This file is indexed.

/usr/lib/python2.7/dist-packages/pycparser/c_parser.py is in python-pycparser 2.10+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
#------------------------------------------------------------------------------
# pycparser: c_parser.py
#
# CParser class: Parser and AST builder for the C language
#
# Copyright (C) 2008-2013, Eli Bendersky
# License: BSD
#------------------------------------------------------------------------------
import re

from ply import yacc

from . import c_ast
from .c_lexer import CLexer
from .plyparser import PLYParser, Coord, ParseError
from .ast_transforms import fix_switch_cases


class CParser(PLYParser):
    def __init__(
            self,
            lex_optimize=True,
            lextab='pycparser.lextab',
            yacc_optimize=True,
            yacctab='pycparser.yacctab',
            yacc_debug=False):
        """ Create a new CParser.

            Some arguments for controlling the debug/optimization
            level of the parser are provided. The defaults are
            tuned for release/performance mode.
            The simple rules for using them are:
            *) When tweaking CParser/CLexer, set these to False
            *) When releasing a stable parser, set to True

            lex_optimize:
                Set to False when you're modifying the lexer.
                Otherwise, changes in the lexer won't be used, if
                some lextab.py file exists.
                When releasing with a stable lexer, set to True
                to save the re-generation of the lexer table on
                each run.

            lextab:
                Points to the lex table that's used for optimized
                mode. Only if you're modifying the lexer and want
                some tests to avoid re-generating the table, make
                this point to a local lex table file (that's been
                earlier generated with lex_optimize=True)

            yacc_optimize:
                Set to False when you're modifying the parser.
                Otherwise, changes in the parser won't be used, if
                some parsetab.py file exists.
                When releasing with a stable parser, set to True
                to save the re-generation of the parser table on
                each run.

            yacctab:
                Points to the yacc table that's used for optimized
                mode. Only if you're modifying the parser, make
                this point to a local yacc table file

            yacc_debug:
                Generate a parser.out file that explains how yacc
                built the parsing table from the grammar.
        """
        self.clex = CLexer(
            error_func=self._lex_error_func,
            on_lbrace_func=self._lex_on_lbrace_func,
            on_rbrace_func=self._lex_on_rbrace_func,
            type_lookup_func=self._lex_type_lookup_func)

        self.clex.build(
            optimize=lex_optimize,
            lextab=lextab)
        self.tokens = self.clex.tokens

        rules_with_opt = [
            'abstract_declarator',
            'assignment_expression',
            'declaration_list',
            'declaration_specifiers',
            'designation',
            'expression',
            'identifier_list',
            'init_declarator_list',
            'parameter_type_list',
            'specifier_qualifier_list',
            'block_item_list',
            'type_qualifier_list',
            'struct_declarator_list'
        ]

        for rule in rules_with_opt:
            self._create_opt_rule(rule)

        self.cparser = yacc.yacc(
            module=self,
            start='translation_unit_or_empty',
            debug=yacc_debug,
            optimize=yacc_optimize,
            tabmodule=yacctab)

        # Stack of scopes for keeping track of symbols. _scope_stack[-1] is
        # the current (topmost) scope. Each scope is a dictionary that
        # specifies whether a name is a type. If _scope_stack[n][name] is
        # True, 'name' is currently a type in the scope. If it's False,
        # 'name' is used in the scope but not as a type (for instance, if we
        # saw: int name;
        # If 'name' is not a key in _scope_stack[n] then 'name' was not defined
        # in this scope at all.
        self._scope_stack = [dict()]

        # Keeps track of the last token given to yacc (the lookahead token)
        self._last_yielded_token = None

    def parse(self, text, filename='', debuglevel=0):
        """ Parses C code and returns an AST.

            text:
                A string containing the C source code

            filename:
                Name of the file being parsed (for meaningful
                error messages)

            debuglevel:
                Debug level to yacc
        """
        self.clex.filename = filename
        self.clex.reset_lineno()
        self._scope_stack = [dict()]
        self._last_yielded_token = None
        return self.cparser.parse(
                input=text,
                lexer=self.clex,
                debug=debuglevel)

    ######################--   PRIVATE   --######################

    def _push_scope(self):
        self._scope_stack.append(dict())

    def _pop_scope(self):
        assert len(self._scope_stack) > 1
        self._scope_stack.pop()

    def _add_typedef_name(self, name, coord):
        """ Add a new typedef name (ie a TYPEID) to the current scope
        """
        if not self._scope_stack[-1].get(name, True):
            self._parse_error(
                "Typedef %r previously declared as non-typedef "
                "in this scope" % name, coord)
        self._scope_stack[-1][name] = True

    def _add_identifier(self, name, coord):
        """ Add a new object, function, or enum member name (ie an ID) to the
            current scope
        """
        if self._scope_stack[-1].get(name, False):
            self._parse_error(
                "Non-typedef %r previously declared as typedef "
                "in this scope" % name, coord)
        self._scope_stack[-1][name] = False

    def _is_type_in_scope(self, name):
        """ Is *name* a typedef-name in the current scope?
        """
        for scope in reversed(self._scope_stack):
            # If name is an identifier in this scope it shadows typedefs in
            # higher scopes.
            in_scope = scope.get(name)
            if in_scope is not None: return in_scope
        return False

    def _lex_error_func(self, msg, line, column):
        self._parse_error(msg, self._coord(line, column))

    def _lex_on_lbrace_func(self):
        self._push_scope()

    def _lex_on_rbrace_func(self):
        self._pop_scope()

    def _lex_type_lookup_func(self, name):
        """ Looks up types that were previously defined with
            typedef.
            Passed to the lexer for recognizing identifiers that
            are types.
        """
        is_type = self._is_type_in_scope(name)
        return is_type

    def _get_yacc_lookahead_token(self):
        """ We need access to yacc's lookahead token in certain cases.
            This is the last token yacc requested from the lexer, so we
            ask the lexer.
        """
        return self.clex.last_token

    # To understand what's going on here, read sections A.8.5 and
    # A.8.6 of K&R2 very carefully.
    #
    # A C type consists of a basic type declaration, with a list
    # of modifiers. For example:
    #
    # int *c[5];
    #
    # The basic declaration here is 'int c', and the pointer and
    # the array are the modifiers.
    #
    # Basic declarations are represented by TypeDecl (from module
    # c_ast) and the modifiers are FuncDecl, PtrDecl and
    # ArrayDecl.
    #
    # The standard states that whenever a new modifier is parsed,
    # it should be added to the end of the list of modifiers. For
    # example:
    #
    # K&R2 A.8.6.2: Array Declarators
    #
    # In a declaration T D where D has the form
    #   D1 [constant-expression-opt]
    # and the type of the identifier in the declaration T D1 is
    # "type-modifier T", the type of the
    # identifier of D is "type-modifier array of T"
    #
    # This is what this method does. The declarator it receives
    # can be a list of declarators ending with TypeDecl. It
    # tacks the modifier to the end of this list, just before
    # the TypeDecl.
    #
    # Additionally, the modifier may be a list itself. This is
    # useful for pointers, that can come as a chain from the rule
    # p_pointer. In this case, the whole modifier list is spliced
    # into the new location.
    #
    def _type_modify_decl(self, decl, modifier):
        """ Tacks a type modifier on a declarator, and returns
            the modified declarator.

