/usr/share/pyshared/Pyrex/Compiler/ExprNodes.py is in python-pyrex 0.9.8.5-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 | #
# Pyrex - Parse tree nodes for expressions
#
import operator
from string import join
from Errors import error, InternalError
import Naming
from Nodes import Node
import PyrexTypes
from PyrexTypes import py_object_type, c_long_type, typecast, error_type
import Symtab
import Options
from Pyrex.Debugging import print_call_chain
from DebugFlags import debug_disposal_code, debug_temp_alloc, \
debug_coercion
class ExprNode(Node):
# subexprs [string] Class var holding names of subexpr node attrs
# type PyrexType Type of the result
# result_code string Code fragment
# result_ctype string C type of result_code if different from type
# inplace_result string Temp var holding in-place operation result
# is_temp boolean Result is in a temporary variable
# is_sequence_constructor
# boolean Is a list or tuple constructor expression
# saved_subexpr_nodes
# [ExprNode or [ExprNode or None] or None]
# Cached result of subexpr_nodes()
result_ctype = None
# The Analyse Expressions phase for expressions is split
# into two sub-phases:
#
# Analyse Types
# Determines the result type of the expression based
# on the types of its sub-expressions, and inserts
# coercion nodes into the expression tree where needed.
# Marks nodes which will need to have temporary variables
# allocated.
#
# Allocate Temps
# Allocates temporary variables where needed, and fills
# in the result_code field of each node.
#
# ExprNode provides some convenience routines which
# perform both of the above phases. These should only
# be called from statement nodes, and only when no
# coercion nodes need to be added around the expression
# being analysed. If coercion is needed, the above two phases
# should be invoked separately.
#
# Framework code in ExprNode provides much of the common
# processing for the various phases. It makes use of the
# 'subexprs' class attribute of ExprNodes, which should
# contain a list of the names of attributes which can
# hold sub-nodes or sequences of sub-nodes.
#
# The framework makes use of a number of abstract methods.
# Their responsibilities are as follows.
#
# Declaration Analysis phase
#
# analyse_target_declaration
# Called during the Analyse Declarations phase to analyse
# the LHS of an assignment or argument of a del statement.
# Nodes which cannot be the LHS of an assignment need not
# implement it.
#
# Expression Analysis phase
#
# analyse_types
# - Call analyse_types on all sub-expressions.
# - Check operand types, and wrap coercion nodes around
# sub-expressions where needed.
# - Set the type of this node.
# - If a temporary variable will be required for the
# result, set the is_temp flag of this node.
#
# analyse_target_types
# Called during the Analyse Types phase to analyse
# the LHS of an assignment or argument of a del
# statement. Similar responsibilities to analyse_types.
#
# allocate_temps
# - Call allocate_temps for all sub-nodes.
# - Call allocate_temp for this node.
# - If a temporary was allocated, call release_temp on
# all sub-expressions.
#
# allocate_target_temps
# - Call allocate_temps on sub-nodes and allocate any other
# temps used during assignment.
# - Fill in result_code with a C lvalue if needed.
# - If a rhs node is supplied, call release_temp on it.
# - Call release_temp on sub-nodes and release any other
# temps used during assignment.
#
# #calculate_result_code
# # - Called during the Allocate Temps phase. Should return a
# # C code fragment evaluating to the result. This is only
# # called when the result is not a temporary.
#
# target_code
# Called by the default implementation of allocate_target_temps.
# Should return a C lvalue for assigning to the node. The default
# implementation calls calculate_result_code.
#
# check_const
# - Check that this node and its subnodes form a
# legal constant expression. If so, do nothing,
# otherwise call not_const.
#
# The default implementation of check_const
# assumes that the expression is not constant.
#
# check_const_addr
# - Same as check_const, except check that the
# expression is a C lvalue whose address is
# constant. Otherwise, call addr_not_const.
#
# The default implementation of calc_const_addr
# assumes that the expression is not a constant
# lvalue.
#
# Code Generation phase
#
# generate_evaluation_code
# 1. Call generate_evaluation_code for sub-expressions.
# 2. Generate any C statements necessary to calculate
# the result of this node from the results of its
# sub-expressions. If result is not in a temporary, record
# any information that will be needed by this node's
# implementation of calculate_result_code().
# 4. If result is in a temporary, call generate_disposal_code
# on all sub-expressions.
#
# A default implementation of generate_evaluation_code
# is provided which uses the folling abstract methods:
# generate_result_code (for no. 2)
#
# generate_assignment_code
# Called on the LHS of an assignment.
# - Call generate_evaluation_code for sub-expressions.
# - Generate code to perform the assignment.
# - If the assignment absorbed a reference, call
# generate_post_assignment_code on the RHS,
# otherwise call generate_disposal_code on it.
#
# generate_deletion_code
# Called on an argument of a del statement.
# - Call generate_evaluation_code for sub-expressions.
# - Generate code to perform the deletion.
# - Call generate_disposal_code on all sub-expressions.
#
# calculate_result_code
# Return a C code fragment representing the result of this node.
# This is only called if the result is not in a temporary.
#
is_sequence_constructor = 0
is_attribute = 0
saved_subexpr_nodes = None
is_temp = 0
def not_implemented(self, method_name):
print_call_chain(method_name, "not implemented") ###
raise InternalError(
"%s.%s not implemented" %
(self.__class__.__name__, method_name))
def is_lvalue(self):
return 0
def is_inplace_lvalue(self):
return 0
def is_ephemeral(self):
# An ephemeral node is one whose result is in
# a Python temporary and we suspect there are no
# other references to it. Certain operations are
# disallowed on such values, since they are
# likely to result in a dangling pointer.
return self.type.is_pyobject and self.is_temp
def subexpr_nodes(self):
# Extract a list of subexpression nodes based
# on the contents of the subexprs class attribute.
if self.saved_subexpr_nodes is None:
nodes = []
for name in self.subexprs:
item = getattr(self, name)
if item:
if isinstance(item, ExprNode):
nodes.append(item)
else:
nodes.extend(item)
self.saved_subexpr_nodes = nodes
return self.saved_subexpr_nodes
def result(self):
# Return a C code fragment for the result of this node.
if self.is_temp:
result_code = self.result_code
else:
result_code = self.calculate_result_code()
return result_code
def result_as(self, type = None):
# Return the result code cast to the specified C type.
return typecast(type, self.ctype(), self.result())
def py_result(self):
# Return the result code cast to PyObject *.
return self.result_as(py_object_type)
def ctype(self):
# Return the native C type of the result.
return self.result_ctype or self.type
def compile_time_value(self, denv):
# Return value of compile-time expression, or report error.
error(self.pos, "Invalid compile-time expression")
def compile_time_value_error(self, e):
error(self.pos, "Error in compile-time expression: %s: %s" % (
e.__class__.__name__, e))
# ------------- Declaration Analysis ----------------
def analyse_target_declaration(self, env):
error(self.pos, "Cannot assign to or delete this")
# ------------- Expression Analysis ----------------
def analyse_const_expression(self, env):
# Called during the analyse_declarations phase of a
# constant expression. Analyses the expression's type,
# checks whether it is a legal const expression,
# and determines its value.
self.analyse_types(env)
self.allocate_temps(env)
self.check_const()
def analyse_expressions(self, env):
# Convenience routine performing both the Type
# Analysis and Temp Allocation phases for a whole
# expression.
self.analyse_types(env)
self.allocate_temps(env)
def analyse_target_expression(self, env, rhs):
# Convenience routine performing both the Type
# Analysis and Temp Allocation phases for the LHS of
# an assignment.
self.analyse_target_types(env)
self.allocate_target_temps(env, rhs)
def analyse_boolean_expression(self, env):
# Analyse expression and coerce to a boolean.
self.analyse_types(env)
bool = self.coerce_to_boolean(env)
bool.allocate_temps(env)
return bool
def analyse_temp_boolean_expression(self, env):
# Analyse boolean expression and coerce result into
# a temporary. This is used when a branch is to be
# performed on the result and we won't have an
# opportunity to ensure disposal code is executed
# afterwards. By forcing the result into a temporary,
# we ensure that all disposal has been done by the
# time we get the result.
self.analyse_types(env)
bool = self.coerce_to_boolean(env)
temp_bool = bool.coerce_to_temp(env)
temp_bool.allocate_temps(env)
return temp_bool
# --------------- Type Analysis ------------------
def analyse_as_module(self, env):
# If this node can be interpreted as a reference to a
# cimported module, return its scope, else None.
return None
def analyse_as_extension_type(self, env):
# If this node can be interpreted as a reference to an
# extension type, return its type, else None.
return None
def analyse_types(self, env):
self.not_implemented("analyse_types")
def analyse_target_types(self, env):
self.analyse_types(env)
def analyse_inplace_types(self, env):
if self.is_inplace_lvalue():
self.analyse_types(env)
else:
error(self.pos, "Invalid target for in-place operation")
self.type = error_type
def gil_assignment_check(self, env):
if env.nogil and self.type.is_pyobject:
error(self.pos, "Assignment of Python object not allowed without gil")
def check_const(self):
self.not_const()
def not_const(self):
error(self.pos, "Not allowed in a constant expression")
def check_const_addr(self):
self.addr_not_const()
def addr_not_const(self):
error(self.pos, "Address is not constant")
def gil_check(self, env):
if env.nogil and self.type.is_pyobject:
self.gil_error()
# ----------------- Result Allocation -----------------
def result_in_temp(self):
# Return true if result is in a temporary owned by
# this node or one of its subexpressions. Overridden
# by certain nodes which can share the result of
# a subnode.
return self.is_temp
def allocate_target_temps(self, env, rhs, inplace = 0):
# Perform temp allocation for the LHS of an assignment.
if debug_temp_alloc:
print self, "Allocating target temps"
self.allocate_subexpr_temps(env)
#self.result_code = self.target_code()
if rhs:
rhs.release_temp(env)
self.release_subexpr_temps(env)
def allocate_inplace_target_temps(self, env, rhs):
if debug_temp_alloc:
print self, "Allocating inplace target temps"
self.allocate_subexpr_temps(env)
#self.result_code = self.target_code()
py_inplace = self.type.is_pyobject
if py_inplace:
self.allocate_temp(env)
self.inplace_result = env.allocate_temp(py_object_type)
self.release_temp(env)
rhs.release_temp(env)
if py_inplace:
env.release_temp(self.inplace_result)
self.release_subexpr_temps(env)
def allocate_temps(self, env, result = None):
# Allocate temporary variables for this node and
# all its sub-expressions. If a result is specified,
# this must be a temp node and the specified variable
# is used as the result instead of allocating a new
# one.
if debug_temp_alloc:
print self, "Allocating temps"
self.allocate_subexpr_temps(env)
self.allocate_temp(env, result)
if self.is_temp:
self.release_subexpr_temps(env)
def allocate_subexpr_temps(self, env):
# Allocate temporary variables for all sub-expressions
# of this node.
if debug_temp_alloc:
print self, "Allocating temps for:", self.subexprs
for node in self.subexpr_nodes():
if node:
if debug_temp_alloc:
print self, "Allocating temps for", node
node.allocate_temps(env)
def allocate_temp(self, env, result = None):
# If this node requires a temporary variable for its
# result, allocate one. If a result is specified,
# this must be a temp node and the specified variable
# is used as the result instead of allocating a new
# one.
if debug_temp_alloc:
print self, "Allocating temp"
if result:
if not self.is_temp:
raise InternalError("Result forced on non-temp node")
self.result_code = result
elif self.is_temp:
type = self.type
if not type.is_void:
if type.is_pyobject:
type = PyrexTypes.py_object_type
self.result_code = env.allocate_temp(type)
else:
self.result_code = None
if debug_temp_alloc:
print self, "Allocated result", self.result_code
#else:
# self.result_code = self.calculate_result_code()
def target_code(self):
# Return code fragment for use as LHS of a C assignment.
return self.calculate_result_code()
def calculate_result_code(self):
self.not_implemented("calculate_result_code")
def release_temp(self, env):
# If this node owns a temporary result, release it,
# otherwise release results of its sub-expressions.
if self.is_temp:
if debug_temp_alloc:
print self, "Releasing result", self.result_code
env.release_temp(self.result_code)
else:
self.release_subexpr_temps(env)
def release_subexpr_temps(self, env):
# Release the results of all sub-expressions of
# this node.
for node in self.subexpr_nodes():
if node:
node.release_temp(env)
# ---------------- Code Generation -----------------
def make_owned_reference(self, code):
# If result is a pyobject, make sure we own
# a reference to it.
if self.type.is_pyobject and not self.result_in_temp():
code.put_incref(self.py_result())
def generate_evaluation_code(self, code):
