This file is indexed.

/usr/share/pyshared/neo/io/elphyio.py is in python-neo 0.3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
# -*- coding: utf-8 -*-
"""
README
=====================================================================================
This is the implementation of the NEO IO for Elphy files.

IO dependencies:
- NEO
- types
- numpy
- quantities


Quick reference:
=====================================================================================
Class ElphyIO() with methods read_block() and write_block() are implemented. 
This classes represent the way to access and produce Elphy files 
from NEO objects.

As regards reading an existing Elphy file, start by initializing a IO class with it:

>>> import neo
>>> r = neo.io.ElphyIO( filename="Elphy.DAT" )
>>> r
<neo.io.elphyio.ElphyIO object at 0xa1e960c>

Read the file content into NEO object Block:

>>> bl = r.read_block(lazy=False, cascade=True)
>>> bl
<neo.core.block.Block object at 0x9e3d44c>

Now you can then read all Elphy data as NEO objects:

>>> b1.segments
[<neo.core.segment.Segment object at 0x9ed85cc>,
 <neo.core.segment.Segment object at 0x9ed85ec>,
 <neo.core.segment.Segment object at 0x9ed880c>,
 <neo.core.segment.Segment object at 0x9ed89cc>]

>>> bl.segments[0].analogsignals[0]
<AnalogSignal(array([ 0.        , -0.0061037 , -0.0061037 , ...,  0.        ,
       -0.0061037 , -0.01831111]) * mV, [0.0 s, 7226.2 s], sampling rate: 10.0 Hz)>

These functions return NEO objects, completely "detached" from the original Elphy file.
Changes to the runtime objects will not cause any changes in the file.

Having already existing NEO structures, it is possible to write them as an Elphy file.
For example, given a segment:

>>> s = neo.Segment()

filled with other NEO structures:

>>> import numpy as np
>>> import quantities as pq
>>> a = AnalogSignal( signal=np.random.rand(300), t_start=42*pq.ms)
>>> s.analogsignals.append( a )

and added to a newly created NEO Block:

>>> bl = neo.Block()
>>> bl.segments.append( s )

Then, it's easy to create an Elphy file:

>>> r = neo.io.ElphyIO( filename="ElphyNeoTest.DAT" )
>>> r.write_block( bl )


Author: Thierry Brizzi
        Domenico Guarino
"""

# needed for python 3 compatibility
from __future__ import absolute_import

# python commons:
from datetime import datetime
from fractions import gcd
from os import path
import re
import struct
from time import time

# note neo.core needs only numpy and quantities
import numpy as np
import quantities as pq

# I need to subclass BaseIO
from neo.io.baseio import BaseIO

# to import from core
from neo.core import (Block, Segment, RecordingChannelGroup, RecordingChannel,
                      AnalogSignal, AnalogSignalArray, EventArray, SpikeTrain)

# some tools to finalize the hierachy
from neo.io.tools import create_many_to_one_relationship

# --------------------------------------------------------
# OBJECTS

class ElphyScaleFactor(object):
    """
    Useful to retrieve real values from integer
    ones that are stored in an Elphy file :
    
    ``scale`` : compute the actual value of a sample
    with this following formula :
    
        ``delta`` * value + ``offset`` 
    
    """
    
    def __init__(self, delta, offset):
        self.delta = delta
        self.offset = offset
        
    def scale(self, value):
        return value * self.delta + self.offset

class BaseSignal(object):
    """
    A descriptor storing main signal properties :
    
    ``layout`` : the :class:``ElphyLayout` object
    that extracts data from a file.
    
    ``episode`` : the episode in which the signal
    has been acquired.
    
    ``sampling_frequency`` : the sampling frequency
    of the analog to digital converter.
    
    ``sampling_period`` : the sampling period of the
    analog to digital converter computed from sampling_frequency.
    
    ``t_start`` : the start time of the signal acquisition.
    
    ``t_stop`` : the end time of the signal acquisition.
    
    ``duration`` : the duration of the signal acquisition
    computed from t_start and t_stop.
    
    ``n_samples`` : the number of sample acquired during the
    recording computed from the duration and the sampling period.
    
    ``name`` : a label to identify the signal.
    
    ``data`` : a property triggering data extraction.

    """
    
    def __init__(self, layout, episode, sampling_frequency, start, stop, name=None):
        self.layout = layout
        self.episode = episode
        self.sampling_frequency = sampling_frequency
        self.sampling_period = 1 / sampling_frequency
        self.t_start = start
        self.t_stop = stop
        self.duration = self.t_stop - self.t_start 
        self.n_samples = int(self.duration / self.sampling_period)
        self.name = name
    
    @property
    def data(self):
        raise NotImplementedError('must be overloaded in subclass')
    
class ElphySignal(BaseSignal):
    """
    Subclass of :class:`BaseSignal` corresponding to Elphy's analog channels :
    
    ``channel`` : the identifier of the analog channel providing the signal.
    ``units`` : an array containing x and y coordinates units.
    ``x_unit`` : a property to access the x-coordinates unit.
    ``y_unit`` : a property to access the y-coordinates unit.
    ``data`` : a property that delegate data extraction to the 
                ``get_signal_data`` function of the ```layout`` object.
    """
    def __init__(self, layout, episode, channel, x_unit, y_unit, sampling_frequency, start, stop, name=None):
        super(ElphySignal, self).__init__(layout, episode, sampling_frequency, start, stop, name)
        self.channel = channel
        self.units = [x_unit, y_unit]
    
    def __str__(self):
        return "%s ep_%s ch_%s [%s, %s]" % (self.layout.file.name, self.episode, self.channel, self.x_unit, self.y_unit)
    
    def __repr__(self):
        return self.__str__()
    
    @property
    def x_unit(self):
        """
        Return the x-coordinate of the signal.
        """
        return self.units[0]
    
    @property
    def y_unit(self):
        """
        Return the y-coordinate of the signal.
        """
        return self.units[1]
    
    @property
    def data(self):
        return self.layout.get_signal_data(self.episode, self.channel)

class ElphyTag(BaseSignal):
    """
    Subclass of :class:`BaseSignal` corresponding to Elphy's tag channels :
    
    ``number`` : the identifier of the tag channel.
    ``x_unit`` : the unit of the x-coordinate.
    
    """
    
    def __init__(self, layout, episode, number, x_unit, sampling_frequency, start, stop, name=None):
        super(ElphyTag, self).__init__(layout, episode, sampling_frequency, start, stop, name)
        self.number = number
        self.units = [x_unit, None]
    
    def __str__(self):
        return "%s : ep_%s tag_ch_%s [%s]" % (self.layout.file.name, self.episode, self.number, self.x_unit)
    
    def __repr__(self):
        return self.__str__()
    
    @property
    def x_unit(self):
        """
        Return the x-coordinate of the signal.
        """
        return self.units[0]
    
    @property
    def data(self):
        return self.layout.get_tag_data(self.episode, self.number)
    
    @property
    def channel(self):
        return self.number

class ElphyEvent(object):
    """
    A descriptor that store a set of events properties :
    
    ``layout`` : the :class:``ElphyLayout` object
    that extracts data from a file.
    
    ``episode`` : the episode in which the signal
    has been acquired.
    
    ``number`` : the identifier of the channel.
    
    ``x_unit`` : the unit of the x-coordinate.
    
    ``n_events`` : the number of events.
    
    ``name`` : a label to identify the event.
    
    ``times`` : a property triggering event times extraction.
    """
    
    def __init__(self, layout, episode, number, x_unit, n_events, ch_number=None, name=None):
        self.layout = layout
        self.episode = episode
        self.number = number
        self.x_unit = x_unit
        self.n_events = n_events
        self.name = name
        self.ch_number = ch_number

    def __str__(self):
        return "%s : ep_%s evt_ch_%s [%s]" % (self.layout.file.name, self.episode, self.number, self.x_unit)
    
    def __repr__(self):
        return self.__str__()

    @property
    def channel(self):
        return self.number
    
    @property
    def times(self):
        return self.layout.get_event_data(self.episode, self.number)

    @property
    def data(self):
        return self.times 

class ElphySpikeTrain(ElphyEvent):
    """
    A descriptor that store spiketrain properties :
    
    ``wf_samples`` : number of samples composing waveforms.
    
    ``wf_sampling_frequency`` : sampling frequency of waveforms.
    
    ``wf_sampling_period`` : sampling period of waveforms.
    