            Note: the declarator and modifier may be modified
        """
        #~ print '****'
        #~ decl.show(offset=3)
        #~ modifier.show(offset=3)
        #~ print '****'

        modifier_head = modifier
        modifier_tail = modifier

        # The modifier may be a nested list. Reach its tail.
        #
        while modifier_tail.type:
            modifier_tail = modifier_tail.type

        # If the decl is a basic type, just tack the modifier onto
        # it
        #
        if isinstance(decl, c_ast.TypeDecl):
            modifier_tail.type = decl
            return modifier
        else:
            # Otherwise, the decl is a list of modifiers. Reach
            # its tail and splice the modifier onto the tail,
            # pointing to the underlying basic type.
            #
            decl_tail = decl

            while not isinstance(decl_tail.type, c_ast.TypeDecl):
                decl_tail = decl_tail.type

            modifier_tail.type = decl_tail.type
            decl_tail.type = modifier_head
            return decl

    # Due to the order in which declarators are constructed,
    # they have to be fixed in order to look like a normal AST.
    #
    # When a declaration arrives from syntax construction, it has
    # these problems:
    # * The innermost TypeDecl has no type (because the basic
    #   type is only known at the uppermost declaration level)
    # * The declaration has no variable name, since that is saved
    #   in the innermost TypeDecl
    # * The typename of the declaration is a list of type
    #   specifiers, and not a node. Here, basic identifier types
    #   should be separated from more complex types like enums
    #   and structs.
    #
    # This method fixes these problems.
    #
    def _fix_decl_name_type(self, decl, typename):
        """ Fixes a declaration. Modifies decl.
        """
        # Reach the underlying basic type
        #
        type = decl
        while not isinstance(type, c_ast.TypeDecl):
            type = type.type

        decl.name = type.declname
        type.quals = decl.quals

        # The typename is a list of types. If any type in this
        # list isn't an IdentifierType, it must be the only
        # type in the list (it's illegal to declare "int enum ..")
        # If all the types are basic, they're collected in the
        # IdentifierType holder.
        #
        for tn in typename:
            if not isinstance(tn, c_ast.IdentifierType):
                if len(typename) > 1:
                    self._parse_error(
                        "Invalid multiple types specified", tn.coord)
                else:
                    type.type = tn
                    return decl

        if not typename:
            # Functions default to returning int
            #
            if not isinstance(decl.type, c_ast.FuncDecl):
                self._parse_error(
                        "Missing type in declaration", decl.coord)
            type.type = c_ast.IdentifierType(
                    ['int'],
                    coord=decl.coord)
        else:
            # At this point, we know that typename is a list of IdentifierType
            # nodes. Concatenate all the names into a single list.
            #
            type.type = c_ast.IdentifierType(
                [name for id in typename for name in id.names],
                coord=typename[0].coord)
        return decl

    def _add_declaration_specifier(self, declspec, newspec, kind):
        """ Declaration specifiers are represented by a dictionary
            with the entries:
            * qual: a list of type qualifiers
            * storage: a list of storage type qualifiers
            * type: a list of type specifiers
            * function: a list of function specifiers

            This method is given a declaration specifier, and a
            new specifier of a given kind.
            Returns the declaration specifier, with the new
            specifier incorporated.
        """
        spec = declspec or dict(qual=[], storage=[], type=[], function=[])
        spec[kind].insert(0, newspec)
        return spec

    def _build_declarations(self, spec, decls, typedef_namespace=False):
        """ Builds a list of declarations all sharing the given specifiers.
            If typedef_namespace is true, each declared name is added
            to the "typedef namespace", which also includes objects,
            functions, and enum constants.
        """
        is_typedef = 'typedef' in spec['storage']
        declarations = []

        # Bit-fields are allowed to be unnamed.
        #
        if decls[0].get('bitsize') is not None:
            pass

        # When redeclaring typedef names as identifiers in inner scopes, a
        # problem can occur where the identifier gets grouped into
        # spec['type'], leaving decl as None.  This can only occur for the
        # first declarator.
        #
        elif decls[0]['decl'] is None:
            if len(spec['type']) < 2 or len(spec['type'][-1].names) != 1 or \
                    not self._is_type_in_scope(spec['type'][-1].names[0]):
                coord = '?'
                for t in spec['type']:
                    if hasattr(t, 'coord'):
                        coord = t.coord
                        break
                self._parse_error('Invalid declaration', coord)

            # Make this look as if it came from "direct_declarator:ID"
            decls[0]['decl'] = c_ast.TypeDecl(
                declname=spec['type'][-1].names[0],
                type=None,
                quals=None,
                coord=spec['type'][-1].coord)
            # Remove the "new" type's name from the end of spec['type']
            del spec['type'][-1]

        # A similar problem can occur where the declaration ends up looking
        # like an abstract declarator.  Give it a name if this is the case.
        #
        elif not isinstance(decls[0]['decl'],
                (c_ast.Struct, c_ast.Union, c_ast.IdentifierType)):
            decls_0_tail = decls[0]['decl']
            while not isinstance(decls_0_tail, c_ast.TypeDecl):
                decls_0_tail = decls_0_tail.type
            if decls_0_tail.declname is None:
                decls_0_tail.declname = spec['type'][-1].names[0]
                del spec['type'][-1]

        for decl in decls:
            assert decl['decl'] is not None
            if is_typedef:
                declaration = c_ast.Typedef(
                    name=None,
                    quals=spec['qual'],
                    storage=spec['storage'],
                    type=decl['decl'],
                    coord=decl['decl'].coord)
            else:
                declaration = c_ast.Decl(
                    name=None,
                    quals=spec['qual'],
                    storage=spec['storage'],
                    funcspec=spec['function'],
                    type=decl['decl'],
                    init=decl.get('init'),
                    bitsize=decl.get('bitsize'),
                    coord=decl['decl'].coord)

            if isinstance(declaration.type,
                    (c_ast.Struct, c_ast.Union, c_ast.IdentifierType)):
                fixed_decl = declaration
            else:
                fixed_decl = self._fix_decl_name_type(declaration, spec['type'])