# Generate code to evaluate this node and
# its sub-expressions, and dispose of any
# temporary results of its sub-expressions.
self.generate_subexpr_evaluation_code(code)
self.generate_result_code(code)
if self.is_temp:
self.generate_subexpr_disposal_code(code)
def generate_subexpr_evaluation_code(self, code):
for node in self.subexpr_nodes():
node.generate_evaluation_code(code)
def generate_result_code(self, code):
self.not_implemented("generate_result_code")
inplace_functions = {
"+=": "PyNumber_InPlaceAdd",
"-=": "PyNumber_InPlaceSubtract",
"*=": "PyNumber_InPlaceMultiply",
"/=": "PyNumber_InPlaceDivide",
"%=": "PyNumber_InPlaceRemainder",
"**=": "PyNumber_InPlacePower",
"<<=": "PyNumber_InPlaceLshift",
">>=": "PyNumber_InPlaceRshift",
"&=": "PyNumber_InPlaceAnd",
"^=": "PyNumber_InPlaceXor",
"|=": "PyNumber_InPlaceOr",
}
def generate_inplace_operation_code(self, operator, rhs, code):
args = (self.py_result(), rhs.py_result())
if operator == "**=":
arg_code = "%s, %s, Py_None" % args
else:
arg_code = "%s, %s" % args
code.putln("%s = %s(%s); if (!%s) %s" % (
self.inplace_result,
self.inplace_functions[operator],
arg_code,
self.inplace_result,
code.error_goto(self.pos)))
if self.is_temp:
code.put_decref_clear(self.py_result())
rhs.generate_disposal_code(code)
if self.type.is_extension_type:
code.putln(
"if (!__Pyx_TypeTest(%s, %s)) %s" % (
self.inplace_result,
self.type.typeptr_cname,
code.error_goto(self.pos)))
def generate_disposal_code(self, code):
# If necessary, generate code to dispose of
# temporary Python reference.
if self.is_temp:
if self.type.is_pyobject:
code.put_decref_clear(self.py_result(), self.ctype())
else:
self.generate_subexpr_disposal_code(code)
def generate_subexpr_disposal_code(self, code):
# Generate code to dispose of temporary results
# of all sub-expressions.
for node in self.subexpr_nodes():
node.generate_disposal_code(code)
def generate_post_assignment_code(self, code):
# Same as generate_disposal_code except that
# assignment will have absorbed a reference to
# the result if it is a Python object.
if self.is_temp:
if self.type.is_pyobject:
code.putln("%s = 0;" % self.result())
else:
self.generate_subexpr_disposal_code(code)
def generate_inplace_result_disposal_code(self, code):
code.put_decref_clear(self.inplace_result, py_object_type)
def generate_assignment_code(self, rhs, code):
# Stub method for nodes which are not legal as
# the LHS of an assignment. An error will have
# been reported earlier.
pass
def generate_deletion_code(self, code):
# Stub method for nodes that are not legal as
# the argument of a del statement. An error
# will have been reported earlier.
pass
# ----------------- Coercion ----------------------
def coerce_to(self, dst_type, env):
# Coerce the result so that it can be assigned to
# something of type dst_type. If processing is necessary,
# wraps this node in a coercion node and returns that.
# Otherwise, returns this node unchanged.
#
# This method is called during the analyse_expressions
# phase of the src_node's processing.
src = self
src_type = self.type
src_is_py_type = src_type.is_pyobject
dst_is_py_type = dst_type.is_pyobject
if dst_type.is_pyobject:
if not src.type.is_pyobject:
src = CoerceToPyTypeNode(src, env)
if not src.type.subtype_of(dst_type):
if not isinstance(src, NoneNode):
src = PyTypeTestNode(src, dst_type, env)
elif src.type.is_pyobject:
src = CoerceFromPyTypeNode(dst_type, src, env)
else: # neither src nor dst are py types
if not dst_type.assignable_from(src_type):
error(self.pos, "Cannot assign type '%s' to '%s'" %
(src.type, dst_type))
return src
def coerce_to_pyobject(self, env):
return self.coerce_to(PyrexTypes.py_object_type, env)
def coerce_to_boolean(self, env):
# Coerce result to something acceptable as
# a boolean value.
type = self.type
if type.is_pyobject or type.is_ptr or type.is_float:
return CoerceToBooleanNode(self, env)
else:
if not type.is_int and not type.is_error:
error(self.pos,
"Type '%s' not acceptable as a boolean" % type)
return self
def coerce_to_integer(self, env):
# If not already some C integer type, coerce to longint.
if self.type.is_int:
return self
else:
return self.coerce_to(PyrexTypes.c_long_type, env)
def coerce_to_temp(self, env):
# Ensure that the result is in a temporary.
if self.result_in_temp():
return self
else:
return CoerceToTempNode(self, env)
def coerce_to_simple(self, env):
# Ensure that the result is simple (see is_simple).
if self.is_simple():
return self
else:
return self.coerce_to_temp(env)
def is_simple(self):
# A node is simple if its result is something that can
# be referred to without performing any operations, e.g.
# a constant, local var, C global var, struct member
# reference, or temporary.
return self.result_in_temp()
class AtomicExprNode(ExprNode):
# Abstract base class for expression nodes which have
# no sub-expressions.
subexprs = []
class PyConstNode(AtomicExprNode):
# Abstract base class for constant Python values.
def is_simple(self):
return 1
def analyse_types(self, env):
self.type = py_object_type
def calculate_result_code(self):
return self.value
def generate_result_code(self, code):
pass
class NoneNode(PyConstNode):
# The constant value None
value = "Py_None"
def compile_time_value(self, denv):
return None
class EllipsisNode(PyConstNode):
# '...' in a subscript list.
value = "Py_Ellipsis"
def compile_time_value(self, denv):
return Ellipsis
class ConstNode(AtomicExprNode):
# Abstract base type for literal constant nodes.
#
# value string C code fragment
is_literal = 1
def is_simple(self):
return 1
def analyse_types(self, env):
pass # Types are held in class variables
def check_const(self):
pass
def calculate_result_code(self):
return str(self.value)
def generate_result_code(self, code):
pass
class NullNode(ConstNode):
type = PyrexTypes.c_null_ptr_type
value = "NULL"
class CharNode(ConstNode):
type = PyrexTypes.c_char_type
def compile_time_value(self, denv):
return ord(self.value)
def calculate_result_code(self):
return "'%s'" % self.value
class IntNode(ConstNode):
type = PyrexTypes.c_long_type
def compile_time_value(self, denv):
return int(self.value, 0)
class FloatNode(ConstNode):
type = PyrexTypes.c_double_type
def compile_time_value(self, denv):
return float(self.value)
def calculate_result_code(self):
strval = str(self.value)
if strval == 'nan':
return "NAN"
elif strval == 'inf':
return "INFINITY"
elif strval == '-inf':
return "(-INFINITY)"
else:
return strval
class StringNode(ConstNode):
# #entry Symtab.Entry
type = PyrexTypes.c_char_ptr_type
def compile_time_value(self, denv):
return eval('"%s"' % self.value)
# def analyse_types(self, env):
# self.entry = env.add_string_const(self.value)
def coerce_to(self, dst_type, env):
# Arrange for a Python version of the string to be pre-allocated
# when coercing to a Python type.
if dst_type.is_pyobject and not self.type.is_pyobject:
node = self.as_py_string_node(env)
else:
node = self
# We still need to perform normal coerce_to processing on the
# result, because we might be coercing to an extension type,
# in which case a type test node will be needed.
return ConstNode.coerce_to(node, dst_type, env)
def as_py_string_node(self, env):
# Return a new StringNode with the same value as this node
# but whose type is a Python type instead of a C type.
#entry = self.entry
#env.add_py_string(entry)
return StringNode(self.pos, type = py_object_type, value = self.value)
def generate_evaluation_code(self, code):
if self.type.is_pyobject:
self.result_code = code.get_py_string_const(self.value)
else:
self.result_code = code.get_string_const(self.value)
def calculate_result_code(self):
return self.result_code
class LongNode(AtomicExprNode):
# Python long integer literal
#
# value string
def compile_time_value(self, denv):
return long(self.value)
gil_message = "Constructing Python long int"
def analyse_types(self, env):
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
def generate_evaluation_code(self, code):
result = self.result()
code.putln(
'%s = PyLong_FromString("%s", 0, 0); if (!%s) %s' % (
self.result(),
self.value,
self.result(),
code.error_goto(self.pos)))
class ImagNode(AtomicExprNode):
# Imaginary number literal
#
# value float imaginary part
def compile_time_value(self, denv):
return complex(0.0, self.value)
gil_message = "Constructing complex number"
def analyse_types(self, env):
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
def generate_evaluation_code(self, code):
result = self.result()
code.putln(
"%s = PyComplex_FromDoubles(0.0, %s); if (!%s) %s" % (
self.result(),
self.value,
self.result(),
code.error_goto(self.pos)))
class NameNode(AtomicExprNode):
# Reference to a local or global variable name.
#
# name string Python name of the variable
#
# entry Entry Symbol table entry
# type_entry Entry For extension type names, the original type entry
# interned_cname string
is_name = 1
entry = None
type_entry = None
def compile_time_value(self, denv):
try:
return denv.lookup(self.name)
except KeyError:
error(self.pos, "Compile-time name '%s' not defined" % self.name)
def coerce_to(self, dst_type, env):
# If coercing to a generic pyobject and this is a builtin
# C function with a Python equivalent, manufacture a NameNode
# referring to the Python builtin.
#print "NameNode.coerce_to:", self.name, dst_type ###
if dst_type is py_object_type:
entry = self.entry
if entry.is_cfunction:
var_entry = entry.as_variable
if var_entry:
node = NameNode(self.pos, name = self.name)
node.entry = var_entry
node.analyse_rvalue_entry(env)
return node
return AtomicExprNode.coerce_to(self, dst_type, env)
def analyse_as_module(self, env):
# Try to interpret this as a reference to a cimported module.
# Returns the module scope, or None.
entry = env.lookup(self.name)
if entry and entry.as_module:
return entry.as_module
return None
def analyse_as_extension_type(self, env):
# Try to interpret this as a reference to an extension type.
# Returns the extension type, or None.
entry = env.lookup(self.name)
if entry and entry.is_type and entry.type.is_extension_type:
return entry.type
else:
return None
def analyse_target_declaration(self, env):
self.entry = env.lookup_here(self.name)
if not self.entry:
self.entry = env.declare_var(self.name, py_object_type, self.pos)
def analyse_types(self, env):
self.entry = env.lookup(self.name)
if not self.entry:
self.entry = env.declare_builtin(self.name, self.pos)
self.analyse_rvalue_entry(env)
def analyse_target_types(self, env):
self.analyse_entry(env)
self.finish_analysing_lvalue()
def analyse_inplace_types(self, env):
self.analyse_rvalue_entry(env)
self.finish_analysing_lvalue()
def finish_analysing_lvalue(self):
if self.entry.is_readonly:
error(self.pos, "Assignment to read-only name '%s'"
% self.name)
elif not self.is_lvalue():
error(self.pos, "Assignment to non-lvalue '%s'"
% self.name)
self.type = PyrexTypes.error_type
self.entry.used = 1
def analyse_rvalue_entry(self, env):
#print "NameNode.analyse_rvalue_entry:", self.name ###
#print "Entry:", self.entry.__dict__ ###
self.analyse_entry(env)
entry = self.entry
if entry.is_declared_generic:
self.result_ctype = py_object_type
if entry.is_pyglobal or entry.is_builtin:
self.is_temp = 1
self.gil_check(env)
gil_message = "Accessing Python global or builtin"
def analyse_entry(self, env):
#print "NameNode.analyse_entry:", self.name ###
self.check_identifier_kind()
entry = self.entry
type = entry.type
ctype = entry.ctype
self.type = type
if ctype:
self.result_ctype = ctype
if entry.is_pyglobal or entry.is_builtin:
assert type.is_pyobject, "Python global or builtin not a Python object"
#self.interned_cname = env.intern(self.entry.name)
def check_identifier_kind(self):