    ``wf_units`` : the units of the x and y coordinates of waveforms.
    
    ``t_start`` : the time before the arrival of the spike which
    corresponds to the starting time of a waveform.
    
    ``name`` : a label to identify the event.
    
    ``times`` : a property triggering event times extraction.
    
    ``waveforms`` : a property triggering waveforms extraction.
    """
    def __init__(self, layout, episode, number, x_unit, n_events, wf_sampling_frequency, wf_samples, unit_x_wf, unit_y_wf, t_start, name=None):
        super(ElphySpikeTrain, self).__init__(layout, episode, number, x_unit, n_events, name)
        self.wf_samples = wf_samples
        self.wf_sampling_frequency = wf_sampling_frequency
        assert wf_sampling_frequency, "bad sampling frequency"
        self.wf_sampling_period = 1.0 / wf_sampling_frequency
        self.wf_units = [unit_x_wf, unit_y_wf]
        self.t_start = t_start
    
    @property
    def x_unit_wf(self):
        """
        Return the x-coordinate of waveforms.
        """
        return self.wf_units[0]
    
    @property
    def y_unit_wf(self):
        """
        Return the y-coordinate of waveforms.
        """
        return self.wf_units[1]
    
    @property
    def times(self):
        return self.layout.get_spiketrain_data(self.episode, self.number)
    
    @property
    def waveforms(self):
        return self.layout.get_waveform_data(self.episode, self.number) if self.wf_samples else None




# --------------------------------------------------------
# BLOCKS


class BaseBlock(object):
    """
    Represent a chunk of file storing metadata or
    raw data. A convenient class to break down the
    structure of an Elphy file to several building
    blocks :
    
    ``layout`` : the layout containing the block.
    
    ``identifier`` : the label that identified the block.
    
    ``size`` : the size of the block.
    
    ``start`` : the file index corresponding to the starting byte of the block.
    
    ``end`` : the file index corresponding to the ending byte of the block
    
    NB : Subclassing this class is a convenient
    way to set the properties using polymorphism
    rather than a conditional structure. By this
    way each :class:`BaseBlock` type know how to
    iterate through the Elphy file and store 
    interesting data.
    """
    def __init__(self, layout, identifier, start, size):
        self.layout = layout
        self.identifier = identifier
        self.size = size
        self.start = start
        self.end = self.start + self.size - 1




class ElphyBlock(BaseBlock):
    """
    A subclass of :class:`BaseBlock`. Useful to
    store the location and size of interesting
    data within a block :
    
    ``parent_block`` : the parent block containing the block.
    
    ``header_size`` : the size of the header permitting the
    identification of the type of the block.
    
    ``data_offset`` : the file index located after the block header.
    
    ``data_size`` : the size of data located after the header.
    
    ``sub_blocks`` : the sub-blocks contained by the block.
    
    """
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="i", parent_block=None):
        super(ElphyBlock, self).__init__(layout, identifier, start, size)
        # a block may be a sub-block of another block
        self.parent_block = parent_block
        # pascal language store strings in 2 different ways 
        # ... first, if in the program the size of the string is
        # specified (fixed) then the file stores the length
        # of the string and allocate a number of bytes equal
        # to the specified size
        # ... if this size is not specified the length of the
        # string is also stored but the file allocate dynamically
        # a number of bytes equal to the actual size of the string 
        l_ident = len(self.identifier)
        if fixed_length :
            l_ident += (fixed_length - l_ident)
        self.header_size = l_ident + 1 + type_dict[size_format]
        # starting point of data located in the block
        self.data_offset = self.start + self.header_size 
        self.data_size = self.size - self.header_size
        # a block may have sub-blocks
        # it is to subclasses to initialize
        # this property
        self.sub_blocks = list()
        
    def __repr__(self):
        return "%s : size = %s, start = %s, end = %s" % (self.identifier, self.size, self.start, self.end)

    def add_sub_block(self, block):
        """
        Append a block to the sub-block list.
        """
        self.sub_blocks.append(block)




class FileInfoBlock(ElphyBlock):
    """
    Base class of all subclasses whose the purpose is to
    extract user file info stored into an Elphy file :
    
    ``header`` : the header block relative to the block.
    
    ``file`` : the file containing the block.
    
    NB : User defined metadata are not really practical.
    An Elphy script must know the order of metadata storage
    to know exactly how to retrieve these data. That's why
    it is necessary to subclass and reproduce elphy script
    commands to extract metadata relative to a protocol.
    Consequently managing a new protocol implies to refactor
    the file info extraction.  
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="i", parent_block=None):
        super(FileInfoBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format, parent_block=parent_block)
        self.header = None
        self.file = self.layout.file
    
    def get_protocol_and_version(self):
        """
        Return a tuple useful to identify the
        kind of protocol that has generated a
        file during data acquisition.
        """
        raise Exception("must be overloaded in a subclass")
    
    def get_user_file_info(self):
        """
        Return a dictionary containing all
        user file info stored in the file.
        """
        raise Exception("must be overloaded in a subclass")
    
    def get_sparsenoise_revcor(self):
        """
        Return 'REVCOR' user file info. This method is common
        to :class:`ClassicFileInfo` and :class:`MultistimFileInfo`
        because the last one is able to store this kind of metadata.
        """
        
        header = dict()
        header['n_div_x'] = read_from_char(self.file, 'h')
        header['n_div_y'] = read_from_char(self.file, 'h')
        header['gray_levels'] = read_from_char(self.file, 'h')
        header['position_x'] = read_from_char(self.file, 'ext')
        header['position_y'] = read_from_char(self.file, 'ext')
        header['length'] = read_from_char(self.file, 'ext')
        header['width'] = read_from_char(self.file, 'ext')
        header['orientation'] = read_from_char(self.file, 'ext')
        header['expansion'] = read_from_char(self.file, 'h')
        header['scotoma'] = read_from_char(self.file, 'h')
        header['seed'] = read_from_char(self.file, 'h')
        #dt_on and dt_off may not exist in old revcor formats
        rollback = self.file.tell()
        
        header['dt_on'] = read_from_char(self.file, 'ext')
        if header['dt_on'] is None :
            self.file.seek(rollback)
        
        rollback = self.file.tell()
        
        header['dt_off'] = read_from_char(self.file, 'ext')
        if header['dt_off'] is None :
            self.file.seek(rollback)
            
        return header

class ClassicFileInfo(FileInfoBlock):
    """
    Extract user file info stored into an Elphy file corresponding to
    sparse noise (revcor), moving bar and flashbar protocols.
    """
    
    def detect_protocol_from_name(self, path):
        pattern = "\d{4}(\d+|\D)\D"
        codes = {
            'r':'sparsenoise',
            'o':'movingbar',
            'f':'flashbar',
            'm':'multistim' # here just for assertion
        }
        filename = path.split(path)[1]
        match = re.search(pattern, path)
        if hasattr(match, 'end') :
            code = codes.get(path[match.end() - 1].lower(), None)
            assert code != 'm', "multistim file detected"
            return code 
        elif 'spt' in filename.lower() :
            return 'spontaneousactivity'
        else :
            return None
    
    def get_protocol_and_version(self):
        if self.layout and self.layout.info_block :
            self.file.seek(self.layout.info_block.data_offset)
            version = self.get_title()
            if version in ['REVCOR1', 'REVCOR2', 'REVCOR + PAIRING'] :
                name = "sparsenoise"
            elif version in ['BARFLASH'] :
                name = "flashbar"
            elif version in ['ORISTIM', 'ORISTM', 'ORISTM1', 'ORITUN'] :
                name = "movingbar"
            else :
                name = self.detect_protocol_from_name(self.file.name)
            self.file.seek(0)
            return name, version
        return None, None
    
    def get_title(self):
        title_length, title = struct.unpack('<B20s', self.file.read(21))
        return unicode(title[0:title_length])
    
    def get_user_file_info(self):
        header = dict()
        if self.layout and self.layout.info_block :
            self.file.seek(self.layout.info_block.data_offset)
            header['title'] = self.get_title()
            