            # Add the type name defined by typedef to a
            # symbol table (for usage in the lexer)
            #
            if typedef_namespace:
                if is_typedef:
                    self._add_typedef_name(fixed_decl.name, fixed_decl.coord)
                else:
                    self._add_identifier(fixed_decl.name, fixed_decl.coord)

            declarations.append(fixed_decl)

        return declarations

    def _build_function_definition(self, spec, decl, param_decls, body):
        """ Builds a function definition.
        """
        assert 'typedef' not in spec['storage']

        declaration = self._build_declarations(
            spec=spec,
            decls=[dict(decl=decl, init=None)],
            typedef_namespace=True)[0]

        return c_ast.FuncDef(
            decl=declaration,
            param_decls=param_decls,
            body=body,
            coord=decl.coord)

    def _select_struct_union_class(self, token):
        """ Given a token (either STRUCT or UNION), selects the
            appropriate AST class.
        """
        if token == 'struct':
            return c_ast.Struct
        else:
            return c_ast.Union

    ##
    ## Precedence and associativity of operators
    ##
    precedence = (
        ('left', 'LOR'),
        ('left', 'LAND'),
        ('left', 'OR'),
        ('left', 'XOR'),
        ('left', 'AND'),
        ('left', 'EQ', 'NE'),
        ('left', 'GT', 'GE', 'LT', 'LE'),
        ('left', 'RSHIFT', 'LSHIFT'),
        ('left', 'PLUS', 'MINUS'),
        ('left', 'TIMES', 'DIVIDE', 'MOD')
    )

    ##
    ## Grammar productions
    ## Implementation of the BNF defined in K&R2 A.13
    ##

    # Wrapper around a translation unit, to allow for empty input.
    # Not strictly part of the C99 Grammar, but useful in practice.
    #
    def p_translation_unit_or_empty(self, p):
        """ translation_unit_or_empty   : translation_unit
                                        | empty
        """
        if p[1] is None:
            p[0] = c_ast.FileAST([])
        else:
            p[0] = c_ast.FileAST(p[1])

    def p_translation_unit_1(self, p):
        """ translation_unit    : external_declaration
        """
        # Note: external_declaration is already a list
        #
        p[0] = p[1]

    def p_translation_unit_2(self, p):
        """ translation_unit    : translation_unit external_declaration
        """
        if p[2] is not None:
            p[1].extend(p[2])
        p[0] = p[1]

    # Declarations always come as lists (because they can be
    # several in one line), so we wrap the function definition
    # into a list as well, to make the return value of
    # external_declaration homogenous.
    #
    def p_external_declaration_1(self, p):
        """ external_declaration    : function_definition
        """
        p[0] = [p[1]]

    def p_external_declaration_2(self, p):
        """ external_declaration    : declaration
        """
        p[0] = p[1]

    def p_external_declaration_3(self, p):
        """ external_declaration    : pp_directive
        """
        p[0] = p[1]

    def p_external_declaration_4(self, p):
        """ external_declaration    : SEMI
        """
        p[0] = None

    def p_pp_directive(self, p):
        """ pp_directive  : PPHASH
        """
        self._parse_error('Directives not supported yet',
            self._coord(p.lineno(1)))

    # In function definitions, the declarator can be followed by
    # a declaration list, for old "K&R style" function definitios.
    #
    def p_function_definition_1(self, p):
        """ function_definition : declarator declaration_list_opt compound_statement
        """
        # no declaration specifiers - 'int' becomes the default type
        spec = dict(
            qual=[],
            storage=[],
            type=[c_ast.IdentifierType(['int'],
                                       coord=self._coord(p.lineno(1)))],
            function=[])

        p[0] = self._build_function_definition(
            spec=spec,
            decl=p[1],
            param_decls=p[2],
            body=p[3])

    def p_function_definition_2(self, p):
        """ function_definition : declaration_specifiers declarator declaration_list_opt compound_statement
        """
        spec = p[1]

        p[0] = self._build_function_definition(
            spec=spec,
            decl=p[2],
            param_decls=p[3],
            body=p[4])

    def p_statement(self, p):
        """ statement   : labeled_statement
                        | expression_statement
                        | compound_statement
                        | selection_statement
                        | iteration_statement
                        | jump_statement
        """
        p[0] = p[1]

    # In C, declarations can come several in a line:
    #   int x, *px, romulo = 5;
    #
    # However, for the AST, we will split them to separate Decl
    # nodes.
    #
    # This rule splits its declarations and always returns a list
    # of Decl nodes, even if it's one element long.
    #
    def p_decl_body(self, p):
        """ decl_body : declaration_specifiers init_declarator_list_opt
        """
        spec = p[1]

        # p[2] (init_declarator_list_opt) is either a list or None
        #
        if p[2] is None:
            # By the standard, you must have at least one declarator unless
            # declaring a structure tag, a union tag, or the members of an
            # enumeration.
            #
            ty = spec['type']
            s_u_or_e = (c_ast.Struct, c_ast.Union, c_ast.Enum)
            if len(ty) == 1 and isinstance(ty[0], s_u_or_e):
                decls = [c_ast.Decl(
                    name=None,
                    quals=spec['qual'],
                    storage=spec['storage'],
                    funcspec=spec['function'],
                    type=ty[0],
                    init=None,
                    bitsize=None,
                    coord=ty[0].coord)]

            # However, this case can also occur on redeclared identifiers in
            # an inner scope.  The trouble is that the redeclared type's name
            # gets grouped into declaration_specifiers; _build_declarations
            # compensates for this.
            #
            else:
                decls = self._build_declarations(
                    spec=spec,
                    decls=[dict(decl=None, init=None)],
                    typedef_namespace=True)

        else:
            decls = self._build_declarations(
                spec=spec,
                decls=p[2],
                typedef_namespace=True)

        p[0] = decls

    # The declaration has been split to a decl_body sub-rule and
    # SEMI, because having them in a single rule created a problem
    # for defining typedefs.
    #
    # If a typedef line was directly followed by a line using the
    # type defined with the typedef, the type would not be
    # recognized. This is because to reduce the declaration rule,
    # the parser's lookahead asked for the token after SEMI, which
    # was the type from the next line, and the lexer had no chance
    # to see the updated type symbol table.
    #
    # Splitting solves this problem, because after seeing SEMI,
    # the parser reduces decl_body, which actually adds the new
    # type into the table to be seen by the lexer before the next
    # line is reached.
    def p_declaration(self, p):
        """ declaration : decl_body SEMI
        """
        p[0] = p[1]