# Check that this is an appropriate kind of name for use in an expression.
# Also finds the variable entry associated with an extension type.
entry = self.entry
if entry.is_type and entry.type.is_extension_type:
self.type_entry = entry
if not (entry.is_const or entry.is_variable
or entry.is_builtin or entry.is_cfunction):
if self.entry.as_variable:
self.entry = self.entry.as_variable
else:
error(self.pos,
"'%s' is not a constant, variable or function identifier" % self.name)
def is_simple(self):
# If it's not a C variable, it'll be in a temp.
return 1
def calculate_target_results(self, env):
pass
def check_const(self):
entry = self.entry
if not (entry.is_const or entry.is_cfunction):
self.not_const()
def check_const_addr(self):
entry = self.entry
if not (entry.is_cglobal or entry.is_cfunction):
self.addr_not_const()
def is_lvalue(self):
entry = self.entry
return entry.is_variable and \
not entry.type.is_array and \
not entry.is_readonly
def is_inplace_lvalue(self):
return self.is_lvalue()
def is_ephemeral(self):
# Name nodes are never ephemeral, even if the
# result is in a temporary.
return 0
def allocate_temp(self, env, result = None):
AtomicExprNode.allocate_temp(self, env, result)
entry = self.entry
if entry:
entry.used = 1
# if entry.utility_code:
# env.use_utility_code(entry.utility_code)
def calculate_result_code(self):
entry = self.entry
if not entry:
return "<error>" # There was an error earlier
return entry.cname
def generate_result_code(self, code):
assert hasattr(self, 'entry')
entry = self.entry
if entry is None:
return # There was an error earlier
if entry.utility_code:
code.use_utility_code(entry.utility_code)
if entry.is_pyglobal or entry.is_builtin:
if entry.is_builtin:
namespace = Naming.builtins_cname
else: # entry.is_pyglobal
namespace = entry.namespace_cname
result = self.result()
cname = code.intern(self.entry.name)
code.use_utility_code(get_name_interned_utility_code)
code.putln(
'%s = __Pyx_GetName(%s, %s); if (!%s) %s' % (
result,
namespace,
cname,
result,
code.error_goto(self.pos)))
def generate_setattr_code(self, value_code, code):
entry = self.entry
namespace = self.entry.namespace_cname
cname = code.intern(self.entry.name)
code.putln(
'if (PyObject_SetAttr(%s, %s, %s) < 0) %s' % (
namespace,
cname,
value_code,
code.error_goto(self.pos)))
def generate_assignment_code(self, rhs, code):
#print "NameNode.generate_assignment_code:", self.name ###
entry = self.entry
if entry is None:
return # There was an error earlier
if entry.is_pyglobal:
self.generate_setattr_code(rhs.py_result(), code)
if debug_disposal_code:
print "NameNode.generate_assignment_code:"
print "...generating disposal code for", rhs
rhs.generate_disposal_code(code)
else:
if self.type.is_pyobject:
rhs.make_owned_reference(code)
code.put_decref(self.py_result())
code.putln('%s = %s;' % (self.result(), rhs.result_as(self.ctype())))
if debug_disposal_code:
print "NameNode.generate_assignment_code:"
print "...generating post-assignment code for", rhs
rhs.generate_post_assignment_code(code)
def generate_inplace_assignment_code(self, operator, rhs, code):
entry = self.entry
if entry is None:
return # There was an error earlier
if self.type.is_pyobject:
self.generate_result_code(code)
self.generate_inplace_operation_code(operator, rhs, code)
if entry.is_pyglobal:
self.generate_setattr_code(self.inplace_result, code)
self.generate_inplace_result_disposal_code(code)
else:
code.put_decref(self.py_result())
cast_inplace_result = typecast(self.ctype(), py_object_type, self.inplace_result)
code.putln('%s = %s;' % (self.result(), cast_inplace_result))
else:
code.putln("%s %s %s;" % (self.result(), operator, rhs.result()))
rhs.generate_disposal_code(code)
def generate_deletion_code(self, code):
if self.entry is None:
return # There was an error earlier
if not self.entry.is_pyglobal:
error(self.pos, "Deletion of local or C global name not supported")
return
cname = code.intern(self.entry.name)
code.putln(
'if (PyObject_DelAttr(%s, %s) < 0) %s' % (
Naming.module_cname,
cname,
code.error_goto(self.pos)))
class BackquoteNode(ExprNode):
# `expr`
#
# arg ExprNode
subexprs = ['arg']
def analyse_types(self, env):
self.arg.analyse_types(env)
self.arg = self.arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Backquote expression"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PyObject_Repr(%s); if (!%s) %s" % (
self.result(),
self.arg.py_result(),
self.result(),
code.error_goto(self.pos)))
class ImportNode(ExprNode):
# Used as part of import statement implementation.
# Implements result =
# __import__(module_name, globals(), None, name_list)
#
# module_name StringNode dotted name of module
# name_list ListNode or None list of names to be imported
subexprs = ['module_name', 'name_list']
def analyse_types(self, env):
self.module_name.analyse_types(env)
self.module_name = self.module_name.coerce_to_pyobject(env)
if self.name_list:
self.name_list.analyse_types(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
# env.use_utility_code(import_utility_code)
gil_message = "Python import"
def generate_result_code(self, code):
if self.name_list:
name_list_code = self.name_list.py_result()
else:
name_list_code = "0"
code.use_utility_code(import_utility_code)
result = self.result()
code.putln(
"%s = __Pyx_Import(%s, %s); if (!%s) %s" % (
result,
self.module_name.py_result(),
name_list_code,
result,
code.error_goto(self.pos)))
class IteratorNode(ExprNode):
# Used as part of for statement implementation.
# Implements result = iter(sequence)
#
# sequence ExprNode
subexprs = ['sequence']
def analyse_types(self, env):
self.sequence.analyse_types(env)
self.sequence = self.sequence.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Iterating over Python object"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PyObject_GetIter(%s); if (!%s) %s" % (
result,
self.sequence.py_result(),
result,
code.error_goto(self.pos)))
class NextNode(AtomicExprNode):
# Used as part of for statement implementation.
# Implements result = iterator.next()
# Created during analyse_types phase.
# The iterator is not owned by this node.
#
# iterator ExprNode
def __init__(self, iterator, env):
self.pos = iterator.pos
self.iterator = iterator
self.type = py_object_type
self.is_temp = 1
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PyIter_Next(%s);" % (
result,
self.iterator.py_result()))
code.putln(
"if (!%s) {" %
result)
code.putln(
"if (PyErr_Occurred()) %s" %
code.error_goto(self.pos))
code.putln(
"break;")
code.putln(
"}")
class ExcValueNode(AtomicExprNode):
# Node created during analyse_types phase
# of an ExceptClauseNode to fetch the current
# exception value.
def __init__(self, pos, env, var):
ExprNode.__init__(self, pos)
self.type = py_object_type
self.var = var
def calculate_result_code(self):
return self.var
def generate_result_code(self, code):
pass
class TempNode(AtomicExprNode):
# Node created during analyse_types phase
# of some nodes to hold a temporary value.
def __init__(self, pos, type, env):
ExprNode.__init__(self, pos)
self.type = type
if type.is_pyobject:
self.result_ctype = py_object_type
self.is_temp = 1
def generate_result_code(self, code):
pass
class PyTempNode(TempNode):
# TempNode holding a Python value.
def __init__(self, pos, env):
TempNode.__init__(self, pos, PyrexTypes.py_object_type, env)
#-------------------------------------------------------------------
#
# Trailer nodes
#
#-------------------------------------------------------------------
class IndexNode(ExprNode):
# Sequence indexing.
#
# base ExprNode
# index ExprNode
subexprs = ['base', 'index']
def compile_time_value(self, denv):
base = self.base.compile_time_value(denv)
index = self.index.compile_time_value(denv)
try:
return base[index]
except Exception, e:
self.compile_time_value_error(e)
def is_ephemeral(self):
return self.base.is_ephemeral()
def analyse_target_declaration(self, env):
pass
def analyse_types(self, env):
self.analyse_base_and_index_types(env, getting = 1)
def analyse_target_types(self, env):
self.analyse_base_and_index_types(env, setting = 1)
def analyse_inplace_types(self, env):
self.analyse_base_and_index_types(env, getting = 1, setting = 1)
def analyse_base_and_index_types(self, env, getting = 0, setting = 0):
self.base.analyse_types(env)
self.index.analyse_types(env)
if self.base.type.is_pyobject:
itype = self.index.type
if not (itype.is_int and itype.signed):
self.index = self.index.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
if self.base.type.is_ptr or self.base.type.is_array:
self.type = self.base.type.base_type
else:
error(self.pos,
"Attempting to index non-array type '%s'" %
self.base.type)
self.type = PyrexTypes.error_type
if self.index.type.is_pyobject:
self.index = self.index.coerce_to(
PyrexTypes.c_py_ssize_t_type, env)
if not self.index.type.is_int:
error(self.pos,
"Invalid index type '%s'" %
self.index.type)
gil_message = "Indexing Python object"
def check_const_addr(self):
self.base.check_const_addr()
self.index.check_const()
def is_lvalue(self):
return 1
def is_inplace_lvalue(self):
return 1
def calculate_result_code(self):
return "(%s[%s])" % (
self.base.result(), self.index.result())
def generate_result_code(self, code):
if self.type.is_pyobject:
itype = self.index.type
if itype.is_int and itype.signed:
code.use_utility_code(getitem_int_utility_code)
function = "__Pyx_GetItemInt"
index_code = self.index.result()
else:
function = "PyObject_GetItem"
index_code = self.index.py_result()
result = self.result()
code.putln(
"%s = %s(%s, %s); if (!%s) %s" % (
result,
function,
self.base.py_result(),
index_code,
result,
code.error_goto(self.pos)))
def generate_setitem_code(self, value_code, code):
itype = self.index.type
if itype.is_int and itype.signed:
code.use_utility_code(setitem_int_utility_code)
function = "__Pyx_SetItemInt"
index_code = self.index.result()
else:
function = "PyObject_SetItem"
index_code = self.index.py_result()
code.putln(
"if (%s(%s, %s, %s) < 0) %s" % (
function,
self.base.py_result(),
index_code,
value_code,
code.error_goto(self.pos)))
def generate_assignment_code(self, rhs, code):
self.generate_subexpr_evaluation_code(code)
if self.type.is_pyobject:
self.generate_setitem_code(rhs.py_result(), code)
else:
code.putln(
"%s = %s;" % (
self.result(), rhs.result()))
self.generate_subexpr_disposal_code(code)
rhs.generate_disposal_code(code)
def generate_inplace_assignment_code(self, operator, rhs, code):
self.generate_subexpr_evaluation_code(code)
if self.type.is_pyobject:
self.generate_result_code(code)
self.generate_inplace_operation_code(operator, rhs, code)
self.generate_setitem_code(self.inplace_result, code)
self.generate_inplace_result_disposal_code(code)
else:
code.putln("%s %s %s;" % (self.result(), operator, rhs.result()))
rhs.generate_disposal_code(code)
self.generate_subexpr_disposal_code(code)
def generate_deletion_code(self, code):
self.generate_subexpr_evaluation_code(code)
#if self.type.is_pyobject:
if self.index.type.is_int:
function = "PySequence_DelItem"
index_code = self.index.result()
else:
function = "PyObject_DelItem"
index_code = self.index.py_result()
code.putln(
"if (%s(%s, %s) < 0) %s" % (
function,
self.base.py_result(),
index_code,
code.error_goto(self.pos)))
#else:
# error(self.pos, "Cannot delete non-Python variable")
self.generate_subexpr_disposal_code(code)
class SliceIndexNode(ExprNode):
# 2-element slice indexing
#
# base ExprNode
# start ExprNode or None
# stop ExprNode or None
subexprs = ['base', 'start', 'stop']
def is_inplace_lvalue(self):
return 1
def compile_time_value(self, denv):
base = self.base.compile_time_value(denv)
start = self.start.compile_time_value(denv)
stop = self.stop.compile_time_value(denv)
try:
return base[start:stop]
except Exception, e:
self.compile_time_value_error(e)
def analyse_target_declaration(self, env):
pass
def analyse_types(self, env):
self.base.analyse_types(env)
if self.start:
self.start.analyse_types(env)
if self.stop:
self.stop.analyse_types(env)
self.base = self.base.coerce_to_pyobject(env)
c_int = PyrexTypes.c_py_ssize_t_type
if self.start:
self.start = self.start.coerce_to(c_int, env)
if self.stop:
self.stop = self.stop.coerce_to(c_int, env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Slicing Python object"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PySequence_GetSlice(%s, %s, %s); if (!%s) %s" % (
result,
self.base.py_result(),
self.start_code(),
self.stop_code(),
result,
code.error_goto(self.pos)))
def generate_setslice_code(self, value_code, code):
code.putln(
"if (PySequence_SetSlice(%s, %s, %s, %s) < 0) %s" % (
self.base.py_result(),
self.start_code(),
self.stop_code(),
value_code,
code.error_goto(self.pos)))
def generate_assignment_code(self, rhs, code):
self.generate_subexpr_evaluation_code(code)
self.generate_setslice_code(rhs.result(), code)
self.generate_subexpr_disposal_code(code)
rhs.generate_disposal_code(code)
def generate_inplace_assignment_code(self, operator, rhs, code):
self.generate_subexpr_evaluation_code(code)
self.generate_result_code(code)
self.generate_inplace_operation_code(operator, rhs, code)
self.generate_setslice_code(self.inplace_result, code)
self.generate_inplace_result_disposal_code(code)
self.generate_subexpr_disposal_code(code)
def generate_deletion_code(self, code):
self.generate_subexpr_evaluation_code(code)
code.putln(
"if (PySequence_DelSlice(%s, %s, %s) < 0) %s" % (
self.base.py_result(),
self.start_code(),
self.stop_code(),
code.error_goto(self.pos)))
self.generate_subexpr_disposal_code(code)
def start_code(self):
if self.start:
return self.start.result()
else:
return "0"
def stop_code(self):
if self.stop:
return self.stop.result()
else:
return "PY_SSIZE_T_MAX"
# def calculate_result_code(self):
# # self.result_code is not used, but this method must exist
# return "<unused>"
class SliceNode(ExprNode):
# start:stop:step in subscript list
#
# start ExprNode
# stop ExprNode
# step ExprNode
def compile_time_value(self, denv):
start = self.start.compile_time_value(denv)
stop = self.stop.compile_time_value(denv)
step = step.step.compile_time_value(denv)
try:
return slice(start, stop, step)
except Exception, e:
self.compile_time_value_error(e)
subexprs = ['start', 'stop', 'step']
def analyse_types(self, env):
self.start.analyse_types(env)
self.stop.analyse_types(env)
self.step.analyse_types(env)
self.start = self.start.coerce_to_pyobject(env)
self.stop = self.stop.coerce_to_pyobject(env)
self.step = self.step.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python slice object"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PySlice_New(%s, %s, %s); if (!%s) %s" % (
result,
self.start.py_result(),
self.stop.py_result(),
self.step.py_result(),
result,
code.error_goto(self.pos)))
class CallNode(ExprNode):
def gil_check(self, env):
# Make sure we're not in a nogil environment
if env.nogil:
error(self.pos, "Calling gil-requiring function without gil")
class SimpleCallNode(CallNode):
