free_indices() == op.free_indices(),
                       "Free index mismatch in ReferenceGrad reconstruct.")
            return Zero(self.shape(), self.free_indices(),
                        self.index_dimensions())
        return self.__class__._uflclass(op)

    def evaluate(self, x, mapping, component, index_values, derivatives=()):
        "Get child from mapping and return the component asked for."
        r = len(component)
        component, i = component[:-1], component[-1]
        derivatives = derivatives + (i,)
        result = self._f.evaluate(x, mapping, component, index_values,
                                  derivatives=derivatives)
        return result

    def operands(self):
        return (self._f,)

    def free_indices(self):
        return self._f.free_indices()

    def index_dimensions(self):
        return self._f.index_dimensions()

    def shape(self):
        return self._f.shape() + (self._dim,)

    def __str__(self):
        return "reference_grad(%s)" % self._f

    def __repr__(self):
        return "ReferenceGrad(%r)" % self._f

class Div(CompoundDerivative):
    __slots__ = ("_f",)

    def __new__(cls, f):
        ufl_assert(not f.free_indices(), \
            "TODO: Taking divergence of an expression with free indices,"\
            "should this be a valid expression? Please provide examples!")

        # Return zero if expression is trivially constant
        if f.is_cellwise_constant():
            return Zero(f.shape()[:-1]) # No free indices asserted above

        return CompoundDerivative.__new__(cls)

    def __init__(self, f):
        CompoundDerivative.__init__(self)
        self._f = f

    def operands(self):
        return (self._f, )

    def free_indices(self):
        return self._f.free_indices()

    def index_dimensions(self):
        return self._f.index_dimensions()

    def shape(self):
        return self._f.shape()[:-1]

    def __str__(self):
        return "div(%s)" % self._f

    def __repr__(self):
        return "Div(%r)" % self._f

class NablaGrad(CompoundDerivative):
    __slots__ = ("_f", "_dim",)

    def __new__(cls, f):
        # Return zero if expression is trivially constant
        if f.is_cellwise_constant():
            dim = f.geometric_dimension()
            free_indices = f.free_indices()
            index_dimensions = subdict(f.index_dimensions(), free_indices)
            return Zero((dim,) + f.shape(), free_indices, index_dimensions)
        return CompoundDerivative.__new__(cls)

    def __init__(self, f):
        CompoundDerivative.__init__(self)
        self._f = f
        self._dim = f.geometric_dimension()

    def reconstruct(self, op):
        "Return a new object of the same type with new operands."
        if op.is_cellwise_constant():
            ufl_assert(op.shape() == self._f.shape(),
                       "Operand shape mismatch in NablaGrad reconstruct.")
            ufl_assert(self._f.free_indices() == op.free_indices(),
                       "Free index mismatch in NablaGrad reconstruct.")
            return Zero(self.shape(), self.free_indices(),
                        self.index_dimensions())
        return self.__class__._uflclass(op)

    def operands(self):
        return (self._f, )

    def free_indices(self):
        return self._f.free_indices()

    def index_dimensions(self):
        return self._f.index_dimensions()

    def shape(self):
        return (self._dim,) + self._f.shape()

    def __str__(self):
        return "nabla_grad(%s)" % self._f

    def __repr__(self):
        return "NablaGrad(%r)" % self._f

class NablaDiv(CompoundDerivative):
    __slots__ = ("_f",)

    def __new__(cls, f):
        ufl_assert(not f.free_indices(), \
            "TODO: Taking divergence of an expression with free indices,"\
            "should this be a valid expression? Please provide examples!")

        # Return zero if expression is trivially constant
        if f.is_cellwise_constant():
            return Zero(f.shape()[1:]) # No free indices asserted above

        return CompoundDerivative.__new__(cls)

    def __init__(self, f):
        CompoundDerivative.__init__(self)
        self._f = f

    def operands(self):
        return (self._f, )

    def free_indices(self):
        return self._f.free_indices()

    def index_dimensions(self):
        return self._f.index_dimensions()

    def shape(self):
        return self._f.shape()[1:]

    def __str__(self):
        return "nabla_div(%s)" % self._f

    def __repr__(self):
        return "NablaDiv(%r)" % self._f

class Curl(CompoundDerivative):
    __slots__ = ("_f", "_shape",)

    def __new__(cls, f):
        # Validate input
        sh = f.shape()
        ufl_assert(f.shape() in ((), (2,), (3,)), "Expecting a scalar, 2D vector or 3D vector.")
        ufl_assert(not f.free_indices(), \
            "TODO: Taking curl of an expression with free indices, should this be a valid expression? Please provide examples!")

        # Return zero if expression is trivially constant
        if f.is_cellwise_constant():
            sh = { (): (2,), (2,): (), (3,): (3,) }[sh]
            #free_indices = f.free_indices()
            #index_dimensions = subdict(f.index_dimensions(), free_indices)
            #return Zero((f.geometric_dimension(),), free_indices, index_dimensions)
            return Zero(sh)
        return CompoundDerivative.__new__(cls)

    def __init__(self, f):
        CompoundDerivative.__init__(self)
        sh = { (): (2,), (2,): (), (3,): (3,) }[f.shape()]
        self._f = f
        self._shape = sh

    def operands(self):
        return (self._f, )

    def free_indices(self):
        return self._f.free_indices()

    def index_dimensions(self):
        return self._f.index_dimensions()

    def shape(self):
        return self._shape

    def __str__(self):
        return "curl(%s)" % self._f

    def __repr__(self):
        return "Curl(%r)" % self._f