/usr/share/pyshared/neo/io/hdf5io.py is in python-neo 0.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 | # -*- coding: utf-8 -*-
"""
README
================================================================================
This is the implementation of the NEO IO for the HDF5 files.
http://neuralensemble.org/
IO dependencies:
- NEO
- types
- warnings
- numpy
- pytables >= 2.2
- quantities
Quick reference:
================================================================================
Class NeoHdf5IO() with methods get(), save(), delete() is implemented. This
class represents a connection manager with the HDF5 file with the possibility
to put (save()) or retrieve (get()) runtime NEO objects from the file.
Start by initializing IO:
>>> from neo.io.hdf5io import NeoHdf5IO
>>> iom = NeoHdf5IO('myfile.h5')
>>> iom
<hdf5io.NeoHdf5IO object at 0x7f291ebe6810>
Now you may save any of your neo objects into the file:
>>> b = Block()
>>> iom.write_block(b)
or just do
>>> iom.save(b)
After you stored an object it receives a unique "path" in the hdf5 file. This is
exactly the place in the HDF5 hierarchy, where it was written. This information
is now accessible by "hdf5_path" property:
>>> b.hdf5_path
'/block_0'
You may save more complicated NEO stuctures, with relations and arrays:
>>> import numpy as np
>>> import quantities as pq
>>> s = Segment()
>>> b.segments.append(s)
>>> a1 = AnalogSignal(signal=np.random.rand(300), t_start=42*pq.ms)
>>> s.analogsignals.append(a1)
and then
>>> iom.write_block(b)
or just
>>> iom.save(b)
If you already have hdf5 file in NEO format, or you just created one, then you
may want to read NEO data (providing the path to what to read):
>>> b1 = iom.read_block("/block_0")
>>> b1
<neo.core.block.Block object at 0x34ee590>
or just use
>>> b1 = iom.get("/block_0")
You may notice, by default the reading function retrieves all available data,
with all downstream relations and arrays:
>>> b1._segments
[<neo.core.segment.Segment object at 0x34ee750>]
>>> b1._segments[0]._analogsignals[0].signal
array([ 3.18987819e-01, 1.08448284e-01, 1.03858980e-01,
...
3.78908705e-01, 3.08669731e-02, 9.48965785e-01]) * dimensionless
When you need to save time and performance, you may load an object without
relations
>>> b2 = iom.get("/block_0", cascade=False)
>>> b2._segments
[]
and/or even without arrays
>>> a2 = iom.get("/block_0/_segments/segment_0/_analogsignals/analogsignal_0",
lazy=True)
>>> a2.signal
[]
These functions return "pure" NEO objects. They are completely "detached" from
the HDF5 file - changes to the runtime objects will not cause any changes in the
file:
>>> a2.t_start
array(42.0) * ms
>>> a2.t_start = 32 * pq.ms
>>> a2.t_start
array(32.0) * ms
>>> iom.get("/block_0/_segments/segment_0/_analogsignals/analogsignal_0").t_start
array(42.0) * ms
However, if you want to work directly with HDF5 storage making instant
modifications, you may use the native PyTables functionality, where all objects
are accessible through "<IO_manager_inst>._data.root":
>>> iom._data.root
/ (RootGroup) 'neo.h5'
children := ['block_0' (Group)]
>>> b3 = iom._data.root.block_0
>>> b3
/block_0 (Group) ''
children := ['_recordingchannelgroups' (Group), '_segments' (Group)]
To understand more about this "direct" way of working with data, please refer to
http://www.pytables.org/
Finally, you may get an overview of the contents of the file by running
>>> iom.get_info()
This is a neo.HDF5 file. it contains:
{'spiketrain': 0, 'irsaanalogsignal': 0, 'analogsignalarray': 0,
'recordingchannelgroup': 0, 'eventarray': 0, 'analogsignal': 1, 'epoch': 0,
'unit': 0, 'recordingchannel': 0, 'spike': 0, 'epocharray': 0, 'segment': 1,
'event': 0, 'block': 1}
The general structure of the file:
================================================================================
\'Block_1'
\
\'Block_2'
\
\---'_recordingchannelgroups'
\ \
\ \---'RecordingChannelGroup_1'
\ \
\ \---'RecordingChannelGroup_2'
\ \
\ \---'_recordingchannels'
\ \
\ \---'RecordingChannel_1'
\ \
\ \---'RecordingChannel_2'
\ \
\ \---'_units'
\ \
\ \---'Unit_1'
\ \
\ \---'Unit_2'
\
\---'_segments'
\
\--'Segment_1'
\
\--'Segment_2'
\
\---'_epochs'
\ \
\ \---'Epoch_1'
\
\---'_epochs'
etc.