# Function call without keyword, * or ** args.
#
# function ExprNode
# args [ExprNode]
# arg_tuple ExprNode or None used internally
# self ExprNode or None used internally
# coerced_self ExprNode or None used internally
subexprs = ['self', 'coerced_self', 'function', 'args', 'arg_tuple']
self = None
coerced_self = None
arg_tuple = None
def compile_time_value(self, denv):
function = self.function.compile_time_value(denv)
args = [arg.compile_time_value(denv) for arg in self.args]
try:
return function(*args)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
#print "SimpleCallNode.analyse_types:", self.pos ###
function = self.function
function.is_called = 1
function.analyse_types(env)
if function.is_name or function.is_attribute:
func_entry = function.entry
if func_entry:
if func_entry.is_cmethod or func_entry.is_builtin_method:
# Take ownership of the object from which the attribute
# was obtained, because we need to pass it as 'self'.
#print "SimpleCallNode: Snarfing self argument" ###
self.self = function.obj
function.obj = CloneNode(self.self)
func_type = self.function_type()
if func_type.is_pyobject:
if self.args:
self.arg_tuple = TupleNode(self.pos, args = self.args)
self.arg_tuple.analyse_types(env)
else:
self.arg_tuple = None
self.args = None
if function.is_name and function.type_entry:
# We are calling an extension type constructor
self.type = function.type_entry.type
self.result_ctype = py_object_type
else:
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
for arg in self.args:
arg.analyse_types(env)
if self.self and func_type.args:
#print "SimpleCallNode: Inserting self into argument list" ###
# Coerce 'self' to the type expected by the method.
expected_type = func_type.args[0].type
self.coerced_self = CloneNode(self.self).coerce_to(
expected_type, env)
# Insert coerced 'self' argument into argument list.
self.args.insert(0, self.coerced_self)
self.analyse_c_function_call(env)
def function_type(self):
# Return the type of the function being called, coercing a function
# pointer to a function if necessary.
func_type = self.function.type
if func_type.is_ptr:
func_type = func_type.base_type
return func_type
def analyse_c_function_call(self, env):
func_type = self.function_type()
# Check function type
if not func_type.is_cfunction:
if not func_type.is_error:
error(self.pos, "Calling non-function type '%s'" %
func_type)
self.type = PyrexTypes.error_type
#self.result_code = "<error>"
return
# Check no. of args
expected_nargs = len(func_type.args)
actual_nargs = len(self.args)
if actual_nargs < expected_nargs \
or (not func_type.has_varargs and actual_nargs > expected_nargs):
expected_str = str(expected_nargs)
if func_type.has_varargs:
expected_str = "at least " + expected_str
error(self.pos,
"Call with wrong number of arguments (expected %s, got %s)"
% (expected_str, actual_nargs))
self.args = None
self.type = PyrexTypes.error_type
#self.result_code = "<error>"
return
# Coerce arguments
for i in range(expected_nargs):
formal_type = func_type.args[i].type
self.args[i] = self.args[i].coerce_to(formal_type, env)
for i in range(expected_nargs, actual_nargs):
if self.args[i].type.is_pyobject:
error(self.args[i].pos,
"Python object cannot be passed as a varargs parameter")
# Calc result type and code fragment
self.type = func_type.return_type
if self.type.is_pyobject \
or func_type.exception_value is not None \
or func_type.exception_check:
self.is_temp = 1
if self.type.is_pyobject:
self.result_ctype = py_object_type
# Check gil
if not func_type.nogil:
self.gil_check(env)
def calculate_result_code(self):
return self.c_call_code()
def c_call_code(self):
func_type = self.function_type()
if self.args is None or not func_type.is_cfunction:
return "<error>"
formal_args = func_type.args
arg_list_code = []
for (formal_arg, actual_arg) in zip(formal_args, self.args):
arg_code = actual_arg.result_as(formal_arg.type)
arg_list_code.append(arg_code)
for actual_arg in self.args[len(formal_args):]:
arg_list_code.append(actual_arg.result())
result = "%s(%s)" % (self.function.result(),
join(arg_list_code, ","))
return result
def generate_result_code(self, code):
func_type = self.function_type()
result = self.result()
if func_type.is_pyobject:
if self.arg_tuple:
arg_code = self.arg_tuple.py_result()
else:
arg_code = "0"
code.putln(
"%s = PyObject_CallObject(%s, %s); if (!%s) %s" % (
result,
self.function.py_result(),
arg_code,
result,
code.error_goto(self.pos)))
elif func_type.is_cfunction:
exc_checks = []
if self.type.is_pyobject:
exc_checks.append("!%s" % result)
else:
exc_val = func_type.exception_value
exc_check = func_type.exception_check
if exc_val is not None:
exc_checks.append("%s == %s" % (self.result(), exc_val))
if exc_check:
exc_checks.append("PyErr_Occurred()")
if self.is_temp or exc_checks:
rhs = self.c_call_code()
result = self.result()
if result:
lhs = "%s = " % result
if self.is_temp and self.type.is_pyobject:
#return_type = self.type # func_type.return_type
#print "SimpleCallNode.generate_result_code: casting", rhs, \
# "from", return_type, "to pyobject" ###
rhs = typecast(py_object_type, self.type, rhs)
else:
lhs = ""
code.putln(
"%s%s; if (%s) %s" % (
lhs,
rhs,
" && ".join(exc_checks),
code.error_goto(self.pos)))
class GeneralCallNode(CallNode):
# General Python function call, including keyword,
# * and ** arguments.
#
# function ExprNode
# positional_args ExprNode Tuple of positional arguments
# keyword_args ExprNode or None Dict of keyword arguments
# starstar_arg ExprNode or None Dict of extra keyword args
subexprs = ['function', 'positional_args', 'keyword_args', 'starstar_arg']
def compile_time_value(self, denv):
function = self.function.compile_time_value(denv)
positional_args = self.positional_args.compile_time_value(denv)
keyword_args = self.keyword_args.compile_time_value(denv)
starstar_arg = self.starstar_arg.compile_time_value(denv)
try:
keyword_args.update(starstar_arg)
return function(*positional_args, **keyword_args)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
function = self.function
function.analyse_types(env)
self.positional_args.analyse_types(env)
if self.keyword_args:
self.keyword_args.analyse_types(env)
if self.starstar_arg:
self.starstar_arg.analyse_types(env)
self.function = self.function.coerce_to_pyobject(env)
self.positional_args = \
self.positional_args.coerce_to_pyobject(env)
if self.starstar_arg:
self.starstar_arg = \
self.starstar_arg.coerce_to_pyobject(env)
if function.is_name and function.type_entry:
# We are calling an extension type constructor
self.type = function.type_entry.type
self.result_ctype = py_object_type
else:
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
def generate_result_code(self, code):
if self.keyword_args and self.starstar_arg:
code.putln(
"if (PyDict_Update(%s, %s) < 0) %s" % (
self.keyword_args.py_result(),
self.starstar_arg.py_result(),
code.error_goto(self.pos)))
keyword_code = self.keyword_args.py_result()
elif self.keyword_args:
keyword_code = self.keyword_args.py_result()
elif self.starstar_arg:
keyword_code = self.starstar_arg.py_result()
else:
keyword_code = None
if not keyword_code:
call_code = "PyObject_CallObject(%s, %s)" % (
self.function.py_result(),
self.positional_args.py_result())
else:
call_code = "PyEval_CallObjectWithKeywords(%s, %s, %s)" % (
self.function.py_result(),
self.positional_args.py_result(),
keyword_code)
result = self.result()
code.putln(
"%s = %s; if (!%s) %s" % (
result,
call_code,
result,
code.error_goto(self.pos)))
class AsTupleNode(ExprNode):
# Convert argument to tuple. Used for normalising
# the * argument of a function call.
#
# arg ExprNode
subexprs = ['arg']
def compile_time_value(self, denv):
arg = self.arg.compile_time_value(denv)
try:
return tuple(arg)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
self.arg.analyse_types(env)
self.arg = self.arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python tuple"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PySequence_Tuple(%s); if (!%s) %s" % (
result,
self.arg.py_result(),
result,
code.error_goto(self.pos)))
class AttributeNode(ExprNode):
# obj.attribute
#
# obj ExprNode
# attribute string
#
# Used internally:
#
# is_py_attr boolean Is a Python getattr operation
# member string C name of struct member
# is_called boolean Function call is being done on result
# entry Entry Symbol table entry of attribute
# interned_attr_cname string C name of interned attribute name
is_attribute = 1
subexprs = ['obj']
type = PyrexTypes.error_type
result_code = "<error>"
entry = None
is_called = 0
def compile_time_value(self, denv):
attr = self.attribute
if attr.beginswith("__") and attr.endswith("__"):
self.error("Invalid attribute name '%s' in compile-time expression"
% attr)
return None
obj = self.arg.compile_time_value(denv)
try:
return getattr(obj, attr)
except Exception, e:
self.compile_time_value_error(e)
def analyse_target_declaration(self, env):
pass
def analyse_target_types(self, env):
self.analyse_types(env, target = 1)
def analyse_types(self, env, target = 0):
if self.analyse_as_cimported_attribute(env, target):
return
if not target and self.analyse_as_unbound_cmethod(env):
return
self.analyse_as_ordinary_attribute(env, target)
def analyse_as_cimported_attribute(self, env, target):
# Try to interpret this as a reference to an imported
# C const, type, var or function. If successful, mutates
# this node into a NameNode and returns 1, otherwise
# returns 0.
module_scope = self.obj.analyse_as_module(env)
if module_scope:
entry = module_scope.lookup_here(self.attribute)
if entry and (
entry.is_cglobal or entry.is_cfunction
or entry.is_type or entry.is_const):
self.mutate_into_name_node(env, entry, target)
return 1
return 0
def analyse_as_unbound_cmethod(self, env):
# Try to interpret this as a reference to an unbound
# C method of an extension type. If successful, mutates
# this node into a NameNode and returns 1, otherwise
# returns 0.
type = self.obj.analyse_as_extension_type(env)
if type:
entry = type.scope.lookup_here(self.attribute)
if entry and entry.is_cmethod:
# Create a temporary entry describing the C method
# as an ordinary function.
ubcm_entry = Symtab.Entry(entry.name,
"%s->%s" % (type.vtabptr_cname, entry.cname),
entry.type)
ubcm_entry.is_cfunction = 1
ubcm_entry.func_cname = entry.func_cname
self.mutate_into_name_node(env, ubcm_entry, None)
return 1
return 0
def analyse_as_extension_type(self, env):
# Try to interpret this as a reference to an extension type
# in a cimported module. Returns the extension type, or None.
module_scope = self.obj.analyse_as_module(env)
if module_scope:
entry = module_scope.lookup_here(self.attribute)
if entry and entry.is_type and entry.type.is_extension_type:
return entry.type
return None
def analyse_as_module(self, env):
# Try to interpret this as a reference to a cimported module
# in another cimported module. Returns the module scope, or None.
module_scope = self.obj.analyse_as_module(env)
if module_scope:
entry = module_scope.lookup_here(self.attribute)
if entry and entry.as_module:
return entry.as_module
return None
def mutate_into_name_node(self, env, entry, target):
# Mutate this node into a NameNode and complete the
# analyse_types phase.
self.__class__ = NameNode
self.name = self.attribute
self.entry = entry
del self.obj
del self.attribute
if target:
NameNode.analyse_target_types(self, env)
else:
NameNode.analyse_rvalue_entry(self, env)
def analyse_as_ordinary_attribute(self, env, target):
self.obj.analyse_types(env)
self.analyse_attribute(env)
if self.entry and self.entry.is_cmethod and not self.is_called:
error(self.pos, "C method can only be called")
if self.is_py_attr:
if not target:
self.is_temp = 1
self.result_ctype = py_object_type
def analyse_attribute(self, env):
# Look up attribute and set self.type and self.member.
self.is_py_attr = 0
self.member = self.attribute
if self.obj.type.is_string:
self.obj = self.obj.coerce_to_pyobject(env)
obj_type = self.obj.type
if obj_type.is_ptr:
obj_type = obj_type.base_type
self.op = "->"
elif obj_type.is_extension_type:
self.op = "->"
else:
self.op = "."