    # Since each declaration is a list of declarations, this
    # rule will combine all the declarations and return a single
    # list
    #
    def p_declaration_list(self, p):
        """ declaration_list    : declaration
                                | declaration_list declaration
        """
        p[0] = p[1] if len(p) == 2 else p[1] + p[2]

    def p_declaration_specifiers_1(self, p):
        """ declaration_specifiers  : type_qualifier declaration_specifiers_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')

    def p_declaration_specifiers_2(self, p):
        """ declaration_specifiers  : type_specifier declaration_specifiers_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'type')

    def p_declaration_specifiers_3(self, p):
        """ declaration_specifiers  : storage_class_specifier declaration_specifiers_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'storage')

    def p_declaration_specifiers_4(self, p):
        """ declaration_specifiers  : function_specifier declaration_specifiers_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'function')

    def p_storage_class_specifier(self, p):
        """ storage_class_specifier : AUTO
                                    | REGISTER
                                    | STATIC
                                    | EXTERN
                                    | TYPEDEF
        """
        p[0] = p[1]

    def p_function_specifier(self, p):
        """ function_specifier  : INLINE
        """
        p[0] = p[1]

    def p_type_specifier_1(self, p):
        """ type_specifier  : VOID
                            | _BOOL
                            | CHAR
                            | SHORT
                            | INT
                            | LONG
                            | FLOAT
                            | DOUBLE
                            | _COMPLEX
                            | SIGNED
                            | UNSIGNED
        """
        p[0] = c_ast.IdentifierType([p[1]], coord=self._coord(p.lineno(1)))

    def p_type_specifier_2(self, p):
        """ type_specifier  : typedef_name
                            | enum_specifier
                            | struct_or_union_specifier
        """
        p[0] = p[1]

    def p_type_qualifier(self, p):
        """ type_qualifier  : CONST
                            | RESTRICT
                            | VOLATILE
        """
        p[0] = p[1]

    def p_init_declarator_list_1(self, p):
        """ init_declarator_list    : init_declarator
                                    | init_declarator_list COMMA init_declarator
        """
        p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]

    # If the code is declaring a variable that was declared a typedef in an
    # outer scope, yacc will think the name is part of declaration_specifiers,
    # not init_declarator, and will then get confused by EQUALS.  Pass None
    # up in place of declarator, and handle this at a higher level.
    #
    def p_init_declarator_list_2(self, p):
        """ init_declarator_list    : EQUALS initializer
        """
        p[0] = [dict(decl=None, init=p[2])]

    # Similarly, if the code contains duplicate typedefs of, for example,
    # array types, the array portion will appear as an abstract declarator.
    #
    def p_init_declarator_list_3(self, p):
        """ init_declarator_list    : abstract_declarator
        """
        p[0] = [dict(decl=p[1], init=None)]

    # Returns a {decl=<declarator> : init=<initializer>} dictionary
    # If there's no initializer, uses None
    #
    def p_init_declarator(self, p):
        """ init_declarator : declarator
                            | declarator EQUALS initializer
        """
        p[0] = dict(decl=p[1], init=(p[3] if len(p) > 2 else None))

    def p_specifier_qualifier_list_1(self, p):
        """ specifier_qualifier_list    : type_qualifier specifier_qualifier_list_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'qual')

    def p_specifier_qualifier_list_2(self, p):
        """ specifier_qualifier_list    : type_specifier specifier_qualifier_list_opt
        """
        p[0] = self._add_declaration_specifier(p[2], p[1], 'type')

    # TYPEID is allowed here (and in other struct/enum related tag names), because
    # struct/enum tags reside in their own namespace and can be named the same as types
    #
    def p_struct_or_union_specifier_1(self, p):
        """ struct_or_union_specifier   : struct_or_union ID
                                        | struct_or_union TYPEID
        """
        klass = self._select_struct_union_class(p[1])
        p[0] = klass(
            name=p[2],
            decls=None,
            coord=self._coord(p.lineno(2)))

    def p_struct_or_union_specifier_2(self, p):
        """ struct_or_union_specifier : struct_or_union brace_open struct_declaration_list brace_close
        """
        klass = self._select_struct_union_class(p[1])
        p[0] = klass(
            name=None,
            decls=p[3],
            coord=self._coord(p.lineno(2)))

    def p_struct_or_union_specifier_3(self, p):
        """ struct_or_union_specifier   : struct_or_union ID brace_open struct_declaration_list brace_close
                                        | struct_or_union TYPEID brace_open struct_declaration_list brace_close
        """
        klass = self._select_struct_union_class(p[1])
        p[0] = klass(
            name=p[2],
            decls=p[4],
            coord=self._coord(p.lineno(2)))

    def p_struct_or_union(self, p):
        """ struct_or_union : STRUCT
                            | UNION
        """
        p[0] = p[1]

    # Combine all declarations into a single list
    #
    def p_struct_declaration_list(self, p):
        """ struct_declaration_list     : struct_declaration
                                        | struct_declaration_list struct_declaration
        """
        p[0] = p[1] if len(p) == 2 else p[1] + p[2]

    def p_struct_declaration_1(self, p):
        """ struct_declaration : specifier_qualifier_list struct_declarator_list_opt SEMI
        """
        spec = p[1]
        assert 'typedef' not in spec['storage']

        if p[2] is not None:
            decls = self._build_declarations(
                spec=spec,
                decls=p[2])

        elif len(spec['type']) == 1:
            # Anonymous struct/union, gcc extension, C1x feature.
            # Although the standard only allows structs/unions here, I see no
            # reason to disallow other types since some compilers have typedefs
            # here, and pycparser isn't about rejecting all invalid code.
            #
            node = spec['type'][0]
            if isinstance(node, c_ast.Node):
                decl_type = node
            else:
                decl_type = c_ast.IdentifierType(node)

            decls = self._build_declarations(
                spec=spec,
                decls=[dict(decl=decl_type)])

        else:
            # Structure/union members can have the same names as typedefs.
            # The trouble is that the member's name gets grouped into
            # specifier_qualifier_list; _build_declarations compensates.
            #
            decls = self._build_declarations(
                spec=spec,
                decls=[dict(decl=None, init=None)])

        p[0] = decls

    def p_struct_declaration_2(self, p):
        """ struct_declaration : specifier_qualifier_list abstract_declarator SEMI
        """
        # "Abstract declarator?!", you ask?  Structure members can have the
        # same names as typedefs.  The trouble is that the member's name gets
        # grouped into specifier_qualifier_list, leaving any remainder to
        # appear as an abstract declarator, as in:
        #   typedef int Foo;
        #   struct { Foo Foo[3]; };
        #
        p[0] = self._build_declarations(
                spec=p[1],
                decls=[dict(decl=p[2], init=None)])

    def p_struct_declarator_list(self, p):
        """ struct_declarator_list  : struct_declarator
                                    | struct_declarator_list COMMA struct_declarator
        """
        p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]]