Plans for future extensions:
================================================================================
#FIXME - implement logging mechanism (probably in general for NEO)
#FIXME - implement actions history (probably in general for NEO)
#FIXME - implement callbacks in functions for GUIs
#FIXME - no performance testing yet
IMPORTANT things:
================================================================================
1. Every NEO node object in HDF5 has a "_type" attribute. Please don't modify.
2. There are reserved attributes "unit__<quantity>" or "<name>__<quantity>" in
objects, containing quantities.
3. Don't use "__" in attribute names, as this symbol is reserved for quantities.
Author: asobolev
"""
# needed for python 3 compatibility
from __future__ import absolute_import
import logging
import uuid
#version checking
from distutils import version
import numpy as np
import quantities as pq
# check tables
try:
import tables as tb
except ImportError as err:
HAVE_TABLES = False
TABLES_ERR = err
else:
if version.LooseVersion(tb.__version__) < '2.2':
HAVE_TABLES = False
TABLES_ERR = ImportError("your pytables version is too old to " +
"support NeoHdf5IO, you need at least 2.2. " +
"You have %s" % tb.__version__)
else:
HAVE_TABLES = True
TABLES_ERR = None
from neo.core import Block
from neo.description import (class_by_name, name_by_class,
classes_inheriting_quantities,
classes_necessary_attributes,
classes_recommended_attributes,
many_to_many_relationship,
many_to_one_relationship,
one_to_many_relationship)
from neo.io.baseio import BaseIO
from neo.io.tools import create_many_to_one_relationship, LazyList
logger = logging.getLogger("Neo")
def _func_wrapper(func):
try:
return func
except IOError:
raise IOError("There is no connection with the file or the file was recently corrupted. \
Please reload the IO manager.")
#---------------------------------------------------------------
# Basic I/O manager, implementing basic I/O functionality
#---------------------------------------------------------------
all_objects = list(class_by_name.values())
all_objects.remove(Block) # the order is important
all_objects = [Block] + all_objects
# Types where an object might have to be loaded multiple times to create
# all realtionships
complex_relationships = ["Unit", "Segment", "RecordingChannel"]
# Data objects which have multiple parents (Segment and one other)
multi_parent = {'AnalogSignal': 'RecordingChannel',
'AnalogSignalArray': 'RecordingChannelGroup',
'IrregularlySampledSignal': 'RecordingChannel',
'Spike': 'Unit', 'SpikeTrain': 'Unit'}
# Arrays node names for lazy shapes
lazy_shape_arrays = {'SpikeTrain': 'times', 'Spike': 'waveform',
'AnalogSignal': 'signal',
'AnalogSignalArray': 'signal',
'EventArray': 'times', 'EpochArray': 'times'}
class NeoHdf5IO(BaseIO):
"""
The IO Manager is the core I/O class for HDF5 / NEO. It handles the
connection with the HDF5 file, and uses PyTables for data operations. Use
this class to get (load), insert or delete NEO objects to HDF5 file.
