This file is indexed.

/usr/share/pyshared/SparsExamples/poisson_test.py is in python-sparse-examples 1.1-1.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy
import math
from pysparse import spmatrix
from pysparse import itsolvers
from pysparse import precon
import time

def poisson2d(n):
    L = spmatrix.ll_mat(n*n, n*n)
    for i in range(n):
        for j in range(n):
            k = i + n*j
            L[k,k] = 4
            if i > 0:
                L[k,k-1] = -1
            if i < n-1:
                L[k,k+1] = -1
            if j > 0:
                L[k,k-n] = -1
            if j < n-1:
                L[k,k+n] = -1
    return L

def poisson2d_sym(n):
    L = spmatrix.ll_mat_sym(n*n)
    for i in range(n):
        for j in range(n):
            k = i + n*j
            L[k,k] = 4
            if i > 0:
                L[k,k-1] = -1
            if j > 0:
                L[k,k-n] = -1
    return L

def poisson2d_sym_blk(n):
    L = spmatrix.ll_mat_sym(n*n)
    I = spmatrix.ll_mat_sym(n)
    P = spmatrix.ll_mat_sym(n)
    for i in range(n):
        I[i,i] = -1
    for i in range(n):
        P[i,i] = 4
        if i > 0: P[i,i-1] = -1
    for i in range(0, n*n, n):
        L[i:i+n,i:i+n] = P
        if i > 0: L[i:i+n,i-n:i] = I
    return L

tol = 1e-8
n = 100

t1 = time.clock()
L = poisson2d_sym_blk(n)
print 'Time for constructing the matrix using poisson2d_sym_blk: %8.2f sec' % (time.clock() - t1, )

t1 = time.clock()
L = poisson2d_sym(n)
print 'Time for constructing the matrix using poisson2d_sym    : %8.2f sec' % (time.clock() - t1, )

t1 = time.clock()
L = poisson2d(n)
print 'Time for constructing the matrix using poisson2d        : %8.2f sec' % (time.clock() - t1, )


A = L.to_csr()
S = L.to_sss()
print L.nnz
print S.nnz
print A.nnz
b = numpy.ones(n*n, 'd')

# ---------------------------------------------------------------------------------------

t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(S, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using SSS matrix: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
S.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

print x[0:10]

# ---------------------------------------------------------------------------------------

t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using CSR matrix: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
A.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

# ---------------------------------------------------------------------------------------

t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(L, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using LL matrix: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
A.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

# ---------------------------------------------------------------------------------------

K_ssor = precon.ssor(S, 1.9)
t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(S, b, x, tol, 2000, K_ssor)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using SSS matrix and SSOR preconditioner: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
S.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

# ---------------------------------------------------------------------------------------

from pysparse import jdsym
jdsym.jdsym(S, None, None, 5, 0.0, 1e-8, 100, itsolvers.qmrs, clvl=1)