    # struct_declarator passes up a dict with the keys: decl (for
    # the underlying declarator) and bitsize (for the bitsize)
    #
    def p_struct_declarator_1(self, p):
        """ struct_declarator : declarator
        """
        p[0] = {'decl': p[1], 'bitsize': None}

    def p_struct_declarator_2(self, p):
        """ struct_declarator   : declarator COLON constant_expression
                                | COLON constant_expression
        """
        if len(p) > 3:
            p[0] = {'decl': p[1], 'bitsize': p[3]}
        else:
            p[0] = {'decl': c_ast.TypeDecl(None, None, None), 'bitsize': p[2]}

    def p_enum_specifier_1(self, p):
        """ enum_specifier  : ENUM ID
                            | ENUM TYPEID
        """
        p[0] = c_ast.Enum(p[2], None, self._coord(p.lineno(1)))

    def p_enum_specifier_2(self, p):
        """ enum_specifier  : ENUM brace_open enumerator_list brace_close
        """
        p[0] = c_ast.Enum(None, p[3], self._coord(p.lineno(1)))

    def p_enum_specifier_3(self, p):
        """ enum_specifier  : ENUM ID brace_open enumerator_list brace_close
                            | ENUM TYPEID brace_open enumerator_list brace_close
        """
        p[0] = c_ast.Enum(p[2], p[4], self._coord(p.lineno(1)))

    def p_enumerator_list(self, p):
        """ enumerator_list : enumerator
                            | enumerator_list COMMA
                            | enumerator_list COMMA enumerator
        """
        if len(p) == 2:
            p[0] = c_ast.EnumeratorList([p[1]], p[1].coord)
        elif len(p) == 3:
            p[0] = p[1]
        else:
            p[1].enumerators.append(p[3])
            p[0] = p[1]

    def p_enumerator(self, p):
        """ enumerator  : ID
                        | ID EQUALS constant_expression
        """
        if len(p) == 2:
            enumerator = c_ast.Enumerator(
                        p[1], None,
                        self._coord(p.lineno(1)))
        else:
            enumerator = c_ast.Enumerator(
                        p[1], p[3],
                        self._coord(p.lineno(1)))
        self._add_identifier(enumerator.name, enumerator.coord)

        p[0] = enumerator

    def p_declarator_1(self, p):
        """ declarator  : direct_declarator
        """
        p[0] = p[1]

    def p_declarator_2(self, p):
        """ declarator  : pointer direct_declarator
        """
        p[0] = self._type_modify_decl(p[2], p[1])

    # Since it's impossible for a type to be specified after a pointer, assume
    # it's intended to be the name for this declaration.  _add_identifier will
    # raise an error if this TYPEID can't be redeclared.
    #
    def p_declarator_3(self, p):
        """ declarator  : pointer TYPEID
        """
        decl = c_ast.TypeDecl(
            declname=p[2],
            type=None,
            quals=None,
            coord=self._coord(p.lineno(2)))

        p[0] = self._type_modify_decl(decl, p[1])

    def p_direct_declarator_1(self, p):
        """ direct_declarator   : ID
        """
        p[0] = c_ast.TypeDecl(
            declname=p[1],
            type=None,
            quals=None,
            coord=self._coord(p.lineno(1)))

    def p_direct_declarator_2(self, p):
        """ direct_declarator   : LPAREN declarator RPAREN
        """
        p[0] = p[2]

    def p_direct_declarator_3(self, p):
        """ direct_declarator   : direct_declarator LBRACKET assignment_expression_opt RBRACKET
        """
        arr = c_ast.ArrayDecl(
            type=None,
            dim=p[3],
            coord=p[1].coord)

        p[0] = self._type_modify_decl(decl=p[1], modifier=arr)

    # Special for VLAs
    #
    def p_direct_declarator_4(self, p):
        """ direct_declarator   : direct_declarator LBRACKET TIMES RBRACKET
        """
        arr = c_ast.ArrayDecl(
            type=None,
            dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
            coord=p[1].coord)

        p[0] = self._type_modify_decl(decl=p[1], modifier=arr)

    def p_direct_declarator_5(self, p):
        """ direct_declarator   : direct_declarator LPAREN parameter_type_list RPAREN
                                | direct_declarator LPAREN identifier_list_opt RPAREN
        """
        func = c_ast.FuncDecl(
            args=p[3],
            type=None,
            coord=p[1].coord)

        # To see why _get_yacc_lookahead_token is needed, consider:
        #   typedef char TT;
        #   void foo(int TT) { TT = 10; }
        # Outside the function, TT is a typedef, but inside (starting and
        # ending with the braces) it's a parameter.  The trouble begins with
        # yacc's lookahead token.  We don't know if we're declaring or
        # defining a function until we see LBRACE, but if we wait for yacc to
        # trigger a rule on that token, then TT will have already been read
        # and incorrectly interpreted as TYPEID.  We need to add the
        # parameters to the scope the moment the lexer sees LBRACE.
        #
        if self._get_yacc_lookahead_token().type == "LBRACE":
            if func.args is not None:
                for param in func.args.params:
                    if isinstance(param, c_ast.EllipsisParam): break
                    self._add_identifier(param.name, param.coord)

        p[0] = self._type_modify_decl(decl=p[1], modifier=func)

    def p_pointer(self, p):
        """ pointer : TIMES type_qualifier_list_opt
                    | TIMES type_qualifier_list_opt pointer
        """
        coord = self._coord(p.lineno(1))

        p[0] = c_ast.PtrDecl(
            quals=p[2] or [],
            type=p[3] if len(p) > 3 else None,
            coord=coord)

    def p_type_qualifier_list(self, p):
        """ type_qualifier_list : type_qualifier
                                | type_qualifier_list type_qualifier
        """
        p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]

    def p_parameter_type_list(self, p):
        """ parameter_type_list : parameter_list
                                | parameter_list COMMA ELLIPSIS
        """
        if len(p) > 2:
            p[1].params.append(c_ast.EllipsisParam(self._coord(p.lineno(3))))

        p[0] = p[1]

    def p_parameter_list(self, p):
        """ parameter_list  : parameter_declaration
                            | parameter_list COMMA parameter_declaration
        """
        if len(p) == 2: # single parameter
            p[0] = c_ast.ParamList([p[1]], p[1].coord)
        else:
            p[1].params.append(p[3])
            p[0] = p[1]

    def p_parameter_declaration_1(self, p):
        """ parameter_declaration   : declaration_specifiers declarator
        """
        spec = p[1]
        if not spec['type']:
            spec['type'] = [c_ast.IdentifierType(['int'],
                coord=self._coord(p.lineno(1)))]
        p[0] = self._build_declarations(
            spec=spec,
            decls=[dict(decl=p[2])])[0]

    def p_parameter_declaration_2(self, p):
        """ parameter_declaration   : declaration_specifiers abstract_declarator_opt
        """
        spec = p[1]
        if not spec['type']:
            spec['type'] = [c_ast.IdentifierType(['int'],
                coord=self._coord(p.lineno(1)))]