            # test the protocol name to trigger
            # the right header extraction
            if self.layout.elphy_file.protocol == 'sparsenoise' :
                header.update(self.get_sparsenoise_revcor())
            elif self.layout.elphy_file.protocol == 'flashbar' :
                header.update(self.get_flashbar_header())
            elif self.layout.elphy_file.protocol == 'movingbar' :
                header.update(self.get_movingbar_header())

            self.file.seek(0)
        return header
    
    def get_flashbar_header(self):
        header = dict()
        orientations = list()
        tmp = self.file.tell()
        for _ in range(0, 50) :
            l, ori = struct.unpack('<B5s', self.file.read(6))
            try :
                orientations.append(float(ori[0:l]))
            except :
                return header
        header['orientations'] = orientations  if orientations else None
        self.file.seek(tmp + 50 * 6)
        _tmp = read_from_char(self.file, 'h')
        header['number_of_orientations'] = _tmp if tmp < 0 else None
        _tmp = read_from_char(self.file, 'h')
        header['number_of_repetitions'] = _tmp if tmp < 0 else None
        header['position_x'] = read_from_char(self.file, 'ext')
        header['position_y'] = read_from_char(self.file, 'ext')
        header['length'] = read_from_char(self.file, 'ext')
        header['width'] = read_from_char(self.file, 'ext')
        header['orientation'] = read_from_char(self.file, 'ext')
        header['excursion'] = read_from_char(self.file, 'i')
        header['dt_on'] = None
        return header
    
    def get_movingbar_header(self):
        header = dict()
        orientations = list()
        tmp = self.file.tell()
        for _ in range(0, 50) :
            l, ori = struct.unpack('<B5s', self.file.read(6))
            orientations.append(float(ori[0:l]))
        header['orientations'] = orientations if orientations else None
        self.file.seek(tmp + 50 * 6)
        
        _tmp = read_from_char(self.file, 'h')
        header['number_of_orientations'] = _tmp if tmp < 0 else None
        
        _tmp = read_from_char(self.file, 'h')
        header['number_of_repetitions'] = _tmp if tmp < 0 else None
        header['position_x'] = read_from_char(self.file, 'ext')
        header['position_y'] = read_from_char(self.file, 'ext')
        header['length'] = read_from_char(self.file, 'ext')
        header['width'] = read_from_char(self.file, 'ext')
        header['orientation'] = read_from_char(self.file, 'ext')
        header['excursion'] = read_from_char(self.file, 'h')
        header['speed'] = read_from_char(self.file, 'h')
        header['dim_x'] = read_from_char(self.file, 'h')
        header['dim_y'] = read_from_char(self.file, 'h')
        return header

class MultistimFileInfo(FileInfoBlock):
    
    def get_protocol_and_version(self):
        # test if there is an available info_block
        if self.layout and self.layout.info_block :
            # go to the info_block
            sub_block = self.layout.info_block
            self.file.seek(sub_block.data_offset)
            
            #get the first four parameters
            #acqLGN = read_from_char(self.file, 'i')
            center = read_from_char(self.file, 'i')
            surround = read_from_char(self.file, 'i')
            version = self.get_title()
            
            # test the type of protocol from
            # center and surround parameters
            if (surround >= 2) :
                name = None
                version = None
            else :
                if center == 2 :
                    name = "sparsenoise"
                elif center == 3 :
                    name = "densenoise"
                elif center == 4 :
                    name = "densenoise"
                elif center == 5 :
                    name = "grating"
                else :
                    name = None
                    version = None

            self.file.seek(0)
            return name, version
        return None, None
    
    def get_title(self):
        title_length = read_from_char(self.file, 'B')
        title, = struct.unpack('<%ss' % title_length, self.file.read(title_length))
        self.file.seek(self.file.tell() + 255 - title_length)
        return unicode(title)
    
    def get_user_file_info(self):
        header = dict()
        if self.layout and self.layout.info_block :
            # go to the info_block
            sub_block = self.layout.info_block
            self.file.seek(sub_block.data_offset)
            
            #get the first four parameters
            acqLGN = read_from_char(self.file, 'i')
            center = read_from_char(self.file, 'i')
            surround = read_from_char(self.file, 'i')
            #store info in the header
            header['acqLGN'] = acqLGN
            header['center'] = center
            header['surround'] = surround
            if not (header['surround'] >= 2) :
                header.update(self.get_center_header(center))
            self.file.seek(0)
        return header
    
    def get_center_header(self, code):
        #get file info corresponding 
        #to the executed protocol
        #for the center first ...
        if code == 0 :
            return self.get_sparsenoise_revcor()
        elif code == 2 :
            return self.get_sparsenoise_center()
        elif code == 3 :
            return self.get_densenoise_center(True)
        elif code == 4 :
            return self.get_densenoise_center(False)
        elif code == 5 :
            return dict()
            # return self.get_grating_center()
        else :
            return dict()
    
    def get_surround_header(self, code):
        #then the surround
        if code == 2 :
            return self.get_sparsenoise_surround()
        elif code == 3 :
            return self.get_densenoise_surround(True)
        elif code == 4 :
            return self.get_densenoise_surround(False)
        elif code == 5 :
            raise NotImplementedError()
            return self.get_grating_center()
        else :
            return dict()
    
    def get_center_surround(self, center, surround):
        header = dict()
        header['stim_center'] = self.get_center_header(center)
        header['stim_surround'] = self.get_surround_header(surround)
        return header
    
    def get_sparsenoise_center(self):
        header = dict()
        header['title'] = self.get_title()
        header['number_of_sequences'] = read_from_char(self.file, 'i')
        header['pretrigger_duration'] = read_from_char(self.file, 'ext')
        header['n_div_x'] = read_from_char(self.file, 'h')
        header['n_div_y'] = read_from_char(self.file, 'h')
        header['gray_levels'] = read_from_char(self.file, 'h')
        header['position_x'] = read_from_char(self.file, 'ext')
        header['position_y'] = read_from_char(self.file, 'ext')
        header['length'] = read_from_char(self.file, 'ext')
        header['width'] = read_from_char(self.file, 'ext')
        header['orientation'] = read_from_char(self.file, 'ext')
        header['expansion'] = read_from_char(self.file, 'h')
        header['scotoma'] = read_from_char(self.file, 'h')
        header['seed'] = read_from_char(self.file, 'h')
        header['luminance_1'] = read_from_char(self.file, 'ext')
        header['luminance_2'] = read_from_char(self.file, 'ext') 
        header['dt_count'] = read_from_char(self.file, 'i')
        dt_array = list()
        for _ in range(0, header['dt_count']) :
            dt_array.append(read_from_char(self.file, 'ext'))
        header['dt_on'] = dt_array if dt_array else None
        header['dt_off'] = read_from_char(self.file, 'ext') 
        return header
    
    def get_sparsenoise_surround(self):
        header = dict()
        header['title_surround'] = self.get_title()
        header['gap'] = read_from_char(self.file, 'ext') 
        header['n_div_x'] = read_from_char(self.file, 'h') 
        header['n_div_y'] = read_from_char(self.file, 'h') 
        header['gray_levels'] = read_from_char(self.file, 'h') 
        header['expansion'] = read_from_char(self.file, 'h')
        header['scotoma'] = read_from_char(self.file, 'h')
        header['seed'] = read_from_char(self.file, 'h')
        header['luminance_1'] = read_from_char(self.file, 'ext')
        header['luminance_2'] = read_from_char(self.file, 'ext') 
        header['dt_on'] = read_from_char(self.file, 'ext')
        header['dt_off'] = read_from_char(self.file, 'ext')
        return header 
    
    def get_densenoise_center(self, is_binary):
        header = dict()
        header['stimulus_type'] = "B" if is_binary else "T"
        header['title'] = self.get_title()
        _tmp = read_from_char(self.file, 'i')
        header['number_of_sequences'] = _tmp if _tmp < 0 else None
        rollback = self.file.tell()
        header['stimulus_duration'] = read_from_char(self.file, 'ext')
        if header['stimulus_duration'] is None :
            self.file.seek(rollback)
        header['pretrigger_duration'] = read_from_char(self.file, 'ext')
        header['n_div_x'] = read_from_char(self.file, 'h')
        header['n_div_y'] = read_from_char(self.file, 'h')          
        header['position_x'] = read_from_char(self.file, 'ext')
        header['position_y'] = read_from_char(self.file, 'ext')
        header['length'] = read_from_char(self.file, 'ext')
        header['width'] = read_from_char(self.file, 'ext')
        header['orientation'] = read_from_char(self.file, 'ext')    
        header['expansion'] = read_from_char(self.file, 'h')
        header['seed'] = read_from_char(self.file, 'h')
        header['luminance_1'] = read_from_char(self.file, 'ext')
        header['luminance_2'] = read_from_char(self.file, 'ext') 
        header['dt_on'] = read_from_char(self.file, 'ext')
        header['dt_off'] = read_from_char(self.file, 'ext')    
        return header 
    
    def get_densenoise_surround(self, is_binary):
        header = dict()
        header['title_surround'] = self.get_title()
        header['gap'] = read_from_char(self.file, 'ext')
        header['n_div_x'] = read_from_char(self.file, 'h')
        header['n_div_y'] = read_from_char(self.file, 'h')            
        header['expansion'] = read_from_char(self.file, 'h')
        header['seed'] = read_from_char(self.file, 'h')
        header['luminance_1'] = read_from_char(self.file, 'ext')
        header['luminance_2'] = read_from_char(self.file, 'ext') 
        header['dt_on'] = read_from_char(self.file, 'ext')
        header['dt_off'] = read_from_char(self.file, 'ext')    
        return header
    
    def get_grating_center(self):
        pass
    
    def get_grating_surround(self):
        pass

class Header(ElphyBlock):
    """
    A convenient subclass of :class:`Block` to store
    Elphy file header properties.
    