if obj_type.has_attributes:
entry = None
if obj_type.attributes_known():
entry = obj_type.scope.lookup_here(self.attribute)
else:
error(self.pos,
"Cannot select attribute of incomplete type '%s'"
% obj_type)
obj_type = PyrexTypes.error_type
self.entry = entry
if entry:
if obj_type.is_extension_type and entry.name == "__weakref__":
error(self.pos, "Illegal use of special attribute __weakref__")
if entry.is_variable or entry.is_cmethod:
self.type = entry.type
self.member = entry.cname
return
if entry.is_builtin_method and self.is_called:
# Mutate into NameNode referring to C function
#print "AttributeNode: Mutating builtin method into NameNode" ###
self.type = entry.type
self.__class__ = NameNode
return
else:
# If it's not a variable or C method, it must be a Python
# method of an extension type, so we treat it like a Python
# attribute.
pass
# If we get here, the base object is not a struct/union/extension
# type, or it is an extension type and the attribute is either not
# declared or is declared as a Python method. Treat it as a Python
# attribute reference.
if obj_type.is_pyobject:
self.type = py_object_type
self.is_py_attr = 1
#self.interned_attr_cname = env.intern(self.attribute)
self.gil_check(env)
else:
if not obj_type.is_error:
error(self.pos,
"Object of type '%s' has no attribute '%s'" %
(obj_type, self.attribute))
gil_message = "Accessing Python attribute"
def is_simple(self):
if self.obj:
return self.result_in_temp() or self.obj.is_simple()
else:
return NameNode.is_simple(self)
def is_lvalue(self):
if self.obj:
return 1
else:
return NameNode.is_lvalue(self)
def is_inplace_lvalue(self):
return self.is_lvalue()
def is_ephemeral(self):
if self.obj:
return self.obj.is_ephemeral()
else:
return NameNode.is_ephemeral(self)
def calculate_result_code(self):
obj = self.obj
obj_code = obj.result_as(obj.type)
if self.entry and self.entry.is_cmethod:
return "((struct %s *)%s%s%s)->%s" % (
obj.type.vtabstruct_cname, obj_code, self.op,
obj.type.vtabslot_cname, self.member)
else:
return "%s%s%s" % (obj_code, self.op, self.member)
def generate_result_code(self, code):
if self.is_py_attr:
result = self.result()
cname = code.intern(self.attribute)
code.putln(
'%s = PyObject_GetAttr(%s, %s); if (!%s) %s' % (
result,
self.obj.py_result(),
cname,
result,
code.error_goto(self.pos)))
def generate_setattr_code(self, value_code, code):
cname = code.intern(self.attribute)
code.putln(
'if (PyObject_SetAttr(%s, %s, %s) < 0) %s' % (
self.obj.py_result(),
cname,
value_code,
code.error_goto(self.pos)))
def generate_assignment_code(self, rhs, code):
self.obj.generate_evaluation_code(code)
if self.is_py_attr:
self.generate_setattr_code(rhs.py_result(), code)
rhs.generate_disposal_code(code)
else:
select_code = self.result()
if self.type.is_pyobject:
rhs.make_owned_reference(code)
code.put_decref(select_code, self.ctype())
code.putln(
"%s = %s;" % (
select_code,
rhs.result_as(self.ctype())))
rhs.generate_post_assignment_code(code)
self.obj.generate_disposal_code(code)
def generate_inplace_assignment_code(self, operator, rhs, code):
self.obj.generate_evaluation_code(code)
select_code = self.result()
if self.type.is_pyobject:
self.generate_result_code(code)
self.generate_inplace_operation_code(operator, rhs, code)
if self.is_py_attr:
self.generate_setattr_code(self.inplace_result, code)
self.generate_inplace_result_disposal_code(code)
else:
code.put_decref(select_code, self.ctype())
cast_inplace_result = typecast(self.ctype(), py_object_type, self.inplace_result)
code.putln("%s = %s;" % (select_code, cast_inplace_result))
else:
code.putln("%s %s %s;" % (select_code, operator, rhs.result()))
rhs.generate_disposal_code(code)
self.obj.generate_disposal_code(code)
def generate_deletion_code(self, code):
self.obj.generate_evaluation_code(code)
if self.is_py_attr:
cname = code.intern(self.attribute)
code.putln(
'if (PyObject_DelAttr(%s, %s) < 0) %s' % (
self.obj.py_result(),
cname,
code.error_goto(self.pos)))
else:
error(self.pos, "Cannot delete C attribute of extension type")
self.obj.generate_disposal_code(code)
#-------------------------------------------------------------------
#
# Constructor nodes
#
#-------------------------------------------------------------------
class SequenceNode(ExprNode):
# Base class for list and tuple constructor nodes.
# Contains common code for performing sequence unpacking.
#
# args [ExprNode]
# iterator ExprNode
# unpacked_items [ExprNode] or None
# coerced_unpacked_items [ExprNode] or None
subexprs = ['args']
is_sequence_constructor = 1
unpacked_items = None
def compile_time_value_list(self, denv):
return [arg.compile_time_value(denv) for arg in self.args]
def analyse_target_declaration(self, env):
for arg in self.args:
arg.analyse_target_declaration(env)
def analyse_types(self, env):
for i in range(len(self.args)):
arg = self.args[i]
arg.analyse_types(env)
self.args[i] = arg.coerce_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
def analyse_target_types(self, env):
self.iterator = PyTempNode(self.pos, env)
self.unpacked_items = []
self.coerced_unpacked_items = []
for arg in self.args:
arg.analyse_target_types(env)
unpacked_item = PyTempNode(self.pos, env)
coerced_unpacked_item = unpacked_item.coerce_to(arg.type, env)
self.unpacked_items.append(unpacked_item)
self.coerced_unpacked_items.append(coerced_unpacked_item)
self.type = py_object_type
# env.use_utility_code(unpacking_utility_code)
def allocate_target_temps(self, env, rhs):
self.iterator.allocate_temps(env)
if rhs:
rhs.release_temp(env)
for arg, node in zip(self.args, self.coerced_unpacked_items):
node.allocate_temps(env)
arg.allocate_target_temps(env, node)
#arg.release_target_temp(env)
#node.release_temp(env)
self.iterator.release_temp(env)
# def release_target_temp(self, env):
# #for arg in self.args:
# # arg.release_target_temp(env)
# #for node in self.coerced_unpacked_items:
# # node.release_temp(env)
# self.iterator.release_temp(env)
def generate_result_code(self, code):
self.generate_operation_code(code)
def generate_assignment_code(self, rhs, code):
iter_result = self.iterator.result()
code.putln(
"%s = PyObject_GetIter(%s); if (!%s) %s" % (
iter_result,
rhs.py_result(),
iter_result,
code.error_goto(self.pos)))
rhs.generate_disposal_code(code)
for i in range(len(self.args)):
item = self.unpacked_items[i]
code.use_utility_code(unpacking_utility_code)
unpack_code = "__Pyx_UnpackItem(%s)" % (
self.iterator.py_result())
item_result = item.result()
code.putln(
"%s = %s; if (!%s) %s" % (
item_result,
typecast(item.ctype(), py_object_type, unpack_code),
item_result,
code.error_goto(self.pos)))
value_node = self.coerced_unpacked_items[i]
value_node.generate_evaluation_code(code)
self.args[i].generate_assignment_code(value_node, code)
code.putln(
"if (__Pyx_EndUnpack(%s) < 0) %s" % (
self.iterator.py_result(),
code.error_goto(self.pos)))
if debug_disposal_code:
print "UnpackNode.generate_assignment_code:"
print "...generating disposal code for", rhs
self.iterator.generate_disposal_code(code)
class TupleNode(SequenceNode):
# Tuple constructor.
gil_message = "Constructing Python tuple"
def compile_time_value(self, denv):
values = self.compile_time_value_list(denv)
try:
return tuple(values)
except Exception, e:
self.compile_time_value_error(e)
def generate_operation_code(self, code):
result = self.result()
code.putln(
"%s = PyTuple_New(%s); if (!%s) %s" % (
result,
len(self.args),
result,
code.error_goto(self.pos)))
for i in range(len(self.args)):
arg = self.args[i]
arg_result = arg.py_result()
# ??? Change this to use make_owned_reference?
if not arg.result_in_temp():
code.put_incref(arg_result)
code.putln(
"PyTuple_SET_ITEM(%s, %s, %s);" % (
result,
i,
arg_result))
def generate_subexpr_disposal_code(self, code):
# We call generate_post_assignment_code here instead
# of generate_disposal_code, because values were stored
# in the tuple using a reference-stealing operation.
for arg in self.args:
arg.generate_post_assignment_code(code)
class ListNode(SequenceNode):
# List constructor.
gil_message = "Constructing Python list"
def compile_time_value(self, denv):
return self.compile_time_value_list(denv)
def generate_operation_code(self, code):
result = self.result()
code.putln("%s = PyList_New(%s); if (!%s) %s" %
(result,
len(self.args),
result,
code.error_goto(self.pos)))
for i in range(len(self.args)):
arg = self.args[i]
arg_result = arg.py_result()
#if not arg.is_temp:
if not arg.result_in_temp():
code.put_incref(arg_result)
code.putln("PyList_SET_ITEM(%s, %s, %s);" %
(result,
i,
arg_result))
def generate_subexpr_disposal_code(self, code):
# We call generate_post_assignment_code here instead
# of generate_disposal_code, because values were stored
# in the list using a reference-stealing operation.
for arg in self.args:
arg.generate_post_assignment_code(code)
class DictNode(ExprNode):
# Dictionary constructor.
#
# key_value_pairs [(ExprNode, ExprNode)]
def compile_time_value(self, denv):
pairs = [(key.compile_time_value(denv), value.compile_time_value(denv))
for (key, value) in self.key_value_pairs]
try:
return dict(pairs)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
new_pairs = []
for key, value in self.key_value_pairs:
key.analyse_types(env)
value.analyse_types(env)
key = key.coerce_to_pyobject(env)
value = value.coerce_to_pyobject(env)
new_pairs.append((key, value))
self.key_value_pairs = new_pairs
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python dict"
def allocate_temps(self, env, result = None):
# Custom method used here because key-value
# pairs are evaluated and used one at a time.
self.allocate_temp(env, result)
for key, value in self.key_value_pairs:
key.allocate_temps(env)
value.allocate_temps(env)
key.release_temp(env)
value.release_temp(env)
def generate_evaluation_code(self, code):
# Custom method used here because key-value
# pairs are evaluated and used one at a time.
result = self.result()
code.putln(
"%s = PyDict_New(); if (!%s) %s" % (
result,
result,
code.error_goto(self.pos)))
for key, value in self.key_value_pairs:
key.generate_evaluation_code(code)
value.generate_evaluation_code(code)
code.putln(
"if (PyDict_SetItem(%s, %s, %s) < 0) %s" % (
result,
key.py_result(),
value.py_result(),
code.error_goto(self.pos)))
key.generate_disposal_code(code)
value.generate_disposal_code(code)
class ClassNode(ExprNode):