        # Parameters can have the same names as typedefs.  The trouble is that
        # the parameter's name gets grouped into declaration_specifiers, making
        # it look like an old-style declaration; compensate.
        #
        if len(spec['type']) > 1 and len(spec['type'][-1].names) == 1 and \
                self._is_type_in_scope(spec['type'][-1].names[0]):
            decl = self._build_declarations(
                    spec=spec,
                    decls=[dict(decl=p[2], init=None)])[0]

        # This truly is an old-style parameter declaration
        #
        else:
            decl = c_ast.Typename(
                quals=spec['qual'],
                type=p[2] or c_ast.TypeDecl(None, None, None),
                coord=self._coord(p.lineno(2)))
            typename = spec['type']
            decl = self._fix_decl_name_type(decl, typename)

        p[0] = decl

    def p_identifier_list(self, p):
        """ identifier_list : identifier
                            | identifier_list COMMA identifier
        """
        if len(p) == 2: # single parameter
            p[0] = c_ast.ParamList([p[1]], p[1].coord)
        else:
            p[1].params.append(p[3])
            p[0] = p[1]

    def p_initializer_1(self, p):
        """ initializer : assignment_expression
        """
        p[0] = p[1]

    def p_initializer_2(self, p):
        """ initializer : brace_open initializer_list brace_close
                        | brace_open initializer_list COMMA brace_close
        """
        p[0] = p[2]

    def p_initializer_list(self, p):
        """ initializer_list    : designation_opt initializer
                                | initializer_list COMMA designation_opt initializer
        """
        if len(p) == 3: # single initializer
            init = p[2] if p[1] is None else c_ast.NamedInitializer(p[1], p[2])
            p[0] = c_ast.InitList([init], p[2].coord)
        else:
            init = p[4] if p[3] is None else c_ast.NamedInitializer(p[3], p[4])
            p[1].exprs.append(init)
            p[0] = p[1]

    def p_designation(self, p):
        """ designation : designator_list EQUALS
        """
        p[0] = p[1]

    # Designators are represented as a list of nodes, in the order in which
    # they're written in the code.
    #
    def p_designator_list(self, p):
        """ designator_list : designator
                            | designator_list designator
        """
        p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]]

    def p_designator(self, p):
        """ designator  : LBRACKET constant_expression RBRACKET
                        | PERIOD identifier
        """
        p[0] = p[2]

    def p_type_name(self, p):
        """ type_name   : specifier_qualifier_list abstract_declarator_opt
        """
        #~ print '=========='
        #~ print p[1]
        #~ print p[2]
        #~ print p[2].children()
        #~ print '=========='

        typename = c_ast.Typename(
            quals=p[1]['qual'],
            type=p[2] or c_ast.TypeDecl(None, None, None),
            coord=self._coord(p.lineno(2)))

        p[0] = self._fix_decl_name_type(typename, p[1]['type'])

    def p_abstract_declarator_1(self, p):
        """ abstract_declarator     : pointer
        """
        dummytype = c_ast.TypeDecl(None, None, None)
        p[0] = self._type_modify_decl(
            decl=dummytype,
            modifier=p[1])

    def p_abstract_declarator_2(self, p):
        """ abstract_declarator     : pointer direct_abstract_declarator
        """
        p[0] = self._type_modify_decl(p[2], p[1])

    def p_abstract_declarator_3(self, p):
        """ abstract_declarator     : direct_abstract_declarator
        """
        p[0] = p[1]

    # Creating and using direct_abstract_declarator_opt here
    # instead of listing both direct_abstract_declarator and the
    # lack of it in the beginning of _1 and _2 caused two
    # shift/reduce errors.
    #
    def p_direct_abstract_declarator_1(self, p):
        """ direct_abstract_declarator  : LPAREN abstract_declarator RPAREN """
        p[0] = p[2]

    def p_direct_abstract_declarator_2(self, p):
        """ direct_abstract_declarator  : direct_abstract_declarator LBRACKET assignment_expression_opt RBRACKET
        """
        arr = c_ast.ArrayDecl(
            type=None,
            dim=p[3],
            coord=p[1].coord)

        p[0] = self._type_modify_decl(decl=p[1], modifier=arr)

    def p_direct_abstract_declarator_3(self, p):
        """ direct_abstract_declarator  : LBRACKET assignment_expression_opt RBRACKET
        """
        p[0] = c_ast.ArrayDecl(
            type=c_ast.TypeDecl(None, None, None),
            dim=p[2],
            coord=self._coord(p.lineno(1)))

    def p_direct_abstract_declarator_4(self, p):
        """ direct_abstract_declarator  : direct_abstract_declarator LBRACKET TIMES RBRACKET
        """
        arr = c_ast.ArrayDecl(
            type=None,
            dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
            coord=p[1].coord)

        p[0] = self._type_modify_decl(decl=p[1], modifier=arr)

    def p_direct_abstract_declarator_5(self, p):
        """ direct_abstract_declarator  : LBRACKET TIMES RBRACKET
        """
        p[0] = c_ast.ArrayDecl(
            type=c_ast.TypeDecl(None, None, None),
            dim=c_ast.ID(p[3], self._coord(p.lineno(3))),
            coord=self._coord(p.lineno(1)))

    def p_direct_abstract_declarator_6(self, p):
        """ direct_abstract_declarator  : direct_abstract_declarator LPAREN parameter_type_list_opt RPAREN
        """
        func = c_ast.FuncDecl(
            args=p[3],
            type=None,
            coord=p[1].coord)

        p[0] = self._type_modify_decl(decl=p[1], modifier=func)

    def p_direct_abstract_declarator_7(self, p):
        """ direct_abstract_declarator  : LPAREN parameter_type_list_opt RPAREN
        """
        p[0] = c_ast.FuncDecl(
            args=p[2],
            type=c_ast.TypeDecl(None, None, None),
            coord=self._coord(p.lineno(1)))