    NB : Subclassing this class is a convenient
    way to set the properties of the header using
    polymorphism rather than a conditional structure.
    """
    def __init__(self, layout, identifier, size, fixed_length=None, size_format="i"):
        super(Header, self).__init__(layout, identifier, 0, size, fixed_length, size_format)

class Acquis1Header(Header):
    """
    A subclass of :class:`Header` used to
    identify the 'ACQUIS1/GS/1991' format.
    Whereas more recent format, the header
    contains all data relative to episodes,
    channels and traces :
    
    ``n_channels`` : the number of acquisition channels.
    
    ``nbpt`` and ``nbptEx`` : parameters useful to compute the number of samples by episodes.  
    
    ``tpData`` : the data format identifier used to compute sample size.
    
    ``x_unit`` : the x-coordinate unit for all channels in an episode. 
    
    ``y_units`` : an array containing y-coordinate units for each channel in the episode.
    
    ``dX`` and ``X0`` : the scale factors necessary to retrieve the actual
    times relative to each sample in a channel. 
    
    ``dY_ar`` and ``Y0_ar``: arrays of scale factors necessary to retrieve
    the actual values relative to samples. 
    
    ``continuous`` : a boolean telling if the file has been acquired in
    continuous mode. 
    
    ``preSeqI`` : the size in bytes of the data preceding raw data.
    
    ``postSeqI`` : the size in bytes of the data preceding raw data.
    
    ``dat_length`` : the length in bytes of the data in the file.
    
    ``sample_size`` : the size in bytes of a sample.
    
    ``n_samples`` : the number of samples.
    
    ``ep_size`` : the size in bytes of an episode.
    
    ``n_episodes`` : the number of recording sequences store in the file.
    
    NB : 
    
    The size is read from the file,
    the identifier is a string containing
    15 characters and the size is encoded
    as small integer. 
    
    See file 'FicDefAc1.pas' to identify
    the parsed parameters. 
    """
    
    def __init__(self, layout):
        fileobj = layout.file
        super(Acquis1Header, self).__init__(layout, "ACQUIS1/GS/1991", 1024, 15, "h")
        
        #parse the header to store interesting data about episodes and channels
        fileobj.seek(18)
        
        #extract episode properties
        n_channels = read_from_char(fileobj, 'B')
        assert not ((n_channels < 1) or (n_channels > 16)), "bad number of channels"
        nbpt = read_from_char(fileobj, 'h')
        l_xu, x_unit = struct.unpack('<B3s', fileobj.read(4))
        #extract units for each channel
        y_units = list()
        for i in range(1, 7) :
            l_yu, y_unit = struct.unpack('<B3s', fileobj.read(4))
            y_units.append(y_unit[0:l_yu])
        
        #extract i1, i2, x1, x2 and compute dX and X0
        i1, i2 = struct.unpack('<hh', fileobj.read(4))
        x1 = read_from_char(fileobj, 'ext')
        x2 = read_from_char(fileobj, 'ext')
        if (i1 != i2) and (x1 != x2) :
            dX = (x2 - x1) / (i2 - i1)
            X0 = x1 - i1 * dX
        else :
            dX = None
            X0 = None
            # raise Exception("bad X-scale parameters")
        
        #extract j1 and j2, y1 and y2 and compute dY 
        j1 = struct.unpack('<hhhhhh', fileobj.read(12))
        j2 = struct.unpack('<hhhhhh', fileobj.read(12))
        y1 = list()
        for i in range(1, 7) :
            y1.append(read_from_char(fileobj, 'ext'))
        y2 = list()
        for i in range(1, 7) :
            y2.append(read_from_char(fileobj, 'ext'))
        dY_ar = list()
        Y0_ar = list()
        for i in range(0, n_channels) :
            # detect division by zero
            if (j1[i] != j2[i]) and (y1[i] != y2[i]) :
                dY_ar.append((y2[i] - y1[i]) / (j2[i] - j1[i]))
                Y0_ar.append(y1[i] - j1[i] * dY_ar[i])
            else :
                dY_ar.append(None)
                Y0_ar.append(None)
        
        NbMacq = read_from_char(fileobj, 'h')
        
        #fileobj.read(300) #Macq:typeTabMarqueAcq;   { 300 octets }
        max_mark = 100
        Macq = list()
        for i in range(0, max_mark) :
            Macq.append(list(struct.unpack('<ch', fileobj.read(3))))
        
        #Xmini,Xmaxi,Ymini,Ymaxi:array[1..6] of float; #fileobj.read(240)
        x_mini = list()
        for i in range(0, 6) :
            x_mini.append(read_from_char(fileobj, 'ext'))
        x_maxi = list()
        for i in range(0, 6) :
            x_maxi.append(read_from_char(fileobj, 'ext'))
        y_mini = list()
        for i in range(0, 6) :
            y_mini.append(read_from_char(fileobj, 'ext'))
        y_maxi = list()
        for i in range(0, 6) :
            y_maxi.append(read_from_char(fileobj, 'ext'))
        
        #modeA:array[1..6] of byte; #fileobj.read(6)
        modeA = list(struct.unpack('<BBBBBB', fileobj.read(6)))
        
        continuous = read_from_char(fileobj, '?')
        preSeqI, postSeqI = struct.unpack('<hh', fileobj.read(4))
        
        #EchelleSeqI:boolean; #fileobj.read(1)
        ep_scaled = read_from_char(fileobj, '?')
           
        nbptEx = read_from_char(fileobj, 'H')
        
        x1s, x2s = struct.unpack('<ff', fileobj.read(8))
        
        y1s = list()
        for i in range(0, 6):
            y1s.append(read_from_char(fileobj, 'f'))
        
        y2s = list()
        for i in range(0, 6):
            y2s.append(read_from_char(fileobj, 'f'))
        
        #fileobj.read(96)   # Xminis,Xmaxis,Yminis,Ymaxis:array[1..6] of single;
        x_minis = list()
        for i in range(0, 6) :
            x_minis.append(read_from_char(fileobj, 'f'))
        x_maxis = list()
        for i in range(0, 6) :
            x_maxis.append(read_from_char(fileobj, 'f'))
        y_minis = list()
        for i in range(0, 6) :
            y_minis.append(read_from_char(fileobj, 'f'))
        y_maxis = list()
        for i in range(0, 6) :
            y_maxis.append(read_from_char(fileobj, 'f'))
        
        n_ep = read_from_char(fileobj, 'h')
        tpData = read_from_char(fileobj, 'h')
        assert tpData in [3, 2, 1, 0], "bad sample size"
        no_analog_data = read_from_char(fileobj, '?')
        
        self.n_ep = n_ep
        self.n_channels = n_channels
        self.nbpt = nbpt
        self.i1 = i1
        self.i2 = i2
        self.x1 = x1
        self.x2 = x2
        self.dX = dX
        self.X0 = X0
        self.x_unit = x_unit[0:l_xu]
        self.dY_ar = dY_ar
        self.Y0_ar = Y0_ar
        self.y_units = y_units[0:n_channels]
        self.NbMacq = NbMacq
        self.Macq = Macq
        self.x_mini = x_mini[0:n_channels]
        self.x_maxi = x_maxi[0:n_channels]
        self.y_mini = y_mini[0:n_channels]
        self.y_maxi = y_maxi[0:n_channels]
        self.modeA = modeA
        self.continuous = continuous
        self.preSeqI = preSeqI
        self.postSeqI = postSeqI
        self.ep_scaled = ep_scaled
        self.nbptEx = nbptEx
        self.x1s = x1s
        self.x2s = x2s
        self.y1s = y1s
        self.y2s = y2s
        self.x_minis = x_minis[0:n_channels]
        self.x_maxis = x_maxis[0:n_channels]
        self.y_minis = y_minis[0:n_channels]
        self.y_maxis = y_maxis[0:n_channels]
        self.tpData = 2 if not tpData else tpData
        self.no_analog_data = no_analog_data
        
        self.dat_length = self.layout.file_size - self.layout.data_offset 
        self.sample_size = type_dict[types[tpData]] 
        if self.continuous :
            self.n_samples = self.dat_length / (self.n_channels * self.sample_size)
        else :
            self.n_samples = self.nbpt + self.nbptEx * 32768 
        ep_size = self.preSeqI + self.postSeqI
        if not self.no_analog_data :
            ep_size += self.n_samples * self.sample_size * self.n_channels
        self.ep_size = ep_size
        self.n_episodes = (self.dat_length / self.ep_size) if (self.n_samples != 0) else 0
              
class DAC2GSHeader(Header):
    """
    A subclass of :class:`Header` used to
    identify the 'DAC2/GS/2000' format.
    
