This file is indexed.

/usr/lib/python2.7/dist-packages/sklearn/pipeline.py is in python-sklearn 0.14.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
The :mod:`sklearn.pipeline` module implements utilities to build a composite
estimator, as a chain of transforms and estimators.
"""
# Author: Edouard Duchesnay
#         Gael Varoquaux
#         Virgile Fritsch
#         Alexandre Gramfort
# Licence: BSD

import numpy as np
from scipy import sparse

from .base import BaseEstimator, TransformerMixin
from .externals.joblib import Parallel, delayed
from .externals import six
from .utils import tosequence
from .externals.six import iteritems

__all__ = ['Pipeline', 'FeatureUnion']


# One round of beers on me if someone finds out why the backslash
# is needed in the Attributes section so as not to upset sphinx.

class Pipeline(BaseEstimator):
    """Pipeline of transforms with a final estimator.

    Sequentially apply a list of transforms and a final estimator.
    Intermediate steps of the pipeline must be 'transforms', that is, they
    must implements fit and transform methods.
    The final estimator needs only implements fit.

    The purpose of the pipeline is to assemble several steps that can be
    cross-validated together while setting different parameters.
    For this, it enables setting parameters of the various steps using their
    names and the parameter name separated by a '__', as in the example below.

    Parameters
    ----------
    steps: list
        List of (name, transform) tuples (implementing fit/transform) that are
        chained, in the order in which they are chained, with the last object
        an estimator.

    Examples
    --------
    >>> from sklearn import svm
    >>> from sklearn.datasets import samples_generator
    >>> from sklearn.feature_selection import SelectKBest
    >>> from sklearn.feature_selection import f_regression
    >>> from sklearn.pipeline import Pipeline

    >>> # generate some data to play with
    >>> X, y = samples_generator.make_classification(
    ...     n_informative=5, n_redundant=0, random_state=42)

    >>> # ANOVA SVM-C
    >>> anova_filter = SelectKBest(f_regression, k=5)
    >>> clf = svm.SVC(kernel='linear')
    >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)])

    >>> # You can set the parameters using the names issued
    >>> # For instance, fit using a k of 10 in the SelectKBest
    >>> # and a parameter 'C' of the svn
    >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
    ...                                              # doctest: +ELLIPSIS
    Pipeline(steps=[...])

    >>> prediction = anova_svm.predict(X)
    >>> anova_svm.score(X, y)
    0.75
    """

    # BaseEstimator interface

    def __init__(self, steps):
        self.named_steps = dict(steps)
        names, estimators = zip(*steps)
        if len(self.named_steps) != len(steps):
            raise ValueError("Names provided are not unique: %s" % names)

        # shallow copy of steps
        self.steps = tosequence(zip(names, estimators))
        transforms = estimators[:-1]
        estimator = estimators[-1]

        for t in transforms:
            if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
                    hasattr(t, "transform")):
                raise TypeError("All intermediate steps a the chain should "
                                "be transforms and implement fit and transform"
                                "'%s' (type %s) doesn't)" % (t, type(t)))

        if not hasattr(estimator, "fit"):
            raise TypeError("Last step of chain should implement fit "
                            "'%s' (type %s) doesn't)"
                            % (estimator, type(estimator)))

    def get_params(self, deep=True):
        if not deep:
            return super(Pipeline, self).get_params(deep=False)
        else:
            out = self.named_steps.copy()
            for name, step in six.iteritems(self.named_steps):
                for key, value in six.iteritems(step.get_params(deep=True)):
                    out['%s__%s' % (name, key)] = value
            return out

    # Estimator interface

    def _pre_transform(self, X, y=None, **fit_params):
        fit_params_steps = dict((step, {}) for step, _ in self.steps)
        for pname, pval in six.iteritems(fit_params):
            step, param = pname.split('__', 1)
            fit_params_steps[step][param] = pval
        Xt = X
        for name, transform in self.steps[:-1]:
            if hasattr(transform, "fit_transform"):
                Xt = transform.fit_transform(Xt, y, **fit_params_steps[name])
            else:
                Xt = transform.fit(Xt, y, **fit_params_steps[name]) \
                              .transform(Xt)
        return Xt, fit_params_steps[self.steps[-1][0]]

    def fit(self, X, y=None, **fit_params):
        """Fit all the transforms one after the other and transform the
        data, then fit the transformed data using the final estimator.
        """
        Xt, fit_params = self._pre_transform(X, y, **fit_params)
        self.steps[-1][-1].fit(Xt, y, **fit_params)
        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit all the transforms one after the other and transform the
        data, then use fit_transform on transformed data using the final
        estimator."""
        Xt, fit_params = self._pre_transform(X, y, **fit_params)
        if hasattr(self.steps[-1][-1], 'fit_transform'):
            return self.steps[-1][-1].fit_transform(Xt, y, **fit_params)
        else:
            return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt)