    # declaration is a list, statement isn't. To make it consistent, block_item
    # will always be a list
    #
    def p_block_item(self, p):
        """ block_item  : declaration
                        | statement
        """
        p[0] = p[1] if isinstance(p[1], list) else [p[1]]

    # Since we made block_item a list, this just combines lists
    #
    def p_block_item_list(self, p):
        """ block_item_list : block_item
                            | block_item_list block_item
        """
        # Empty block items (plain ';') produce [None], so ignore them
        p[0] = p[1] if (len(p) == 2 or p[2] == [None]) else p[1] + p[2]

    def p_compound_statement_1(self, p):
        """ compound_statement : brace_open block_item_list_opt brace_close """
        p[0] = c_ast.Compound(
            block_items=p[2],
            coord=self._coord(p.lineno(1)))

    def p_labeled_statement_1(self, p):
        """ labeled_statement : ID COLON statement """
        p[0] = c_ast.Label(p[1], p[3], self._coord(p.lineno(1)))

    def p_labeled_statement_2(self, p):
        """ labeled_statement : CASE constant_expression COLON statement """
        p[0] = c_ast.Case(p[2], [p[4]], self._coord(p.lineno(1)))

    def p_labeled_statement_3(self, p):
        """ labeled_statement : DEFAULT COLON statement """
        p[0] = c_ast.Default([p[3]], self._coord(p.lineno(1)))

    def p_selection_statement_1(self, p):
        """ selection_statement : IF LPAREN expression RPAREN statement """
        p[0] = c_ast.If(p[3], p[5], None, self._coord(p.lineno(1)))

    def p_selection_statement_2(self, p):
        """ selection_statement : IF LPAREN expression RPAREN statement ELSE statement """
        p[0] = c_ast.If(p[3], p[5], p[7], self._coord(p.lineno(1)))

    def p_selection_statement_3(self, p):
        """ selection_statement : SWITCH LPAREN expression RPAREN statement """
        p[0] = fix_switch_cases(
                c_ast.Switch(p[3], p[5], self._coord(p.lineno(1))))

    def p_iteration_statement_1(self, p):
        """ iteration_statement : WHILE LPAREN expression RPAREN statement """
        p[0] = c_ast.While(p[3], p[5], self._coord(p.lineno(1)))

    def p_iteration_statement_2(self, p):
        """ iteration_statement : DO statement WHILE LPAREN expression RPAREN SEMI """
        p[0] = c_ast.DoWhile(p[5], p[2], self._coord(p.lineno(1)))

    def p_iteration_statement_3(self, p):
        """ iteration_statement : FOR LPAREN expression_opt SEMI expression_opt SEMI expression_opt RPAREN statement """
        p[0] = c_ast.For(p[3], p[5], p[7], p[9], self._coord(p.lineno(1)))

    def p_iteration_statement_4(self, p):
        """ iteration_statement : FOR LPAREN declaration expression_opt SEMI expression_opt RPAREN statement """
        p[0] = c_ast.For(c_ast.DeclList(p[3]), p[4], p[6], p[8], self._coord(p.lineno(1)))

    def p_jump_statement_1(self, p):
        """ jump_statement  : GOTO ID SEMI """
        p[0] = c_ast.Goto(p[2], self._coord(p.lineno(1)))

    def p_jump_statement_2(self, p):
        """ jump_statement  : BREAK SEMI """
        p[0] = c_ast.Break(self._coord(p.lineno(1)))

    def p_jump_statement_3(self, p):
        """ jump_statement  : CONTINUE SEMI """
        p[0] = c_ast.Continue(self._coord(p.lineno(1)))

    def p_jump_statement_4(self, p):
        """ jump_statement  : RETURN expression SEMI
                            | RETURN SEMI
        """
        p[0] = c_ast.Return(p[2] if len(p) == 4 else None, self._coord(p.lineno(1)))

    def p_expression_statement(self, p):
        """ expression_statement : expression_opt SEMI """
        if p[1] is None:
            p[0] = c_ast.EmptyStatement(self._coord(p.lineno(1)))
        else:
            p[0] = p[1]

    def p_expression(self, p):
        """ expression  : assignment_expression
                        | expression COMMA assignment_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            if not isinstance(p[1], c_ast.ExprList):
                p[1] = c_ast.ExprList([p[1]], p[1].coord)

            p[1].exprs.append(p[3])
            p[0] = p[1]

    def p_typedef_name(self, p):
        """ typedef_name : TYPEID """
        p[0] = c_ast.IdentifierType([p[1]], coord=self._coord(p.lineno(1)))

    def p_assignment_expression(self, p):
        """ assignment_expression   : conditional_expression
                                    | unary_expression assignment_operator assignment_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            p[0] = c_ast.Assignment(p[2], p[1], p[3], p[1].coord)

    # K&R2 defines these as many separate rules, to encode
    # precedence and associativity. Why work hard ? I'll just use
    # the built in precedence/associativity specification feature
    # of PLY. (see precedence declaration above)
    #
    def p_assignment_operator(self, p):
        """ assignment_operator : EQUALS
                                | XOREQUAL
                                | TIMESEQUAL
                                | DIVEQUAL
                                | MODEQUAL
                                | PLUSEQUAL
                                | MINUSEQUAL
                                | LSHIFTEQUAL
                                | RSHIFTEQUAL
                                | ANDEQUAL
                                | OREQUAL
        """
        p[0] = p[1]

    def p_constant_expression(self, p):
        """ constant_expression : conditional_expression """
        p[0] = p[1]

    def p_conditional_expression(self, p):
        """ conditional_expression  : binary_expression
                                    | binary_expression CONDOP expression COLON conditional_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            p[0] = c_ast.TernaryOp(p[1], p[3], p[5], p[1].coord)

    def p_binary_expression(self, p):
        """ binary_expression   : cast_expression
                                | binary_expression TIMES binary_expression
                                | binary_expression DIVIDE binary_expression
                                | binary_expression MOD binary_expression
                                | binary_expression PLUS binary_expression
                                | binary_expression MINUS binary_expression
                                | binary_expression RSHIFT binary_expression
                                | binary_expression LSHIFT binary_expression
                                | binary_expression LT binary_expression
                                | binary_expression LE binary_expression
                                | binary_expression GE binary_expression
                                | binary_expression GT binary_expression
                                | binary_expression EQ binary_expression
                                | binary_expression NE binary_expression
                                | binary_expression AND binary_expression
                                | binary_expression OR binary_expression
                                | binary_expression XOR binary_expression
                                | binary_expression LAND binary_expression
                                | binary_expression LOR binary_expression
        """
        if len(p) == 2:
            p[0] = p[1]
        else:
            p[0] = c_ast.BinaryOp(p[2], p[1], p[3], p[1].coord)