    NB : the size is fixed to 20 bytes,
    the identifier is a string containing
    15 characters and the size is encoded
    as integer.
    """
    def __init__(self, layout):
        super(DAC2GSHeader, self).__init__(layout, "DAC2/GS/2000", 20, 15, "i")

class DAC2Header(Header):
    """
    A subclass of :class:`Header` used to
    identify the 'DAC2 objects' format.
    
    NB : the size is fixed to 18 bytes,
    the identifier is a string containing
    15 characters and the size is encoded
    as small integer.
    """
    def __init__(self, layout):
        super(DAC2Header, self).__init__(layout, "DAC2 objects", 18, 15, "h")

class DAC2GSMainBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store data corresponding to
    the 'Main' block stored in the DAC2/GS/2000 format :
    
    ``n_channels`` : the number of acquisition channels.
    
    ``nbpt`` : the number of samples by episodes.  
    
    ``tpData`` : the data format identifier used to compute sample size. 
    
    ``x_unit`` : the x-coordinate unit for all channels in an episode. 
    
    ``y_units`` : an array containing y-coordinate units for each channel in the episode.
    
    ``dX`` and ``X0`` : the scale factors necessary to retrieve the actual
    times relative to each sample in a channel. 
    
    ``dY_ar`` and ``Y0_ar``: arrays of scale factors necessary to retrieve
    the actual values relative to samples. 
    
    ``continuous`` : a boolean telling if the file has been acquired in
    continuous mode. 
    
    ``preSeqI`` : the size in bytes of the data preceding raw data.
    
    ``postSeqI`` : the size in bytes of the data preceding raw data.
    
    ``withTags`` : a boolean telling if tags are recorded.
    
    ``tagShift`` : the number of tag channels and the shift to apply
    to encoded values to retrieve acquired values.
    
    ``dat_length`` : the length in bytes of the data in the file.
    
    ``sample_size`` : the size in bytes of a sample.
    
    ``n_samples`` : the number of samples.
    
    ``ep_size`` : the size in bytes of an episode.
    
    ``n_episodes`` : the number of recording sequences store in the file.
    
    NB : see file 'FdefDac2.pas' to identify the other parsed parameters. 
    """
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="i"):
        super(DAC2GSMainBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        #parse the file to retrieve episodes and channels properties
        n_channels, nbpt, tpData = struct.unpack('<BiB', layout.file.read(6))
        l_xu, xu, dX, X0 = struct.unpack('<B10sdd', layout.file.read(27))
        y_units = list()
        dY_ar = list()
        Y0_ar = list()
        for _ in range(0, 16) :
            l_yu, yu, dY, Y0 = struct.unpack('<B10sdd', layout.file.read(27)) 
            y_units.append(yu[0:l_yu])
            dY_ar.append(dY)
            Y0_ar.append(Y0)
        preSeqI, postSeqI, continuous, varEp, withTags = struct.unpack('<ii???', layout.file.read(11))
        #some file doesn't precise the tagShift
        position = layout.file.tell()
        if position >= self.end :
            tagShift = 0
        else :
            tagShift = read_from_char(layout.file, 'B')
        #setup object properties
        self.n_channels = n_channels
        self.nbpt = nbpt
        self.tpData = tpData
        self.x_unit = xu[0:l_xu]
        self.dX = dX
        self.X0 = X0
        self.y_units = y_units[0:n_channels]
        self.dY_ar = dY_ar[0:n_channels]
        self.Y0_ar = Y0_ar[0:n_channels]
        self.continuous = continuous
        if self.continuous :
            self.preSeqI = 0
            self.postSeqI = 0
        else :
            self.preSeqI = preSeqI 
            self.postSeqI = postSeqI
        self.varEp = varEp
        self.withTags = withTags
        if not self.withTags :
            self.tagShift = 0
        else :
            if tagShift == 0 :
                self.tagShift = 4
            else :
                self.tagShift = tagShift
        self.sample_size = type_dict[types[self.tpData]]
        self.dat_length = self.layout.file_size - self.layout.data_offset
        if self.continuous :
            if self.n_channels > 0 :
                self.n_samples = self.dat_length / (self.n_channels * self.sample_size)
            else :
                self.n_samples = 0
        else :
            self.n_samples = self.nbpt
        
        self.ep_size = self.preSeqI + self.postSeqI + self.n_samples * self.sample_size * self.n_channels
        self.n_episodes = self.dat_length / self.ep_size if (self.n_samples != 0) else 0 
    
class DAC2GSEpisodeBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store data corresponding to
    'DAC2SEQ' blocks stored in the DAC2/GS/2000 format.
    
    ``n_channels`` : the number of acquisition channels.
    
    ``nbpt`` : the number of samples by episodes.  
    
    ``tpData`` : the data format identifier used to compute the sample size. 
    
    ``x_unit`` : the x-coordinate unit for all channels in an episode. 
    
    ``y_units`` : an array containing y-coordinate units for each channel in the episode.
    
    ``dX`` and ``X0`` : the scale factors necessary to retrieve the actual
    times relative to each sample in a channel. 
    
    ``dY_ar`` and ``Y0_ar``: arrays of scale factors necessary to retrieve
    the actual values relative to samples. 
    
    ``postSeqI`` : the size in bytes of the data preceding raw data.
    
    NB : see file 'FdefDac2.pas' to identify the parsed parameters. 
    """
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="i"):
        main = layout.main_block
        n_channels, nbpt, tpData, postSeqI = struct.unpack('<BiBi', layout.file.read(10))
        l_xu, xu, dX, X0 = struct.unpack('<B10sdd', layout.file.read(27))
        y_units = list()
        dY_ar = list()
        Y0_ar = list()
        for _ in range(0, 16) :
            l_yu, yu, dY, Y0 = struct.unpack('<B10sdd', layout.file.read(27)) 
            y_units.append(yu[0:l_yu])
            dY_ar.append(dY)
            Y0_ar.append(Y0)

        super(DAC2GSEpisodeBlock, self).__init__(layout, identifier, start, layout.main_block.ep_size, fixed_length, size_format)
        
        self.n_channels = main.n_channels
        self.nbpt = main.nbpt
        self.tpData = main.tpData
        if not main.continuous :
            self.postSeqI = postSeqI
            self.x_unit = xu[0:l_xu]
            self.dX = dX
            self.X0 = X0
            self.y_units = y_units[0:n_channels]
            self.dY_ar = dY_ar[0:n_channels]
            self.Y0_ar = Y0_ar[0:n_channels]
        else :
            self.postSeqI = 0
            self.x_unit = main.x_unit
            self.dX = main.dX
            self.X0 = main.X0
            self.y_units = main.y_units
            self.dY_ar = main.dY_ar
            self.Y0_ar = main.Y0_ar


class DAC2EpisodeBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store data corresponding to
    'B_Ep' blocks stored in the last version of Elphy format :
    
    ``ep_block`` : a shortcut the the 'Ep' sub-block.
    
    ``ch_block`` : a shortcut the the 'Adc' sub-block. 
    
    ``ks_block`` : a shortcut the the 'KSamp' sub-block. 
    
    ``kt_block`` : a shortcut the the 'Ktype' sub-block.
    