# Helper class used in the implementation of Python
# class definitions. Constructs a class object given
# a name, tuple of bases and class dictionary.
#
# name ExprNode Name of the class
# bases ExprNode Base class tuple
# dict ExprNode Class dict (not owned by this node)
# doc ExprNode or None Doc string
# module_name string Name of defining module
subexprs = ['name', 'bases', 'doc']
def analyse_types(self, env):
self.name.analyse_types(env)
self.name = self.name.coerce_to_pyobject(env)
self.bases.analyse_types(env)
if self.doc:
self.doc.analyse_types(env)
self.doc = self.doc.coerce_to_pyobject(env)
self.module_name = env.global_scope().qualified_name
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
# env.use_utility_code(create_class_utility_code)
gil_message = "Constructing Python class"
def generate_result_code(self, code):
result = self.result()
if self.doc:
code.putln(
'if (PyDict_SetItemString(%s, "__doc__", %s) < 0) %s' % (
self.dict.py_result(),
self.doc.py_result(),
code.error_goto(self.pos)))
code.use_utility_code(create_class_utility_code)
code.putln(
'%s = __Pyx_CreateClass(%s, %s, %s, "%s"); if (!%s) %s' % (
result,
self.bases.py_result(),
self.dict.py_result(),
self.name.py_result(),
self.module_name,
result,
code.error_goto(self.pos)))
class UnboundMethodNode(ExprNode):
# Helper class used in the implementation of Python
# class definitions. Constructs an unbound method
# object from a class and a function.
#
# class_cname string C var holding the class object
# function ExprNode Function object
subexprs = ['function']
def analyse_types(self, env):
self.function.analyse_types(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing an unbound method"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PyMethod_New(%s, 0, %s); if (!%s) %s" % (
result,
self.function.py_result(),
self.class_cname,
result,
code.error_goto(self.pos)))
class PyCFunctionNode(AtomicExprNode):
# Helper class used in the implementation of Python
# class definitions. Constructs a PyCFunction object
# from a PyMethodDef struct.
#
# pymethdef_cname string PyMethodDef structure
def analyse_types(self, env):
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
gil_message = "Constructing Python function"
def generate_result_code(self, code):
result = self.result()
code.putln(
"%s = PyCFunction_New(&%s, 0); if (!%s) %s" % (
result,
self.pymethdef_cname,
result,
code.error_goto(self.pos)))
#-------------------------------------------------------------------
#
# Unary operator nodes
#
#-------------------------------------------------------------------
compile_time_unary_operators = {
'not': operator.not_,
'~': operator.inv,
'-': operator.neg,
'+': operator.pos,
}
class UnopNode(ExprNode):
# operator string
# operand ExprNode
#
# Processing during analyse_expressions phase:
#
# analyse_c_operation
# Called when the operand is not a pyobject.
# - Check operand type and coerce if needed.
# - Determine result type and result code fragment.
# - Allocate temporary for result if needed.
subexprs = ['operand']
def compile_time_value(self, denv):
func = compile_time_unary_operators.get(self.operator)
if not func:
error(self.pos,
"Unary '%s' not supported in compile-time expression"
% self.operator)
operand = self.operand.compile_time_value(denv)
try:
return func(operand)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
self.operand.analyse_types(env)
if self.is_py_operation():
self.coerce_operand_to_pyobject(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
self.analyse_c_operation(env)
def check_const(self):
self.operand.check_const()
def is_py_operation(self):
return self.operand.type.is_pyobject
def coerce_operand_to_pyobject(self, env):
self.operand = self.operand.coerce_to_pyobject(env)
def generate_result_code(self, code):
if self.operand.type.is_pyobject:
self.generate_py_operation_code(code)
else:
if self.is_temp:
self.generate_c_operation_code(code)
def generate_py_operation_code(self, code):
function = self.py_operation_function()
result = self.result()
code.putln(
"%s = %s(%s); if (!%s) %s" % (
result,
function,
self.operand.py_result(),
result,
code.error_goto(self.pos)))
def type_error(self):
if not self.operand.type.is_error:
error(self.pos, "Invalid operand type for '%s' (%s)" %
(self.operator, self.operand.type))
self.type = PyrexTypes.error_type
class NotNode(ExprNode):
# 'not' operator
#
# operand ExprNode
def compile_time_value(self, denv):
operand = self.operand.compile_time_value(denv)
try:
return not operand
except Exception, e:
self.compile_time_value_error(e)
subexprs = ['operand']
def analyse_types(self, env):
self.operand.analyse_types(env)
self.operand = self.operand.coerce_to_boolean(env)
self.type = PyrexTypes.c_int_type
def calculate_result_code(self):
return "(!%s)" % self.operand.result()
def generate_result_code(self, code):
pass
class UnaryPlusNode(UnopNode):
# unary '+' operator
operator = '+'
def analyse_c_operation(self, env):
self.type = self.operand.type
def py_operation_function(self):
return "PyNumber_Positive"
def calculate_result_code(self):
return self.operand.result()
class UnaryMinusNode(UnopNode):
# unary '-' operator
operator = '-'
def analyse_c_operation(self, env):
if self.operand.type.is_numeric:
self.type = self.operand.type
else:
self.type_error()
def py_operation_function(self):
return "PyNumber_Negative"
def calculate_result_code(self):
return "(-%s)" % self.operand.result()
class TildeNode(UnopNode):
# unary '~' operator
def analyse_c_operation(self, env):
if self.operand.type.is_int:
self.type = self.operand.type
else:
self.type_error()
def py_operation_function(self):
return "PyNumber_Invert"
def calculate_result_code(self):
return "(~%s)" % self.operand.result()
class AmpersandNode(ExprNode):
# The C address-of operator.
#
# operand ExprNode
subexprs = ['operand']
def analyse_types(self, env):
self.operand.analyse_types(env)
argtype = self.operand.type
if not (argtype.is_cfunction or self.operand.is_lvalue()):
self.error("Taking address of non-lvalue")
return
if argtype.is_pyobject:
self.error("Cannot take address of Python variable")
return
self.type = PyrexTypes.c_ptr_type(argtype)
def check_const(self):
self.operand.check_const_addr()
def error(self, mess):
error(self.pos, mess)
self.type = PyrexTypes.error_type
self.result_code = "<error>"
def calculate_result_code(self):
return "(&%s)" % self.operand.result()
def generate_result_code(self, code):
pass
unop_node_classes = {
"+": UnaryPlusNode,
"-": UnaryMinusNode,
"~": TildeNode,
}
def unop_node(pos, operator, operand):
# Construct unnop node of appropriate class for
# given operator.
return unop_node_classes[operator](pos,
operator = operator,
operand = operand)
class TypecastNode(ExprNode):
# C type cast
#
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# operand ExprNode
subexprs = ['operand']
def analyse_types(self, env):
base_type = self.base_type.analyse(env)
_, self.type = self.declarator.analyse(base_type, env)
if self.type.is_cfunction:
error(self.pos,
"Cannot cast to a function type")
self.type = PyrexTypes.error_type
self.operand.analyse_types(env)
to_py = self.type.is_pyobject
from_py = self.operand.type.is_pyobject
if from_py and not to_py and self.operand.is_ephemeral():
error(self.pos, "Casting temporary Python object to non-Python type")
#if to_py and not from_py:
# self.result_ctype = py_object_type
# self.is_temp = 1
def check_const(self):
self.operand.check_const()
def calculate_result_code(self):
opnd = self.operand
result_code = self.type.cast_code(opnd.result())
return result_code
def result_as(self, type):
#if self.type.is_pyobject and not self.is_temp:
if not self.is_temp:
# Optimise away some unnecessary casting
return self.operand.result_as(type)
else:
return ExprNode.result_as(self, type)
def generate_result_code(self, code):
if self.is_temp:
code.putln(
"%s = %s;" % (
self.result(),
self.operand.py_result()))
code.put_incref(self.py_result())
class SizeofNode(ExprNode):
# Abstract base class for sizeof(x) expression nodes.
def check_const(self):
pass
def generate_result_code(self, code):
pass
class SizeofTypeNode(SizeofNode):
# C sizeof function applied to a type
#
# base_type CBaseTypeNode
# declarator CDeclaratorNode
subexprs = []
def analyse_types(self, env):
base_type = self.base_type.analyse(env)
_, arg_type = self.declarator.analyse(base_type, env)
self.arg_type = arg_type
if arg_type.is_pyobject:
error(self.pos, "Cannot take sizeof Python object")
elif arg_type.is_void:
error(self.pos, "Cannot take sizeof void")
elif not arg_type.is_complete():
error(self.pos, "Cannot take sizeof incomplete type '%s'" % arg_type)
self.type = PyrexTypes.c_int_type
def calculate_result_code(self):
arg_code = self.arg_type.declaration_code("")
return "(sizeof(%s))" % arg_code
class SizeofVarNode(SizeofNode):
# C sizeof function applied to a variable
#
# operand ExprNode
subexprs = ['operand']
def analyse_types(self, env):
self.operand.analyse_types(env)
self.type = PyrexTypes.c_int_type
def calculate_result_code(self):
return "(sizeof(%s))" % self.operand.result()
def generate_result_code(self, code):
pass
#-------------------------------------------------------------------
#
# Binary operator nodes
#
#-------------------------------------------------------------------
compile_time_binary_operators = {
'<': operator.lt,
'<=': operator.le,
'==': operator.eq,
'!=': operator.ne,
'>=': operator.ge,
'>': operator.gt,
'is': operator.is_,
'is_not': operator.is_not,
'+': operator.add,
'&': operator.and_,
'/': operator.div,
'//': operator.floordiv,
'<<': operator.lshift,
'%': operator.mod,
'*': operator.mul,
'|': operator.or_,
'**': operator.pow,
'>>': operator.rshift,
'-': operator.sub,
#'/': operator.truediv,
'^': operator.xor,
'in': lambda x, y: x in y,
'not_in': lambda x, y: x not in y,
}
def get_compile_time_binop(node):
func = compile_time_binary_operators.get(node.operator)
if not func:
error(node.pos,
"Binary '%s' not supported in compile-time expression"
% node.operator)
return func
class BinopNode(ExprNode):
# operator string
# operand1 ExprNode
# operand2 ExprNode
#
# Processing during analyse_expressions phase:
#
# analyse_c_operation
# Called when neither operand is a pyobject.
# - Check operand types and coerce if needed.
# - Determine result type and result code fragment.
# - Allocate temporary for result if needed.
subexprs = ['operand1', 'operand2']
def compile_time_value(self, denv):
func = get_compile_time_binop(self)
operand1 = self.operand1.compile_time_value(denv)
operand2 = self.operand2.compile_time_value(denv)
try:
return func(operand1, operand2)
except Exception, e:
self.compile_time_value_error(e)
def analyse_types(self, env):
self.operand1.analyse_types(env)
self.operand2.analyse_types(env)
if self.is_py_operation():
self.coerce_operands_to_pyobjects(env)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
else:
self.analyse_c_operation(env)
def is_py_operation(self):
return (self.operand1.type.is_pyobject
or self.operand2.type.is_pyobject)
def coerce_operands_to_pyobjects(self, env):
self.operand1 = self.operand1.coerce_to_pyobject(env)
self.operand2 = self.operand2.coerce_to_pyobject(env)
def check_const(self):
self.operand1.check_const()
self.operand2.check_const()
def generate_result_code(self, code):
#print "BinopNode.generate_result_code:", self.operand1, self.operand2 ###
if self.operand1.type.is_pyobject:
function = self.py_operation_function()
if function == "PyNumber_Power":
extra_args = ", Py_None"
else:
extra_args = ""
result = self.result()
code.putln(
"%s = %s(%s, %s%s); if (!%s) %s" % (
result,
function,
self.operand1.py_result(),
self.operand2.py_result(),
extra_args,
result,
code.error_goto(self.pos)))
else:
if self.is_temp:
self.generate_c_operation_code(code)
def type_error(self):
if not (self.operand1.type.is_error
or self.operand2.type.is_error):
error(self.pos, "Invalid operand types for '%s' (%s; %s)" %
(self.operator, self.operand1.type,
self.operand2.type))
self.type = PyrexTypes.error_type
class NumBinopNode(BinopNode):
# Binary operation taking numeric arguments.
def analyse_c_operation(self, env):
type1 = self.operand1.type
type2 = self.operand2.type
if self.operator == "**" and type1.is_int and type2.is_int:
error(self.pos, "** with two C int types is ambiguous")
self.type = error_type
return
self.type = self.compute_c_result_type(type1, type2)
if not self.type:
self.type_error()
def compute_c_result_type(self, type1, type2):
if self.c_types_okay(type1, type2):
return PyrexTypes.widest_numeric_type(type1, type2)
else:
return None
def c_types_okay(self, type1, type2):
#print "NumBinopNode.c_types_okay:", type1, type2 ###
return (type1.is_numeric or type1.is_enum) \
and (type2.is_numeric or type2.is_enum)
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
self.operator,
self.operand2.result())
def py_operation_function(self):
return self.py_functions[self.operator]
py_functions = {
"|": "PyNumber_Or",
"^": "PyNumber_Xor",
"&": "PyNumber_And",
"<<": "PyNumber_Lshift",
">>": "PyNumber_Rshift",
"+": "PyNumber_Add",
"-": "PyNumber_Subtract",
"*": "PyNumber_Multiply",
"/": "PyNumber_Divide",
"%": "PyNumber_Remainder",
"**": "PyNumber_Power"
}
class IntBinopNode(NumBinopNode):