    def p_cast_expression_1(self, p):
        """ cast_expression : unary_expression """
        p[0] = p[1]

    def p_cast_expression_2(self, p):
        """ cast_expression : LPAREN type_name RPAREN cast_expression """
        p[0] = c_ast.Cast(p[2], p[4], self._coord(p.lineno(1)))

    def p_unary_expression_1(self, p):
        """ unary_expression    : postfix_expression """
        p[0] = p[1]

    def p_unary_expression_2(self, p):
        """ unary_expression    : PLUSPLUS unary_expression
                                | MINUSMINUS unary_expression
                                | unary_operator cast_expression
        """
        p[0] = c_ast.UnaryOp(p[1], p[2], p[2].coord)

    def p_unary_expression_3(self, p):
        """ unary_expression    : SIZEOF unary_expression
                                | SIZEOF LPAREN type_name RPAREN
        """
        p[0] = c_ast.UnaryOp(
            p[1],
            p[2] if len(p) == 3 else p[3],
            self._coord(p.lineno(1)))

    def p_unary_operator(self, p):
        """ unary_operator  : AND
                            | TIMES
                            | PLUS
                            | MINUS
                            | NOT
                            | LNOT
        """
        p[0] = p[1]

    def p_postfix_expression_1(self, p):
        """ postfix_expression  : primary_expression """
        p[0] = p[1]

    def p_postfix_expression_2(self, p):
        """ postfix_expression  : postfix_expression LBRACKET expression RBRACKET """
        p[0] = c_ast.ArrayRef(p[1], p[3], p[1].coord)

    def p_postfix_expression_3(self, p):
        """ postfix_expression  : postfix_expression LPAREN argument_expression_list RPAREN
                                | postfix_expression LPAREN RPAREN
        """
        p[0] = c_ast.FuncCall(p[1], p[3] if len(p) == 5 else None, p[1].coord)

    def p_postfix_expression_4(self, p):
        """ postfix_expression  : postfix_expression PERIOD ID
                                | postfix_expression PERIOD TYPEID
                                | postfix_expression ARROW ID
                                | postfix_expression ARROW TYPEID
        """
        field = c_ast.ID(p[3], self._coord(p.lineno(3)))
        p[0] = c_ast.StructRef(p[1], p[2], field, p[1].coord)

    def p_postfix_expression_5(self, p):
        """ postfix_expression  : postfix_expression PLUSPLUS
                                | postfix_expression MINUSMINUS
        """
        p[0] = c_ast.UnaryOp('p' + p[2], p[1], p[1].coord)

    def p_postfix_expression_6(self, p):
        """ postfix_expression  : LPAREN type_name RPAREN brace_open initializer_list brace_close
                                | LPAREN type_name RPAREN brace_open initializer_list COMMA brace_close
        """
        p[0] = c_ast.CompoundLiteral(p[2], p[5])

    def p_primary_expression_1(self, p):
        """ primary_expression  : identifier """
        p[0] = p[1]

    def p_primary_expression_2(self, p):
        """ primary_expression  : constant """
        p[0] = p[1]

    def p_primary_expression_3(self, p):
        """ primary_expression  : unified_string_literal
                                | unified_wstring_literal
        """
        p[0] = p[1]

    def p_primary_expression_4(self, p):
        """ primary_expression  : LPAREN expression RPAREN """
        p[0] = p[2]

    def p_argument_expression_list(self, p):
        """ argument_expression_list    : assignment_expression
                                        | argument_expression_list COMMA assignment_expression
        """
        if len(p) == 2: # single expr
            p[0] = c_ast.ExprList([p[1]], p[1].coord)
        else:
            p[1].exprs.append(p[3])
            p[0] = p[1]

    def p_identifier(self, p):
        """ identifier  : ID """
        p[0] = c_ast.ID(p[1], self._coord(p.lineno(1)))

    def p_constant_1(self, p):
        """ constant    : INT_CONST_DEC
                        | INT_CONST_OCT
                        | INT_CONST_HEX
        """
        p[0] = c_ast.Constant(
            'int', p[1], self._coord(p.lineno(1)))

    def p_constant_2(self, p):
        """ constant    : FLOAT_CONST
                        | HEX_FLOAT_CONST
        """
        p[0] = c_ast.Constant(
            'float', p[1], self._coord(p.lineno(1)))

    def p_constant_3(self, p):
        """ constant    : CHAR_CONST
                        | WCHAR_CONST
        """
        p[0] = c_ast.Constant(
            'char', p[1], self._coord(p.lineno(1)))

    # The "unified" string and wstring literal rules are for supporting
    # concatenation of adjacent string literals.
    # I.e. "hello " "world" is seen by the C compiler as a single string literal
    # with the value "hello world"
    #
    def p_unified_string_literal(self, p):
        """ unified_string_literal  : STRING_LITERAL
                                    | unified_string_literal STRING_LITERAL
        """
        if len(p) == 2: # single literal
            p[0] = c_ast.Constant(
                'string', p[1], self._coord(p.lineno(1)))
        else:
            p[1].value = p[1].value[:-1] + p[2][1:]
            p[0] = p[1]

    def p_unified_wstring_literal(self, p):
        """ unified_wstring_literal : WSTRING_LITERAL
                                    | unified_wstring_literal WSTRING_LITERAL
        """
        if len(p) == 2: # single literal
            p[0] = c_ast.Constant(
                'string', p[1], self._coord(p.lineno(1)))
        else:
            p[1].value = p[1].value.rstrip[:-1] + p[2][1:]
            p[0] = p[1]

    def p_brace_open(self, p):
        """ brace_open  :   LBRACE
        """
        p[0] = p[1]

    def p_brace_close(self, p):
        """ brace_close :   RBRACE
        """
        p[0] = p[1]

    def p_empty(self, p):
        'empty : '
        p[0] = None

    def p_error(self, p):
        # If error recovery is added here in the future, make sure
        # _get_yacc_lookahead_token still works!
        #
        if p:
            self._parse_error(
                'before: %s' % p.value,
                self._coord(lineno=p.lineno,
                            column=self.clex.find_tok_column(p)))
        else:
            self._parse_error('At end of input', '')


#------------------------------------------------------------------------------
if __name__ == "__main__":
    import pprint
    import time, sys

    #t1 = time.time()
    #parser = CParser(lex_optimize=True, yacc_debug=True, yacc_optimize=False)
    #sys.write(time.time() - t1)

    #buf = '''
        #int (*k)(int);
    #'''

    ## set debuglevel to 2 for debugging
    #t = parser.parse(buf, 'x.c', debuglevel=0)
    #t.show(showcoord=True)