"""
supported_objects = all_objects
readable_objects = all_objects
writeable_objects = all_objects
read_params = dict(zip(all_objects, [] * len(all_objects)))
write_params = dict(zip(all_objects, [] * len(all_objects)))
name = 'NeoHdf5 IO'
extensions = ['h5']
mode = 'file'
is_readable = True
is_writable = True
def __init__(self, filename=None, **kwargs):
if not HAVE_TABLES:
raise TABLES_ERR
BaseIO.__init__(self, filename=filename)
self.connected = False
self.objects_by_ref = {} # Loaded objects by reference id
self.parent_paths = {} # Tuples of (Segment, other parent) paths
self.name_indices = {}
if filename:
self.connect(filename=filename)
def _read_entity(self, path="/", cascade=True, lazy=False):
"""
Wrapper for base io "reader" functions.
"""
ob = self.get(path, cascade, lazy)
if cascade and cascade != 'lazy':
create_many_to_one_relationship(ob)
return ob
def _write_entity(self, obj, where="/", cascade=True, lazy=False):
"""
Wrapper for base io "writer" functions.
"""
self.save(obj, where, cascade, lazy)
#-------------------------------------------
# IO connectivity / Session management
#-------------------------------------------
def connect(self, filename):
"""
Opens / initialises new HDF5 file.
We rely on PyTables and keep all session management staff there.
"""
if not self.connected:
try:
if tb.isHDF5File(filename):
self._data = tb.openFile(filename, mode = "a", title = filename)
self.connected = True
else:
raise TypeError('"%s" is not an HDF5 file format.' % filename)
except IOError:
# create a new file if specified file not found
self._data = tb.openFile(filename, mode = "w", title = filename)
self.connected = True
except:
raise NameError("Incorrect file path, couldn't find or create a file.")
self.objects_by_ref = {}
self.name_indices = {}
else:
logger.info("Already connected.")
def close(self):
"""
Closes the connection.
"""
self.objects_by_ref = {}
self.parent_paths = {}
self.name_indices = {}
self._data.close()
self.connected = False
#-------------------------------------------
# some internal IO functions
#-------------------------------------------
def _get_class_by_node(self, node):
"""
Returns the type of the object (string) depending on node.
"""
try:
obj_type = node._f_getAttr("_type")
return class_by_name[obj_type]
except:
return None # that's an alien node
def _update_path(self, obj, node):
setattr(obj, "hdf5_path", node._v_pathname)
def _get_next_name(self, obj_type, where):
"""
Returns the next possible name within a given container (group)
"""
if not (obj_type, where) in self.name_indices:
self.name_indices[(obj_type, where)] = 0
index_num = self.name_indices[(obj_type, where)]
prefix = str(obj_type) + "_"
if where + '/' + prefix + str(index_num) not in self._data:
self.name_indices[(obj_type, where)] = index_num + 1
return prefix + str(index_num)
nodes = []
for node in self._data.iterNodes(where):
index = node._v_name[node._v_name.find(prefix) + len(prefix):]
if len(index) > 0:
try:
nodes.append(int(index))
except ValueError:
pass # index was changed by user, but then we don't care
nodes.sort(reverse=True)
if len(nodes) > 0:
self.name_indices[(obj_type, where)] = nodes[0] + 2
return prefix + str(nodes[0] + 1)
else:
self.name_indices[(obj_type, where)] = 1
return prefix + "0"
#-------------------------------------------
# general IO functions, for all NEO objects
#-------------------------------------------
@_func_wrapper
def save(self, obj, where="/", cascade=True, lazy=False):
""" Saves changes of a given object to the file. Saves object as new at
location "where" if it is not in the file yet. Returns saved node.