# Binary operation taking integer arguments.
def c_types_okay(self, type1, type2):
#print "IntBinopNode.c_types_okay:", type1, type2 ###
return (type1.is_int or type1.is_enum) \
and (type2.is_int or type2.is_enum)
class AddNode(NumBinopNode):
# '+' operator.
def is_py_operation(self):
if self.operand1.type.is_string \
and self.operand2.type.is_string:
return 1
else:
return NumBinopNode.is_py_operation(self)
def compute_c_result_type(self, type1, type2):
#print "AddNode.compute_c_result_type:", type1, self.operator, type2 ###
if (type1.is_ptr or type1.is_array) and (type2.is_int or type2.is_enum):
return type1
elif (type2.is_ptr or type2.is_array) and (type1.is_int or type1.is_enum):
return type2
else:
return NumBinopNode.compute_c_result_type(
self, type1, type2)
class SubNode(NumBinopNode):
# '-' operator.
def compute_c_result_type(self, type1, type2):
if (type1.is_ptr or type1.is_array) and (type2.is_int or type2.is_enum):
return type1
elif (type1.is_ptr or type1.is_array) and (type2.is_ptr or type2.is_array):
return PyrexTypes.c_int_type
else:
return NumBinopNode.compute_c_result_type(
self, type1, type2)
class MulNode(NumBinopNode):
# '*' operator.
def is_py_operation(self):
type1 = self.operand1.type
type2 = self.operand2.type
if (type1.is_string and type2.is_int) \
or (type2.is_string and type1.is_int):
return 1
else:
return NumBinopNode.is_py_operation(self)
class ModNode(IntBinopNode):
# '%' operator.
def is_py_operation(self):
return (self.operand1.type.is_string
or self.operand2.type.is_string
or IntBinopNode.is_py_operation(self))
class PowNode(NumBinopNode):
# '**' operator.
def analyse_types(self, env):
env.pow_function_used = 1
NumBinopNode.analyse_types(self, env)
def compute_c_result_type(self, type1, type2):
if self.c_types_okay(type1, type2):
return PyrexTypes.c_double_type
else:
return None
def calculate_result_code(self):
return "pow(%s, %s)" % (
self.operand1.result(), self.operand2.result())
class BoolBinopNode(ExprNode):
# Short-circuiting boolean operation.
#
# operator string
# operand1 ExprNode
# operand2 ExprNode
# temp_bool ExprNode used internally
temp_bool = None
subexprs = ['operand1', 'operand2', 'temp_bool']
def compile_time_value(self, denv):
if self.operator == 'and':
return self.operand1.compile_time_value(denv) \
and self.operand2.compile_time_value(denv)
else:
return self.operand1.compile_time_value(denv) \
or self.operand2.compile_time_value(denv)
def analyse_types(self, env):
self.operand1.analyse_types(env)
self.operand2.analyse_types(env)
if self.operand1.type.is_pyobject or \
self.operand2.type.is_pyobject:
self.operand1 = self.operand1.coerce_to_pyobject(env)
self.operand2 = self.operand2.coerce_to_pyobject(env)
self.temp_bool = TempNode(self.pos,
PyrexTypes.c_int_type, env)
self.type = py_object_type
self.gil_check(env)
else:
self.operand1 = self.operand1.coerce_to_boolean(env)
self.operand2 = self.operand2.coerce_to_boolean(env)
self.type = PyrexTypes.c_int_type
# For what we're about to do, it's vital that
# both operands be temp nodes.
self.operand1 = self.operand1.coerce_to_temp(env) #CTT
self.operand2 = self.operand2.coerce_to_temp(env)
self.is_temp = 1
gil_message = "Truth-testing Python object"
def allocate_temps(self, env, result_code = None):
# We don't need both operands at the same time, and
# one of the operands will also be our result. So we
# use an allocation strategy here which results in
# this node and both its operands sharing the same
# result variable. This allows us to avoid some
# assignments and increfs/decrefs that would otherwise
# be necessary.
self.allocate_temp(env, result_code)
self.operand1.allocate_temps(env, self.result_code)
if self.temp_bool:
self.temp_bool.allocate_temp(env)
self.temp_bool.release_temp(env)
self.operand2.allocate_temps(env, self.result_code)
# We haven't called release_temp on either operand,
# because although they are temp nodes, they don't own
# their result variable. And because they are temp
# nodes, any temps in their subnodes will have been
# released before their allocate_temps returned.
# Therefore, they contain no temp vars that need to
# be released.
def check_const(self):
self.operand1.check_const()
self.operand2.check_const()
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
self.py_to_c_op[self.operator],
self.operand2.result())
py_to_c_op = {'and': "&&", 'or': "||"}
def generate_evaluation_code(self, code):
self.operand1.generate_evaluation_code(code)
test_result = self.generate_operand1_test(code)
if self.operator == 'and':
sense = ""
else:
sense = "!"
code.putln(
"if (%s%s) {" % (
sense,
test_result))
self.operand1.generate_disposal_code(code)
self.operand2.generate_evaluation_code(code)
code.putln(
"}")
def generate_operand1_test(self, code):
# Generate code to test the truth of the first operand.
if self.type.is_pyobject:
test_result = self.temp_bool.result()
code.putln(
"%s = PyObject_IsTrue(%s); if (%s < 0) %s" % (
test_result,
self.operand1.py_result(),
test_result,
code.error_goto(self.pos)))
else:
test_result = self.operand1.result()
return test_result
class CmpNode:
# Mixin class containing code common to PrimaryCmpNodes
# and CascadedCmpNodes.
def cascaded_compile_time_value(self, operand1, denv):
func = get_compile_time_binop(self)
operand2 = self.operand2.compile_time_value(denv)
try:
result = func(operand1, operand2)
except Exception, e:
self.compile_time_value_error(e)
result = None
if result:
cascade = self.cascade
if cascade:
result = result and cascade.compile_time_value(operand2, denv)
return result
def is_python_comparison(self):
return (self.has_python_operands()
or (self.cascade and self.cascade.is_python_comparison())
or self.operator in ('in', 'not_in'))
def check_types(self, env, operand1, op, operand2):
if not self.types_okay(operand1, op, operand2):
error(self.pos, "Invalid types for '%s' (%s, %s)" %
(self.operator, operand1.type, operand2.type))
def types_okay(self, operand1, op, operand2):
type1 = operand1.type
type2 = operand2.type
if type1.is_error or type2.is_error:
return 1
if type1.is_pyobject: # type2 will be, too
return 1
elif type1.is_ptr or type1.is_array:
return type1.is_null_ptr or type2.is_null_ptr \
or ((type2.is_ptr or type2.is_array)
and type1.base_type.same_as(type2.base_type))
elif ((type1.is_numeric and type2.is_numeric
or type1.is_enum and (type2.is_int or type1.same_as(type2))
or type1.is_int and type2.is_enum)
and op not in ('is', 'is_not')):
return 1
else:
return 0
def generate_operation_code(self, code, result,
operand1, op , operand2):
if op == 'in' or op == 'not_in':
code.putln(
"%s = PySequence_Contains(%s, %s); if (%s < 0) %s" % (
result,
operand2.py_result(),
operand1.py_result(),
result,
code.error_goto(self.pos)))
if op == 'not_in':
code.putln(
"%s = !%s;" % (
result, result))
elif (operand1.type.is_pyobject
and op not in ('is', 'is_not')):
code.putln(
"if (PyObject_Cmp(%s, %s, &%s) < 0) %s" % (
operand1.py_result(),
operand2.py_result(),
result,
code.error_goto(self.pos)))
code.putln(
"%s = %s %s 0;" % (
result, result, op))
else:
type1 = operand1.type
type2 = operand2.type
if (type1.is_extension_type or type2.is_extension_type) \
and not operand1.ctype().same_as(operand2.ctype()):
code1 = operand1.result_as(py_object_type)
code2 = operand2.result_as(py_object_type)
else:
code1 = operand1.result()
code2 = operand2.result()
code.putln("%s = %s %s %s;" % (
result,
code1,
self.c_operator(op),
code2))
def c_operator(self, op):
if op == 'is':
return "=="
elif op == 'is_not':
return "!="
else:
return op
class PrimaryCmpNode(ExprNode, CmpNode):
# Non-cascaded comparison or first comparison of
# a cascaded sequence.
#
# operator string
# operand1 ExprNode
# operand2 ExprNode
# cascade CascadedCmpNode
# We don't use the subexprs mechanism, because
# things here are too complicated for it to handle.
# Instead, we override all the framework methods
# which use it.
cascade = None
def compile_time_value(self, denv):
operand1 = self.operand1.compile_time_value(denv)
return self.cascaded_compile_time_value(operand1, denv)
def analyse_types(self, env):
self.operand1.analyse_types(env)
self.operand2.analyse_types(env)
if self.cascade:
self.cascade.analyse_types(env, self.operand2)
self.is_pycmp = self.is_python_comparison()
if self.is_pycmp:
self.coerce_operands_to_pyobjects(env)
if self.cascade:
self.operand2 = self.operand2.coerce_to_simple(env)
self.cascade.coerce_cascaded_operands_to_temp(env)
self.check_operand_types(env)
self.type = PyrexTypes.c_int_type
if self.is_pycmp or self.cascade:
self.is_temp = 1
def check_operand_types(self, env):
self.check_types(env,
self.operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.check_operand_types(env, self.operand2)
def has_python_operands(self):
return (self.operand1.type.is_pyobject
or self.operand2.type.is_pyobject)
def coerce_operands_to_pyobjects(self, env):
self.operand1 = self.operand1.coerce_to_pyobject(env)
self.operand2 = self.operand2.coerce_to_pyobject(env)
if self.cascade:
self.cascade.coerce_operands_to_pyobjects(env)
def allocate_subexpr_temps(self, env):
self.operand1.allocate_temps(env)
self.operand2.allocate_temps(env)
if self.cascade:
self.cascade.allocate_subexpr_temps(env)
def release_subexpr_temps(self, env):
self.operand1.release_temp(env)
self.operand2.release_temp(env)
if self.cascade:
self.cascade.release_subexpr_temps(env)
def check_const(self):
self.operand1.check_const()
self.operand2.check_const()
if self.cascade:
self.not_const()
def calculate_result_code(self):
return "(%s %s %s)" % (
self.operand1.result(),
self.c_operator(self.operator),
self.operand2.result())
def generate_evaluation_code(self, code):
self.operand1.generate_evaluation_code(code)
self.operand2.generate_evaluation_code(code)
if self.is_temp:
result = self.result()
self.generate_operation_code(code, result,
self.operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.generate_evaluation_code(code,
result, self.operand2)
self.operand1.generate_disposal_code(code)
self.operand2.generate_disposal_code(code)
def generate_subexpr_disposal_code(self, code):
# If this is called, it is a non-cascaded cmp,
# so only need to dispose of the two main operands.
self.operand1.generate_disposal_code(code)
self.operand2.generate_disposal_code(code)
class CascadedCmpNode(Node, CmpNode):
# A CascadedCmpNode is not a complete expression node. It
# hangs off the side of another comparison node, shares
# its left operand with that node, and shares its result
# with the PrimaryCmpNode at the head of the chain.
#
# operator string
# operand2 ExprNode
# cascade CascadedCmpNode
cascade = None
def analyse_types(self, env, operand1):
self.operand2.analyse_types(env)
if self.cascade:
self.cascade.analyse_types(env, self.operand2)
def check_operand_types(self, env, operand1):
self.check_types(env,
operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.check_operand_types(env, self.operand2)
def has_python_operands(self):
return self.operand2.type.is_pyobject
def coerce_operands_to_pyobjects(self, env):
self.operand2 = self.operand2.coerce_to_pyobject(env)
if self.cascade:
self.cascade.coerce_operands_to_pyobjects(env)
def coerce_cascaded_operands_to_temp(self, env):
if self.cascade:
#self.operand2 = self.operand2.coerce_to_temp(env) #CTT
self.operand2 = self.operand2.coerce_to_simple(env)
self.cascade.coerce_cascaded_operands_to_temp(env)
def allocate_subexpr_temps(self, env):
self.operand2.allocate_temps(env)
if self.cascade:
self.cascade.allocate_subexpr_temps(env)
def release_subexpr_temps(self, env):
self.operand2.release_temp(env)
if self.cascade:
self.cascade.release_subexpr_temps(env)
def generate_evaluation_code(self, code, result, operand1):
code.putln("if (%s) {" % result)
self.operand2.generate_evaluation_code(code)
self.generate_operation_code(code, result,
operand1, self.operator, self.operand2)
if self.cascade:
self.cascade.generate_evaluation_code(
code, result, self.operand2)
# Cascaded cmp result is always temp
self.operand2.generate_disposal_code(code)
code.putln("}")
binop_node_classes = {
"or": BoolBinopNode,
"and": BoolBinopNode,
"|": IntBinopNode,
"^": IntBinopNode,
"&": IntBinopNode,
"<<": IntBinopNode,
">>": IntBinopNode,
"+": AddNode,
"-": SubNode,
"*": MulNode,
"/": NumBinopNode,
"%": ModNode,
"**": PowNode
}
def binop_node(pos, operator, operand1, operand2):
# Construct binop node of appropriate class for
# given operator.
return binop_node_classes[operator](pos,
operator = operator,
operand1 = operand1,
operand2 = operand2)