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l"):
        super(DAC2EpisodeBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        self.ep_block = None
        self.ch_block = None
        self.ks_block = None
        self.kt_block = None

    def set_episode_block(self):
        blocks = self.layout.get_blocks_of_type('Ep', target_blocks=self.sub_blocks)
        self.ep_block = blocks[0] if blocks else None 
        
    def set_channel_block(self):
        blocks = self.layout.get_blocks_of_type('Adc', target_blocks=self.sub_blocks)
        self.ch_block = blocks[0] if blocks else None
    
    def set_sub_sampling_block(self):
        blocks = self.layout.get_blocks_of_type('Ksamp', target_blocks=self.sub_blocks)
        self.ks_block = blocks[0] if blocks else None 
    
    def set_sample_size_block(self):
        blocks = self.layout.get_blocks_of_type('Ktype', target_blocks=self.sub_blocks)
        self.kt_block = blocks[0] if blocks else None 
    

class DummyDataBlock(BaseBlock):
    """
    Subclass of :class:`BaseBlock` useful to
    identify chunk of blocks that are actually
    corresponding to acquired data.
    """
    pass


class DAC2RDataBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store data corresponding to
    'RDATA' blocks stored in the last version of Elphy format :
    
    ``data_start`` : the starting point of raw data.
    
    NB : This kind of block is preceeded by a structure which size is encoded
    as a 2 bytes unsigned short. Consequently, data start at data_offset plus
    the size. 
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l"):
        super(DAC2RDataBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        self.data_start = self.data_offset + read_from_char(layout.file, 'H')

class DAC2CyberTagBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store data corresponding to
    'RCyberTag' blocks stored in the last version of Elphy format :
    
    ``data_start`` : the starting point of raw data.
    
    NB : This kind of block is preceeded by a structure which size is encoded
    as a 2 bytes unsigned short. Consequently, data start at data_offset plus
    the size. 
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l"):
        super(DAC2CyberTagBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        self.data_start = self.data_offset + read_from_char(layout.file, 'H')

class DAC2EventBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store
    data corresponding to 'REVT' blocks stored
    in the last version of Elphy format :
    
    ``data_start`` : the starting point of raw data.
    
    ``n_evt_channels`` : the number of channels used to acquire events.
    
    ``n_events`` : an array containing the number of events for each event channel.
    
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l"):
        super(DAC2EventBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        fileobj = self.layout.file
        jump = self.data_offset + read_from_char(fileobj, 'H')
        fileobj.seek(jump)
        
        #extract the number of event channel
        self.n_evt_channels = read_from_char(fileobj, 'i')
        
        # extract for each event channel
        # the corresponding number of events
        n_events = list()
        for _ in range(0, self.n_evt_channels) :
            n_events.append(read_from_char(fileobj, 'i'))
        self.n_events = n_events
        
        self.data_start = fileobj.tell()


class DAC2SpikeBlock(DAC2EventBlock):
    """
    Subclass of :class:`DAC2EventBlock` useful
    to identify 'RSPK' and make the distinction
    with 'REVT' blocks stored in the last version
    of Elphy format. 
    """
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l"):
        super(DAC2SpikeBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        fileobj = self.layout.file
        jump = self.data_offset
        fileobj.seek(jump) # go to SpikeBlock
        jump = self.data_offset + read_from_char(fileobj, 'h')
        fileobj.seek(jump)
        #extract the number of event channel
        self.n_evt_channels = read_from_char(fileobj, 'i')
        # extract for each event channel
        # the corresponding number of events
        n_events = list()
        for _ in range(0, self.n_evt_channels) :
            n_events.append(read_from_char(fileobj, 'i'))
        self.n_events = n_events
        self.data_start = fileobj.tell()



class DAC2WaveFormBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to store data corresponding to
    'RspkWave' blocks stored in the last version of Elphy format :
    
    ``data_start`` : the starting point of raw data.
    
    ``n_spk_channels`` : the number of channels used to acquire spiketrains.
    
    ``n_spikes`` : an array containing the number of spikes for each spiketrain.
    
    ``pre_trigger`` : the number of samples of a waveform arriving before a spike.
    
    ``wavelength`` : the number of samples in a waveform.
    
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l"):
        super(DAC2WaveFormBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format)
        fileobj = self.layout.file
        jump = self.data_offset + read_from_char(fileobj, 'H')
        fileobj.seek(jump)
        self.wavelength = read_from_char(fileobj, 'i')
        self.pre_trigger = read_from_char(fileobj, 'i')
        self.n_spk_channels = read_from_char(fileobj, 'i')
        n_spikes = list()
        for _ in range(0, self.n_spk_channels) :
            n_spikes.append(read_from_char(fileobj, 'i'))
        self.n_spikes = n_spikes
        self.data_start = fileobj.tell()



class DAC2EpSubBlock(ElphyBlock):
    """
    Subclass of :class:`Block` useful to retrieve data corresponding
    to a 'Ep' sub-block stored in the last version of Elphy format :
    
    ``n_channels`` : the number of acquisition channels.
    
    ``nbpt`` : the number of samples by episodes 
    
    ``tpData`` : the data format identifier used to store signal samples. 
    
    ``x_unit`` : the x-coordinate unit for all channels in an episode. 
    
    ``dX`` and ``X0`` : the scale factors necessary to retrieve the actual
    times relative to each sample in a channel. 
    
    ``continuous`` : a boolean telling if the file has been acquired in
    continuous mode. 
    
    ``tag_mode`` : identify the way tags are stored in a file. 
    
    ``tag_shift`` : the number of bits that tags occupy in a 16-bits sample
    and the shift necessary to do to retrieve the value of the sample. 
    
    ``dX_wf`` and ``X0_wf``: the scale factors necessary to retrieve the actual
    times relative to each waveforms. 
    
    ``dY_wf`` and ``Y0_wf``: the scale factors necessary to retrieve the actual
    values relative to waveform samples.  
    
    ``x_unit_wf`` and ``y_unit_wf``: the unit of x and y coordinates for all waveforms in an episode. 
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l", parent_block=None):
        super(DAC2EpSubBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format, parent_block=parent_block)
        fileobj = self.layout.file
        n_channels, nbpt, tpData, l_xu, x_unit, dX, X0 = struct.unpack('<BiBB10sdd', fileobj.read(33))
        continuous, tag_mode, tag_shift = struct.unpack('<?BB', fileobj.read(3))
        DxuSpk, X0uSpk, nbSpk, DyuSpk, Y0uSpk, l_xuspk, unitXSpk, l_yuspk, unitYSpk = struct.unpack('<ddiddB10sB10s', fileobj.read(58))
        cyber_time, pc_time = struct.unpack('<dI', fileobj.read(12))
        # necessary properties to reconstruct
        # signals stored into the file
        self.n_channels = n_channels
        self.nbpt = nbpt
        self.tpData = tpData
        self.x_unit = x_unit[0:l_xu]
        self.dX = dX
        self.X0 = X0
        self.continuous = continuous
        self.tag_mode = tag_mode
        self.tag_shift = tag_shift if self.tag_mode == 1 else 0
        # following properties are valid
        # when using multielectrode system
        # named BlackRock / Cyberkinetics
        #if fileobj.tell() < self.end :
        self.dX_wf = DxuSpk
        self.X0_wf = X0uSpk
        self.n_spikes = nbSpk
        self.dY_wf = DyuSpk
        self.Y0_wf = Y0uSpk
        self.x_unit_wf = unitXSpk[0:l_xuspk]
        self.y_unit_wf = unitYSpk[0:l_yuspk]
        self.cyber_time = cyber_time
        self.pc_time = pc_time

        

class DAC2AdcSubBlock(ElphyBlock):
    """
    Subclass of :class:`SubBlock` useful to retrieve data corresponding
    to a 'Adc' sub-block stored in the last version of Elphy format : 
    
    ``y_units`` : an array containing all y-coordinates for each channel.
    
    ``dY_ar`` and ``Y0_ar`` : arrays containing scaling factors  for each
    channel useful to compute the actual value of a signal sample.
    