cascade: True/False process downstream relationships
lazy: True/False process any quantity/ndarray attributes """
def assign_attribute(obj_attr, attr_name, path, node):
""" subfunction to serialize a given attribute """
if isinstance(obj_attr, pq.Quantity) or isinstance(obj_attr, np.ndarray):
if not lazy:
# we need to simplify custom quantities
if isinstance(obj_attr, pq.Quantity):
for un in obj_attr.dimensionality.keys():
if not un.name in pq.units.__dict__ or \
not isinstance(pq.units.__dict__[un.name], pq.Quantity):
obj_attr = obj_attr.simplified
break
# we try to create new array first, so not to loose the
# data in case of any failure
if obj_attr.size == 0:
atom = tb.Float64Atom(shape=(1,))
new_arr = self._data.createEArray(path, attr_name + "__temp", atom, shape=(0,), expectedrows=1)
else:
new_arr = self._data.createArray(path, attr_name + "__temp", obj_attr)
if hasattr(obj_attr, "dimensionality"):
for un in obj_attr.dimensionality.items():
new_arr._f_setAttr("unit__" + un[0].name, un[1])
try:
self._data.removeNode(path, attr_name)
except:
pass # there is no array yet or object is new
self._data.renameNode(path, attr_name, name=attr_name + "__temp")
elif obj_attr is not None:
node._f_setAttr(attr_name, obj_attr)
#assert_neo_object_is_compliant(obj)
obj_type = name_by_class[obj.__class__]
if self._data.mode != 'w' and hasattr(obj, "hdf5_path"): # this is an update case
path = str(obj.hdf5_path)
try:
node = self._data.getNode(obj.hdf5_path)
except tb.NoSuchNodeError: # create a new node?
raise LookupError("A given object has a path %s attribute, \
but such an object does not exist in the file. Please \
correct these values or delete this attribute \
(.__delattr__('hdf5_path')) to create a new object in \
the file." % path)
else: # create new object
node = self._data.createGroup(where, self._get_next_name(obj_type, where))
node._f_setAttr("_type", obj_type)
path = node._v_pathname
# processing attributes
if obj_type in multi_parent: # Initialize empty parent paths
node._f_setAttr('segment', '')
node._f_setAttr(multi_parent[obj_type].lower(), '')
attrs = classes_necessary_attributes[obj_type] + classes_recommended_attributes[obj_type]
for attr in attrs: # we checked already obj is compliant, loop over all safely
if hasattr(obj, attr[0]): # save an attribute if exists
assign_attribute(getattr(obj, attr[0]), attr[0], path, node)
# not forget to save AS, ASA or ST - NEO "stars"
if obj_type in classes_inheriting_quantities.keys():
assign_attribute(obj, classes_inheriting_quantities[obj_type], path, node)
if hasattr(obj, "annotations"): # annotations should be just a dict
node._f_setAttr("annotations", getattr(obj, "annotations"))
node._f_setAttr("object_ref", uuid.uuid4().hex)
if one_to_many_relationship.has_key(obj_type) and cascade:
rels = list(one_to_many_relationship[obj_type])
if obj_type == "RecordingChannelGroup":
rels += many_to_many_relationship[obj_type]
for child_name in rels: # child_name like "Segment", "Event" etc.
container = child_name.lower() + "s" # like "units"
try:
ch = self._data.getNode(node, container)
except tb.NoSuchNodeError:
ch = self._data.createGroup(node, container)
saved = [] # keeps track of saved object names for removal
for child in getattr(obj, container):
new_name = None
child_node = None
if hasattr(child, "hdf5_path"):
if not child.hdf5_path.startswith(ch._v_pathname):
# create a Hard Link if object exists already somewhere
try:
target = self._data.getNode(child.hdf5_path)
new_name = self._get_next_name(
name_by_class[child.__class__], ch._v_pathname)
if not hasattr(ch, new_name): # Only link if path does not exist
child_node = self._data.createHardLink(ch._v_pathname, new_name, target)
except tb.NoSuchNodeError:
pass
if child_node is None:
child_node = self.save(child, where=ch._v_pathname)
if child_name in multi_parent: # Save parent for multiparent objects
child_node._f_setAttr(obj_type.lower(), path)
elif child_name == 'RecordingChannel':
parents = []
if 'recordingchannelgroups' in child_node._v_attrs:
parents = child_node._v_attrs['recordingchannelgroups']
parents.append(path)
child_node._f_setAttr('recordingchannelgroups', parents)
if not new_name:
new_name = child.hdf5_path.split('/')[-1]
saved.append(new_name)
for child in self._data.iterNodes(ch._v_pathname):
if child._v_name not in saved: # clean-up
self._data.removeNode(ch._v_pathname, child._v_name, recursive=True)
self._update_path(obj, node)
return node
def _get_parent(self, path, ref, parent_type):
""" Return the path of the parent of type "parent_type" for the object
in "path" with id "ref". Returns an empty string if no parent extists.