#-------------------------------------------------------------------
#
# Coercion nodes
#
# Coercion nodes are special in that they are created during
# the analyse_types phase of parse tree processing.
# Their __init__ methods consequently incorporate some aspects
# of that phase.
#
#-------------------------------------------------------------------
class CoercionNode(ExprNode):
# Abstract base class for coercion nodes.
#
# arg ExprNode node being coerced
subexprs = ['arg']
def __init__(self, arg):
self.pos = arg.pos
self.arg = arg
if debug_coercion:
print self, "Coercing", self.arg
class CastNode(CoercionNode):
# Wrap a node in a C type cast.
def __init__(self, arg, new_type):
CoercionNode.__init__(self, arg)
self.type = new_type
def calculate_result_code(self):
return self.arg.result_as(self.type)
def generate_result_code(self, code):
self.arg.generate_result_code(code)
class PyTypeTestNode(CoercionNode):
# This node is used to check that a generic Python
# object is an instance of a particular extension type.
# This node borrows the result of its argument node.
def __init__(self, arg, dst_type, env):
# The arg is know to be a Python object, and
# the dst_type is known to be an extension type.
assert dst_type.is_extension_type, "PyTypeTest on non extension type"
CoercionNode.__init__(self, arg)
self.type = dst_type
self.result_ctype = arg.ctype()
# env.use_utility_code(type_test_utility_code)
self.gil_check(env)
gil_message = "Python type test"
def result_in_temp(self):
return self.arg.result_in_temp()
def is_ephemeral(self):
return self.arg.is_ephemeral()
def calculate_result_code(self):
return self.arg.result()
def generate_result_code(self, code):
if self.type.typeobj_is_available():
code.use_utility_code(type_test_utility_code)
code.putln(
"if (!__Pyx_TypeTest(%s, %s)) %s" % (
self.arg.py_result(),
self.type.typeptr_cname,
code.error_goto(self.pos)))
else:
error(self.pos, "Cannot test type of extern C class "
"without type object name specification")
def generate_post_assignment_code(self, code):
self.arg.generate_post_assignment_code(code)
class CoerceToPyTypeNode(CoercionNode):
# This node is used to convert a C data type
# to a Python object.
def __init__(self, arg, env):
CoercionNode.__init__(self, arg)
self.type = py_object_type
self.gil_check(env)
self.is_temp = 1
if not arg.type.to_py_function:
error(arg.pos,
"Cannot convert '%s' to Python object" % arg.type)
gil_message = "Converting to Python object"
def generate_result_code(self, code):
function = self.arg.type.to_py_function
result = self.result()
code.putln('%s = %s(%s); if (!%s) %s' % (
result,
function,
self.arg.result(),
result,
code.error_goto(self.pos)))
class CoerceFromPyTypeNode(CoercionNode):
# This node is used to convert a Python object
# to a C data type.
def __init__(self, result_type, arg, env):
CoercionNode.__init__(self, arg)
self.type = result_type
self.is_temp = 1
if not result_type.from_py_function:
error(arg.pos,
"Cannot convert Python object to '%s'" % result_type)
if self.type.is_string and self.arg.is_ephemeral():
error(arg.pos,
"Obtaining char * from temporary Python value")
def generate_result_code(self, code):
function = self.type.from_py_function
operand = self.arg.py_result()
rhs = "%s(%s)" % (function, operand)
if self.type.is_enum:
rhs = typecast(self.type, c_long_type, rhs)
result = self.result()
if self.type.is_string:
err_code = "!%s" % result
else:
err_code = "PyErr_Occurred()"
code.putln('%s = %s; if (%s) %s' % (
result,
rhs,
err_code,
code.error_goto(self.pos)))
class CoerceToBooleanNode(CoercionNode):
# This node is used when a result needs to be used
# in a boolean context.
def __init__(self, arg, env):
CoercionNode.__init__(self, arg)
self.type = PyrexTypes.c_int_type
if arg.type.is_pyobject:
if env.nogil:
self.gil_error()
self.is_temp = 1
gil_message = "Truth-testing Python object"
def check_const(self):
if self.is_temp:
self.not_const()
self.arg.check_const()
def calculate_result_code(self):
return "(%s != 0)" % self.arg.result()
def generate_result_code(self, code):
if self.arg.type.is_pyobject:
result = self.result()
code.putln(
"%s = PyObject_IsTrue(%s); if (%s < 0) %s" % (
result,
self.arg.py_result(),
result,
code.error_goto(self.pos)))
class CoerceToTempNode(CoercionNode):
# This node is used to force the result of another node
# to be stored in a temporary. It is only used if the
# argument node's result is not already in a temporary.
def __init__(self, arg, env):
CoercionNode.__init__(self, arg)
self.type = self.arg.type
self.is_temp = 1
if self.type.is_pyobject:
self.gil_check(env)
self.result_ctype = py_object_type
gil_message = "Creating temporary Python reference"
def generate_result_code(self, code):
#self.arg.generate_evaluation_code(code) # Already done
# by generic generate_subexpr_evaluation_code!
code.putln("%s = %s;" % (
self.result(), self.arg.result_as(self.ctype())))
if self.type.is_pyobject:
code.put_incref(self.py_result())
class CloneNode(CoercionNode):
# This node is employed when the result of another node needs
# to be used multiple times. The argument node's result must
# be in a temporary. This node "borrows" the result from the
# argument node, and does not generate any evaluation or
# disposal code for it. The original owner of the argument
# node is responsible for doing those things.
subexprs = [] # Arg is not considered a subexpr
def __init__(self, arg):
CoercionNode.__init__(self, arg)
self.type = arg.type
self.result_ctype = arg.result_ctype
def calculate_result_code(self):
return self.arg.result()
def generate_evaluation_code(self, code):
pass
def generate_result_code(self, code):
pass
#------------------------------------------------------------------------------------
#
# Runtime support code
#
#------------------------------------------------------------------------------------
get_name_utility_code = [
"""
static PyObject *__Pyx_GetName(PyObject *dict, char *name); /*proto*/
""","""
static PyObject *__Pyx_GetName(PyObject *dict, char *name) {
PyObject *result;
result = PyObject_GetAttrString(dict, name);
if (!result)
PyErr_SetString(PyExc_NameError, name);
return result;
}
"""]
get_name_interned_utility_code = [
"""
static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name); /*proto*/
""","""
static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name) {
PyObject *result;
result = PyObject_GetAttr(dict, name);
if (!result)
PyErr_SetObject(PyExc_NameError, name);
return result;
}
"""]
#------------------------------------------------------------------------------------
import_utility_code = [
"""
static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list); /*proto*/
""","""
static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list) {
PyObject *__import__ = 0;
PyObject *empty_list = 0;
PyObject *module = 0;
PyObject *global_dict = 0;
PyObject *empty_dict = 0;
PyObject *list;
__import__ = PyObject_GetAttrString(%(BUILTINS)s, "__import__");
if (!__import__)
goto bad;
if (from_list)
list = from_list;
else {
empty_list = PyList_New(0);
if (!empty_list)
goto bad;
list = empty_list;
}
global_dict = PyModule_GetDict(%(GLOBALS)s);
if (!global_dict)
goto bad;
empty_dict = PyDict_New();
if (!empty_dict)
goto bad;
module = PyObject_CallFunction(__import__, "OOOO",
name, global_dict, empty_dict, list);
bad:
Py_XDECREF(empty_list);
Py_XDECREF(__import__);
Py_XDECREF(empty_dict);
return module;
}
""" % {
"BUILTINS": Naming.builtins_cname,
"GLOBALS": Naming.module_cname,
}]
#------------------------------------------------------------------------------------
#
#get_exception_utility_code = [
#"""
#static PyObject *__Pyx_GetExcValue(void); /*proto*/
#""","""
#static PyObject *__Pyx_GetExcValue(void) {
# PyObject *type = 0, *value = 0, *tb = 0;
# PyObject *result = 0;
# PyThreadState *tstate = PyThreadState_Get();
# PyErr_Fetch(&type, &value, &tb);
# PyErr_NormalizeException(&type, &value, &tb);
# if (PyErr_Occurred())
# goto bad;
# if (!value) {
# value = Py_None;
# Py_INCREF(value);
# }
# Py_XDECREF(tstate->exc_type);
# Py_XDECREF(tstate->exc_value);
# Py_XDECREF(tstate->exc_traceback);
# tstate->exc_type = type;
# tstate->exc_value = value;
# tstate->exc_traceback = tb;
# result = value;
# Py_XINCREF(result);
# type = 0;
# value = 0;
# tb = 0;
#bad:
# Py_XDECREF(type);
# Py_XDECREF(value);
# Py_XDECREF(tb);
# return result;
#}
#"""]
#
#------------------------------------------------------------------------------------
unpacking_utility_code = [
"""
static PyObject *__Pyx_UnpackItem(PyObject *); /*proto*/
static int __Pyx_EndUnpack(PyObject *); /*proto*/
""","""
static void __Pyx_UnpackError(void) {
PyErr_SetString(PyExc_ValueError, "unpack sequence of wrong size");
}
static PyObject *__Pyx_UnpackItem(PyObject *iter) {
PyObject *item;
if (!(item = PyIter_Next(iter))) {
if (!PyErr_Occurred())
__Pyx_UnpackError();
}
return item;
}
static int __Pyx_EndUnpack(PyObject *iter) {
PyObject *item;
if ((item = PyIter_Next(iter))) {
Py_DECREF(item);
__Pyx_UnpackError();
return -1;
}
else if (!PyErr_Occurred())
return 0;
else
return -1;
}
"""]
#------------------------------------------------------------------------------------
type_test_utility_code = [
"""
static int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /*proto*/
""","""
static int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) {
if (!type) {
PyErr_Format(PyExc_SystemError, "Missing type object");
return 0;
}
if (obj == Py_None || PyObject_TypeCheck(obj, type))
return 1;
PyErr_Format(PyExc_TypeError, "Cannot convert %s to %s",
obj->ob_type->tp_name, type->tp_name);
return 0;
}
"""]
#------------------------------------------------------------------------------------
create_class_utility_code = [
"""
static PyObject *__Pyx_CreateClass(PyObject *bases, PyObject *dict, PyObject *name, char *modname); /*proto*/
""","""
static PyObject *__Pyx_CreateClass(
PyObject *bases, PyObject *dict, PyObject *name, char *modname)
{
PyObject *py_modname;
PyObject *result = 0;
py_modname = PyString_FromString(modname);
if (!py_modname)
goto bad;
if (PyDict_SetItemString(dict, "__module__", py_modname) < 0)
goto bad;
result = PyClass_New(bases, dict, name);
bad:
Py_XDECREF(py_modname);
return result;
}
"""]
#------------------------------------------------------------------------------------
getitem_int_utility_code = [
"""
static PyObject *__Pyx_GetItemInt(PyObject *o, Py_ssize_t i); /*proto*/
""","""
static PyObject *__Pyx_GetItemInt(PyObject *o, Py_ssize_t i) {
PyTypeObject *t = o->ob_type;
PyObject *r;
if (t->tp_as_sequence && t->tp_as_sequence->sq_item)
r = PySequence_GetItem(o, i);
else {
PyObject *j = PyInt_FromLong(i);
if (!j)
return 0;
r = PyObject_GetItem(o, j);
Py_DECREF(j);
}
return r;
}
"""]
#------------------------------------------------------------------------------------
setitem_int_utility_code = [
"""
static int __Pyx_SetItemInt(PyObject *o, Py_ssize_t i, PyObject *v); /*proto*/
""","""
static int __Pyx_SetItemInt(PyObject *o, Py_ssize_t i, PyObject *v) {
PyTypeObject *t = o->ob_type;
int r;
if (t->tp_as_sequence && t->tp_as_sequence->sq_item)
r = PySequence_SetItem(o, i, v);
else {
PyObject *j = PyInt_FromLong(i);
if (!j)
return -1;
r = PyObject_SetItem(o, j, v);
Py_DECREF(j);
}
return r;
}
"""]
|