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l", parent_block=None):
        super(DAC2AdcSubBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format, parent_block=parent_block)
        fileobj = self.layout.file
        #fileobj.seek(start + len(identifier) + 1)
        ep_block, = [k for k in self.parent_block.sub_blocks if k.identifier.startswith('Ep')]
        n_channels = ep_block.n_channels
        self.y_units = list()
        self.dY_ar = list()
        self.Y0_ar = list()
        for _ in range(0, n_channels) :
            l_yu, y_unit, dY, Y0 = struct.unpack('<B10sdd', fileobj.read(27))
            self.y_units.append(y_unit[0:l_yu])
            self.dY_ar.append(dY)
            self.Y0_ar.append(Y0)


class DAC2KSampSubBlock(ElphyBlock):
    """
    Subclass of :class:`SubBlock` useful to retrieve data corresponding
    to a 'Ksamp' sub-block stored in the last version of Elphy format :
    
    ``k_sampling`` : an array containing all sub-sampling factors
    corresponding to each acquired channel. If a factor is equal to
    zero, then the channel has been converted into an event channel.
    
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l", parent_block=None):
        super(DAC2KSampSubBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format, parent_block=parent_block)
        fileobj = self.layout.file
        ep_block, = [k for k in self.parent_block.sub_blocks if k.identifier.startswith('Ep')]
        n_channels = ep_block.n_channels
        k_sampling = list()
        for _ in range(0, n_channels) :
            k_sampling.append(read_from_char(fileobj, "H"))
        self.k_sampling = k_sampling


        
class DAC2KTypeSubBlock(ElphyBlock):
    """
    Subclass of :class:`SubBlock` useful to retrieve data corresponding
    to a 'Ktype' sub-block stored in the last version of Elphy format :
    
    ``k_types`` : an array containing all data formats identifier used
    to compute sample size.
    """
    
    def __init__(self, layout, identifier, start, size, fixed_length=None, size_format="l", parent_block=None):
        super(DAC2KTypeSubBlock, self).__init__(layout, identifier, start, size, fixed_length, size_format, parent_block=parent_block)
        fileobj = self.layout.file
        ep_block, = [k for k in self.parent_block.sub_blocks if k.identifier.startswith('Ep')]
        n_channels = ep_block.n_channels
        k_types = list()
        for _ in range(0, n_channels) :
            k_types.append(read_from_char(fileobj, "B"))
        self.k_types = k_types






# --------------------------------------------------------
# UTILS

#symbols of types that could 
#encode a value in an elphy file
types = (
    'B',
    'b',
    'h',
    'H',
    'l',
    'f',
    'real48',
    'd',
    'ext',
    's_complex',
    'd_complex',
    'complex',
    'none'
)

#a dictionary linking python.struct
#formats to their actual size in bytes
type_dict = {
    'c':1,
    'b':1,
    'B':1,
    '?':1,
    'h':2,
    'H':2,
    'i':4,
    'I':4,
    'l':4,
    'L':4,
    'q':8,
    'Q':8,
    'f':4,
    'd':8,
    'H+l':6,
    'ext':10,
    'real48':6,
    's_complex':8,
    'd_complex':16,
    'complex':20,
    'none':0
}

#a dictionary liking python.struct
#formats to numpy formats
numpy_map = {
    'b':np.int8,
    'B':np.uint8,
    'h':np.int16,
    'H':np.uint16,
    'i':np.int32,
    'I':np.uint32,
    'l':np.int32,
    'L':np.uint32,
    'q':np.int64,
    'Q':np.uint64,
    'f':np.float32,
    'd':np.float64,
    'H+l':6,
    'ext':10,
    'real48':6,
    'SComp':8,
    'DComp':16,
    'Comp':20,
    'none':0
}

def read_from_char(data, type_char):
    """
    Return the value corresponding
    to the specified character type.
    """
    n_bytes = type_dict[type_char]
    ascii = data.read(n_bytes) if isinstance(data, file) else data
    if type_char != 'ext':
        try :
            value = struct.unpack('<%s' % type_char, ascii)[0]
        except :
            # the value could not been read
            # because the value is not compatible
            # with the specified type
            value = None    
    else :
        try :
            value = float(ascii)
        except :
            value = None
    return value

def least_common_multiple(a, b):
    """
    Return the value of the least common multiple.
    """
    return (a * b) / gcd(a, b)



# --------------------------------------------------------
# LAYOUT

b_float = 'f8'
b_int = 'i2'

class ElphyLayout(object):
    """
    A convenient class to know how data
    are organised into an Elphy file :
    
    ``elphy_file`` : a :class:`ElphyFile`
    asking file introspection.
    
    ``blocks`` : a set of :class:``BaseBlock`
    objects partitioning  a file and extracting
    some useful metadata.
    
    ``ìnfo_block`` : a shortcut to a :class:`FileInfoBlock`
    object containing metadata describing a recording
    protocol (sparsenoise, densenoise, movingbar or flashbar)
    
    ``data_blocks`` : a shortcut to access directly
    blocks containing raw data.
    
    NB : Subclassing this class is a convenient
    way to retrieve blocks constituting a file,
    their relative information and location of
    raw data using polymorphism rather than a
    conditional structure.
    """
    
    def __init__(self, elphy_file):
        self.elphy_file = elphy_file
        self.blocks = list()
        self.info_block = None
        self.data_blocks = None
    
    @property
    def file(self):
        return self.elphy_file.file
    
    @property
    def file_size(self):
        return self.elphy_file.file_size
    
    def is_continuous(self):
        return self.is_continuous()
    
    def add_block(self, block):
        self.blocks.append(block)
    
    @property
    def header(self):
        return self.blocks[0]
    
    def get_blocks_of_type(self, identifier, target_blocks=None):
        blocks = self.blocks if target_blocks is None else target_blocks
        return [k for k in blocks if (k.identifier == identifier)]
    
    def set_info_block(self):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def set_data_blocks(self):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def get_tag(self, episode, tag_channel):
        raise NotImplementedError('must be overloaded in a subclass')

    @property
    def n_episodes(self):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def n_channels(self, episode):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def n_tags(self, episode):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def n_samples(self, episode, channel):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def sample_type(self, ep, ch):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def sample_size(self, ep, ch):
        symbol = self.sample_symbol(ep, ch)
        return type_dict[symbol]
    
    def sample_symbol(self, ep, ch):
        tp = self.sample_type(ep, ch)
        try:
            return types[tp]
        except :
            return 'h'

    def sampling_period(self, ep, ch):
        raise NotImplementedError('must be overloaded in a subclass')

    def x_scale_factors(self, ep, ch):
        raise NotImplementedError('must be overloaded in a subclass')

    def y_scale_factors(self, ep, ch):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def x_tag_scale_factors(self, ep):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def x_unit(self, ep, ch):
        raise NotImplementedError('must be overloaded in a subclass')

    def y_unit(self, ep, ch):
        raise NotImplementedError('must be overloaded in a subclass')

    def tag_shift(self, ep):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def get_channel_for_tags(self, ep):
        raise NotImplementedError('must be overloaded in a subclass')
    
    def get_signal(self, episode, channel):
        """
        Return the signal description relative
        to the specified episode and channel.
        """
        assert episode in range(1, self.n_episodes + 1)
        assert channel in range(1, self.n_channels(episode) + 1)
        t_start = 0
        sampling_period = self.sampling_period(episode, channel)
        t_stop = sampling_period * self.n_samples(episode, channel)
        return ElphySignal(
            self,
            episode,
            channel,
            self.x_unit(episode, channel),
            self.y_unit(episode, channel),
            1 / sampling_period,
            t_start,
            t_stop
        )
    
    def create_channel_mask(self, ep):
        """
        Return the minimal pattern of channel numbers
        representing the succession of channels in the
        multiplexed data. It is necessary to do the mapping
        between a sample stored in the file and its relative
        channel.
        """
        raise NotImplementedError('must be overloaded in a subclass')
    
    def get_data_blocks(self, ep):
        """
        Return a set of :class:`DummyDataBlock` instances
        that defined the actual location of samples in blocks
        encapsulating raw data.
        """
        raise NotImplementedError('must be overloaded in a subclass')
    
    def create_bit_mask(self, ep, ch):
        """
        Build a mask to apply on the entire episode
        in order to only keep values corresponding
        to the specified channel.
        """
        ch_mask = self.create_channel_mask(ep)
        _mask = list()
        for _ch in ch_mask :
            size = self.sample_size(ep, _ch)
            val = 1 if _ch == ch else 0 
            for _ in xrange(0, size) :
                _mask.append(val)
        return np.array(_mask)
    
    def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None):
        """
        Return list of bytes contained
        in the specified set of blocks.
        