"""
parts = path.split('/')
if parent_type == 'Block' or parts[-4] == parent_type.lower() + 's':
return '/'.join(parts[:-2])
object_folder = parts[-2]
parent_folder = parts[-4]
if parent_folder in ('recordingchannels', 'units'):
block_path = '/'.join(parts[:-6])
else:
block_path = '/'.join(parts[:-4])
if parent_type in ('RecordingChannel', 'Unit'):
# We need to search all recording channels
path = block_path + '/recordingchannelgroups'
for n in self._data.iterNodes(path):
if not '_type' in n._v_attrs:
continue
p = self._search_parent(
'%s/%ss' % (n._v_pathname, parent_type.lower()),
object_folder, ref)
if p != '':
return p
return ''
if parent_type == 'Segment':
path = block_path + '/segments'
elif parent_type == 'RecordingChannelGroup':
path = block_path + '/recordingchannelgroups'
else:
return ''
return self._search_parent(path, object_folder, ref)
def _get_rcgs(self, path, ref):
""" Get RecordingChannelGroup parents for a RecordingChannel
"""
parts = path.split('/')
object_folder = parts[-2]
block_path = '/'.join(parts[:-4])
path = block_path + '/recordingchannelgroups'
return self._search_parent(path, object_folder, ref, True)
def _search_parent(self, path, object_folder, ref, multi=False):
""" Searches a folder for an object with a given reference
and returns the path of the parent node.
:param str path: Path to search
:param str object_folder: The name of the folder within the parent
object containing the objects to search.
:param ref: Object reference
"""
if multi:
ret = []
else:
ret = ''
for n in self._data.iterNodes(path):
if not '_type' in n._v_attrs:
continue
for c in self._data.iterNodes(n._f_getChild(object_folder)):
try:
if c._f_getAttr("object_ref") == ref:
if not multi:
return n._v_pathname
else:
ret.append(n._v_pathname)
except AttributeError: # alien node
pass # not an error
return ret
_second_parent = { # Second parent type apart from Segment
'AnalogSignal': 'RecordingChannel',
'AnalogSignalArray': 'RecordingChannelGroup',
'IrregularlySampledSignal': 'RecordingChannel',
'Spike': 'Unit', 'SpikeTrain': 'Unit'}
def load_lazy_cascade(self, path, lazy):
""" Load an object with the given path in lazy cascade mode.
"""
o = self.get(path, cascade='lazy', lazy=lazy)
t = type(o).__name__
node = self._data.getNode(path)
if t in multi_parent: # Try to read parent objects from attributes
if not path in self.parent_paths:
ppaths = [None, None]
if 'segment' in node._v_attrs:
ppaths[0] = node._f_getAttr('segment')
if multi_parent[t] in node._v_attrs:
ppaths[1] = node._f_getAttr(multi_parent[t])
self.parent_paths[path] = ppaths
elif t == 'RecordingChannel':
if not path in self.parent_paths:
if 'recordingchannelgroups' in node._v_attrs:
self.parent_paths[path] = node._f_getAttr('recordingchannelgroups')
# Set parent objects
if path in self.parent_paths:
paths = self.parent_paths[path]
if t == 'RecordingChannel': # Set list of parnet channel groups
for rcg in self.parent_paths[path]:
o.recordingchannelgroups.append(self.get(rcg, cascade='lazy', lazy=lazy))
else: # Set parents: Segment and another parent
if paths[0] is None:
paths[0] = self._get_parent(
path, self._data.getNodeAttr(path, 'object_ref'),
'Segment')
if paths[0]:
o.segment = self.get(paths[0], cascade='lazy', lazy=lazy)
parent = self._second_parent[t]
if paths[1] is None:
paths[1] = self._get_parent(
path, self._data.getNodeAttr(path, 'object_ref'),
parent)
if paths[1]:
setattr(o, parent.lower(), self.get(paths[1], cascade='lazy', lazy=lazy))
elif t != 'Block':
ref = self._data.getNodeAttr(path, 'object_ref')
if t == 'RecordingChannel':
rcg_paths = self._get_rcgs(path, ref)
for rcg in rcg_paths:
o.recordingchannelgroups.append(self.get(rcg, cascade='lazy', lazy=lazy))
self.parent_paths[path] = rcg_paths
else:
for p in many_to_one_relationship[t]:
parent = self._get_parent(path, ref, p)
if parent:
setattr(o, p.lower(), self.get(parent, cascade='lazy', lazy=lazy))
return o
def load_lazy_object(self, obj):
""" Return the fully loaded version of a lazily loaded object. Does not
set links to parent objects.