    def predict(self, X):
        """Applies transforms to the data, and the predict method of the
        final estimator. Valid only if the final estimator implements
        predict."""
        Xt = X
        for name, transform in self.steps[:-1]:
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].predict(Xt)

    def predict_proba(self, X):
        """Applies transforms to the data, and the predict_proba method of the
        final estimator. Valid only if the final estimator implements
        predict_proba."""
        Xt = X
        for name, transform in self.steps[:-1]:
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].predict_proba(Xt)

    def decision_function(self, X):
        """Applies transforms to the data, and the decision_function method of
        the final estimator. Valid only if the final estimator implements
        decision_function."""
        Xt = X
        for name, transform in self.steps[:-1]:
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].decision_function(Xt)

    def predict_log_proba(self, X):
        Xt = X
        for name, transform in self.steps[:-1]:
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].predict_log_proba(Xt)

    def transform(self, X):
        """Applies transforms to the data, and the transform method of the
        final estimator. Valid only if the final estimator implements
        transform."""
        Xt = X
        for name, transform in self.steps:
            Xt = transform.transform(Xt)
        return Xt

    def inverse_transform(self, X):
        if X.ndim == 1:
            X = X[None, :]
        Xt = X
        for name, step in self.steps[::-1]:
            Xt = step.inverse_transform(Xt)
        return Xt

    def score(self, X, y=None):
        """Applies transforms to the data, and the score method of the
        final estimator. Valid only if the final estimator implements
        score."""
        Xt = X
        for name, transform in self.steps[:-1]:
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].score(Xt, y)

    @property
    def _pairwise(self):
        # check if first estimator expects pairwise input
        return getattr(self.steps[0][1], '_pairwise', False)


def _fit_one_transformer(transformer, X, y):
    transformer.fit(X, y)


def _transform_one(transformer, name, X, transformer_weights):
    if transformer_weights is not None and name in transformer_weights:
        # if we have a weight for this transformer, muliply output
        return transformer.transform(X) * transformer_weights[name]
    return transformer.transform(X)


def _fit_transform_one(transformer, name, X, y, transformer_weights,
                       **fit_params):
    if transformer_weights is not None and name in transformer_weights:
        # if we have a weight for this transformer, muliply output
        if hasattr(transformer, 'fit_transform'):
            return (transformer.fit_transform(X, y, **fit_params)
                    * transformer_weights[name])
        else:
            return (transformer.fit(X, y, **fit_params).transform(X)
                    * transformer_weights[name])
    if hasattr(transformer, 'fit_transform'):
        return transformer.fit_transform(X, y, **fit_params)
    else:
        return transformer.fit(X, y, **fit_params).transform(X)


class FeatureUnion(BaseEstimator, TransformerMixin):
    """Concatenates results of multiple transformer objects.

    This estimator applies a list of transformer objects in parallel to the
    input data, then concatenates the results. This is useful to combine
    several feature extraction mechanisms into a single transformer.

    Parameters
    ----------
    transformer_list: list of (string, transformer) tuples
        List of transformer objects to be applied to the data. The first
        half of each tuple is the name of the transformer.

    n_jobs: int, optional
        Number of jobs to run in parallel (default 1).

    transformer_weights: dict, optional
        Multiplicative weights for features per transformer.
        Keys are transformer names, values the weights.

    """
    def __init__(self, transformer_list, n_jobs=1, transformer_weights=None):
        self.transformer_list = transformer_list
        self.n_jobs = n_jobs
        self.transformer_weights = transformer_weights

    def get_feature_names(self):
        """Get feature names from all transformers.

        Returns
        -------
        feature_names : list of strings
            Names of the features produced by transform.
        """
        feature_names = []
        for name, trans in self.transformer_list:
            if not hasattr(trans, 'get_feature_names'):
                raise AttributeError("Transformer %s does not provide"
                                     " get_feature_names." % str(name))
            feature_names.extend([name + "__" + f for f in
                                  trans.get_feature_names()])
        return feature_names

    def fit(self, X, y=None):
        """Fit all transformers using X.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features)
            Input data, used to fit transformers.
        """
        Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_one_transformer)(trans, X, y)
            for name, trans in self.transformer_list)
        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit all transformers using X, transform the data and concatenate
        results.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features)
            Input data to be transformed.

        Returns
        -------
        X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
            hstack of results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers.
        """
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_transform_one)(trans, name, X, y,
                                        self.transformer_weights, **fit_params)
            for name, trans in self.transformer_list)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    def transform(self, X):
        """Transform X separately by each transformer, concatenate results.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features)
            Input data to be transformed.

        Returns
        -------
        X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
            hstack of results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers.
        """
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(trans, name, X, self.transformer_weights)
            for name, trans in self.transformer_list)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    def get_params(self, deep=True):
        if not deep:
            return super(FeatureUnion, self).get_params(deep=False)
        else:
            out = dict(self.transformer_list)
            for name, trans in self.transformer_list:
                for key, value in iteritems(trans.get_params(deep=True)):
                    out['%s__%s' % (name, key)] = value
            return out