"""
return self.get(obj.hdf5_path, cascade=False, lazy=False, lazy_loaded=True)
@_func_wrapper
def get(self, path="/", cascade=True, lazy=False, lazy_loaded=False):
""" Returns a requested NEO object as instance of NEO class.
Set lazy_loaded to True to load a previously lazily loaded object
(cache is ignored in this case)."""
def fetch_attribute(attr_name, attr, node):
""" fetch required attribute from the corresp. node in the file """
try:
if attr[1] == pq.Quantity:
arr = self._data.getNode(node, attr_name)
units = ""
for unit in arr._v_attrs._f_list(attrset='user'):
if unit.startswith("unit__"):
units += " * " + str(unit[6:]) + " ** " + str(arr._f_getAttr(unit))
units = units.replace(" * ", "", 1)
if not lazy or sum(arr.shape) <= 1:
nattr = pq.Quantity(arr.read(), units)
else: # making an empty array
nattr = pq.Quantity(np.empty(tuple([0 for _ in range(attr[2])])), units)
elif attr[1] == np.ndarray:
arr = self._data.getNode(node, attr_name)
if not lazy:
nattr = np.array(arr.read(), attr[3])
if nattr.shape == (0, 1): # Fix: Empty arrays should have only one dimension
nattr = nattr.reshape(-1)
else: # making an empty array
nattr = np.empty(0, attr[3])
else:
nattr = node._f_getAttr(attr_name)
if attr[1] == str or attr[1] == int:
nattr = attr[1](nattr) # compliance with NEO attr types
except (AttributeError, tb.NoSuchNodeError): # not assigned, continue
nattr = None
return nattr
def get_lazy_shape(obj, node):
attr = lazy_shape_arrays[type(obj).__name__]
arr = self._data.getNode(node, attr)
return arr.shape
if path == "/": # this is just for convenience. Try to return any object
found = False
for n in self._data.iterNodes(path):
for obj_type in class_by_name.keys():
if obj_type.lower() in str(n._v_name).lower():
path = n._v_pathname
found = True
if found:
break
try:
if path == "/":
raise ValueError() # root is not a NEO object
node = self._data.getNode(path)
except (tb.NoSuchNodeError, ValueError): # create a new node?
raise LookupError("There is no valid object with a given path " +
str(path) + ' . Please give correct path or just browse the file '
'(e.g. NeoHdf5IO()._data.root.<Block>._segments...) to find an '
'appropriate name.')
classname = self._get_class_by_node(node)
if not classname:
raise LookupError("The requested object with the path " + str(path) +
" exists, but is not of a NEO type. Please check the '_type' attribute.")
obj_type = name_by_class[classname]
try:
object_ref = self._data.getNodeAttr(node, 'object_ref')
except AttributeError: # Object does not have reference, e.g. because this is an old file format
object_ref = None
if object_ref in self.objects_by_ref and not lazy_loaded:
obj = self.objects_by_ref[object_ref]
if cascade == 'lazy' or obj_type not in complex_relationships:
return obj
else:
kwargs = {}
# load attributes (inherited *-ed attrs are also here)
attrs = classes_necessary_attributes[obj_type] + classes_recommended_attributes[obj_type]
for i, attr in enumerate(attrs):
attr_name = attr[0]
nattr = fetch_attribute(attr_name, attr, node)
if nattr is not None:
kwargs[attr_name] = nattr
obj = class_by_name[obj_type](**kwargs) # instantiate new object
if lazy and obj_type in lazy_shape_arrays:
obj.lazy_shape = get_lazy_shape(obj, node)
self._update_path(obj, node) # set up HDF attributes: name, path
try:
setattr(obj, "annotations", node._f_getAttr("annotations"))
except AttributeError:
pass # not assigned, continue
if object_ref and not lazy_loaded:
self.objects_by_ref[object_ref] = obj
# load relationships
if cascade:
if obj_type in one_to_many_relationship:
rels = list(one_to_many_relationship[obj_type])
if obj_type == "RecordingChannelGroup":
rels += many_to_many_relationship[obj_type]
for child in rels: # 'child' is like 'Segment', 'Event' etc.
if cascade == 'lazy':
relatives = LazyList(self, lazy)
else:
relatives = []
container = self._data.getNode(node, child.lower() + "s")
for n in self._data.iterNodes(container):
if cascade == 'lazy':
relatives.append(n._v_pathname)
else:
try:
if n._f_getAttr("_type") == child:
relatives.append(self.get(n._v_pathname, lazy=lazy))
except AttributeError: # alien node
pass # not an error
setattr(obj, child.lower() + "s", relatives)
if not cascade == 'lazy':
# RC -> AnalogSignal relationship will not be created later, do it now
if obj_type == "RecordingChannel" and child == "AnalogSignal":
for r in relatives:
r.recordingchannel = obj
# Cannot create Many-to-Many relationship with old format, create at least One-to-Many
if obj_type == "RecordingChannelGroup" and not object_ref:
for r in relatives:
r.recordingchannelgroups = [obj]
# special processor for RC -> RCG
if obj_type == "RecordingChannel":
if hasattr(node, '_v_parent'):
parent = node._v_parent
if hasattr(parent, '_v_parent'):
parent = parent._v_parent
if 'object_ref' in parent._v_attrs:
obj.recordingchannelgroups.append(self.get(
parent._v_pathname, lazy=lazy))
return obj
@_func_wrapper
def read_all_blocks(self, lazy=False, cascade=True, **kargs):
"""
Loads all blocks in the file that are attached to the root (which
happens when they are saved with save() or write_block()).
"""
blocks = []
for n in self._data.iterNodes(self._data.root):
if self._get_class_by_node(n) == Block:
blocks.append(self.read_block(n._v_pathname, lazy=lazy, cascade=cascade, **kargs))
return blocks
@_func_wrapper
def write_all_blocks(self, blocks, **kargs):
"""
Writes a sequence of blocks. Just calls write_block() for each element.
"""
for b in blocks:
self.write_block(b)
@_func_wrapper
def delete(self, path, cascade=False):
"""
Deletes an object in the file. Just a simple alternative of removeNode().
"""
self._data.removeNode(path, recursive=cascade)
@_func_wrapper
def reset(self, obj):
"""
Resets runtime changes made to the object. TBD.
"""
pass
@_func_wrapper
def get_info(self):
"""
Returns a quantitative information about the contents of the file.
"""
logger.info("This is a neo.HDF5 file. it contains:")
info = {}
info = info.fromkeys(class_by_name.keys(), 0)
for node in self._data.walkNodes():
try:
t = node._f_getAttr("_type")
info[t] += 1
except:
# node is not of NEO type
pass
return info
for obj_type in NeoHdf5IO.writeable_objects:
setattr(NeoHdf5IO, "write_" + obj_type.__name__.lower(), NeoHdf5IO._write_entity)
for obj_type in NeoHdf5IO.readable_objects:
setattr(NeoHdf5IO, "read_" + obj_type.__name__.lower(), NeoHdf5IO._read_entity)
|