        NB : load all data as files cannot exceed 4Gb 
             find later other solutions to spare memory.
        """
        chunks = list()
        raw = ''
        # keep only data blocks having
        # a size greater than zero
        blocks = [k for k in data_blocks if k.size > 0]
        for data_block in blocks :
            self.file.seek(data_block.start)
            raw = self.file.read(data_block.size)[0:expected_size]
            databytes = np.frombuffer(raw, dtype=dtype)
            chunks.append(databytes)
        # concatenate all chunks and return
        # the specified slice
        if len(chunks)>0 :
            databytes = np.concatenate(chunks)
            return databytes[start:end]
        else :
            return np.array([])
        
    
    def reshape_bytes(self, databytes, reshape, datatypes, order='<'):
        """
        Reshape a numpy array containing a set of databytes.
        """
        assert datatypes and len(datatypes) == len(reshape), "datatypes are not well defined"
        
        l_bytes = len(databytes)
        
        #create the mask for each shape
        shape_mask = list()
        for shape in reshape :
            for _ in xrange(1, shape + 1) :
                shape_mask.append(shape)
        
        #create a set of masks to extract data
        bit_masks = list()
        for shape in reshape :
            bit_mask = list()
            for value in shape_mask :
                bit = 1 if (value == shape) else 0
                bit_mask.append(bit)
            bit_masks.append(np.array(bit_mask))
         
        #extract data
        
        n_samples = l_bytes / np.sum(reshape)
        data = np.empty([len(reshape), n_samples], dtype=(int, int))
        for index, bit_mask in enumerate(bit_masks) :
            tmp = self.filter_bytes(databytes, bit_mask)
            tp = '%s%s%s' % (order, datatypes[index], reshape[index])
            data[index] = np.frombuffer(tmp, dtype=tp)
        
        return data.T

    def filter_bytes(self, databytes, bit_mask):
        """
        Detect from a bit mask which bits
        to keep to recompose the signal.
        """
        n_bytes = len(databytes)
        mask = np.ones(n_bytes, dtype=int)
        np.putmask(mask, mask, bit_mask)
        to_keep = np.where(mask > 0)[0]
        return databytes.take(to_keep)
    
    def load_channel_data(self, ep, ch):
        """
        Return a numpy array containing the
        list of bytes corresponding to the
        specified episode and channel.
        """
        #memorise the sample size and symbol
        sample_size = self.sample_size(ep, ch)
        sample_symbol = self.sample_symbol(ep, ch)
        
        #create a bit mask to define which
        #sample to keep from the file
        bit_mask = self.create_bit_mask(ep, ch)
        
        #load all bytes contained in an episode
        data_blocks = self.get_data_blocks(ep)
        databytes = self.load_bytes(data_blocks)
        raw = self.filter_bytes(databytes, bit_mask)
        
        #reshape bytes from the sample size
        dt = np.dtype(numpy_map[sample_symbol])
        dt.newbyteorder('<')
        return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
    
    def apply_op(self, np_array, value, op_type):
        """
        A convenient function to apply an operator
        over all elements of a numpy array.
        """
        if op_type == "shift_right" :
            return np_array >> value
        elif op_type == "shift_left" :
            return np_array << value
        elif op_type == "mask" :
            return np_array & value
        else :
            return np_array
    
    def get_tag_mask(self, tag_ch, tag_mode):
        """
        Return a mask useful to retrieve
        bits that encode a tag channel.
        """
        if  tag_mode == 1 :
            tag_mask = 0b01 if (tag_ch == 1) else 0b10
        elif tag_mode in [2, 3] :
            ar_mask = np.zeros(16, dtype=int)
            ar_mask[tag_ch - 1] = 1
            st = "0b" + ''.join(np.array(np.flipud(ar_mask), dtype=str))
            tag_mask = eval(st)
        return tag_mask
        
    def load_encoded_tags(self, ep, tag_ch):
        """
        Return a numpy array containing
        bytes corresponding to the specified
        episode and channel.
        """
        tag_mode = self.tag_mode(ep)
        tag_mask = self.get_tag_mask(tag_ch, tag_mode)
        if tag_mode in [1, 2] :
            #digidata or itc mode
            #available for all formats
            ch = self.get_channel_for_tags(ep)
            raw = self.load_channel_data(ep, ch)
            return self.apply_op(raw, tag_mask, "mask")
        elif tag_mode == 3 :
            #cyber k mode
            #only available for DAC2 objects format
            
            #store bytes corresponding to the blocks
            #containing tags in a numpy array and reshape
            #it to have a set of tuples (time, value)
            ck_blocks = self.get_blocks_of_type(ep, 'RCyberTag')
            databytes = self.load_bytes(ck_blocks)
            raw = self.reshape_bytes(databytes, reshape=(4, 2), datatypes=('u', 'u'), order='<')
            
            #keep only items that are compatible
            #with the specified tag channel
            raw[:, 1] = self.apply_op(raw[:, 1], tag_mask, "mask")
            
            #computing numpy.diff is useful to know
            #how many times a value is maintained
            #and necessary to reconstruct the 
            #compressed signal ... 
            repeats = np.array(np.diff(raw[:, 0]), dtype=int)
            data = np.repeat(raw[:-1, 1], repeats, axis=0)
            
            # ... note that there is always
            #a transition at t=0 for synchronisation
            #purpose, consequently it is not necessary
            #to complete with zeros when the first
            #transition arrive ...
            
            return data
    
    def load_encoded_data(self, ep, ch):
        """
        Get encoded value of raw data from the elphy file.
        """
        tag_shift = self.tag_shift(ep)
        data = self.load_channel_data(ep, ch)
        if tag_shift :
            return  self.apply_op(data, tag_shift, "shift_right")
        else :
            return data
    
    def get_signal_data(self, ep, ch):
        """
        Return a numpy array containing all samples of a
        signal, acquired on an Elphy analog channel, formatted
        as a list of (time, value) tuples.
        """
        #get data from the file
        y_data = self.load_encoded_data(ep, ch)
        x_data = np.arange(0, len(y_data))
        
        #create a recarray
        data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_float)])
        
        #put in the recarray the scaled data
        x_factors = self.x_scale_factors(ep, ch)
        y_factors = self.y_scale_factors(ep, ch)
        data['x'] = x_factors.scale(x_data)
        data['y'] = y_factors.scale(y_data)
        
        return data

    def get_tag_data(self, ep, tag_ch):
        """
        Return a numpy array containing all samples of a
        signal, acquired on an Elphy tag channel, formatted
        as a list of (time, value) tuples.
        """
        #get data from the file
        y_data = self.load_encoded_tags(ep, tag_ch)
        x_data = np.arange(0, len(y_data))
        
        #create a recarray
        data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_int)])
        
        #put in the recarray the scaled data
        factors = self.x_tag_scale_factors(ep)
        data['x'] = factors.scale(x_data)
        data['y'] = y_data
        return data
    
class Acquis1Layout(ElphyLayout):
    """
    A subclass of :class:`ElphyLayout` to know
    how the 'ACQUIS1/GS/1991' format is organised.
    Extends :class:`ElphyLayout` to store the
    offset used to retrieve directly raw data :
    
    ``data_offset`` : an offset to jump directly
    to the raw data.
 
    """
    
    def __init__(self, fileobj, data_offset):
        super(Acquis1Layout, self).__init__(fileobj)
        self.data_offset = data_offset
        self.data_blocks = None
        
    def get_blocks_end(self):
        return self.data_offset
    
    def is_continuous(self):
        return self.header.continuous
    
    def get_episode_blocks(self):
        raise NotImplementedError()
    
    def set_info_block(self):
        i_blks = self.get_blocks_of_type('USER INFO')
        assert len(i_blks) < 2, 'too many info blocks'
        if len(i_blks) :
            self.info_block = i_blks[0]
    
    def set_data_blocks(self):
        data_blocks = list()
        size = self.header.n_samples * self.header.sample_size * self.header.n_channels
        for ep in range(0, self.header.n_episodes) :
            start = self.data_offset + ep * self.header.ep_size + self.header.preSeqI
            data_blocks.append(DummyDataBlock(self, 'Acquis1Data', start, size))
        self.data_blocks = data_blocks
    
    def get_data_blocks(self, ep):
        return [self.data_blocks[ep - 1]]
    
    @property
    def n_episodes(self):
        return self.header.n_episodes
    
    def n_channels(self, episode):
        return self.header.n_channels
    
    def n_tags(self, episode):
        return 0
    
    def tag_mode(self, ep):
        return 0
    
    def tag_shift(self, ep):
        return 0
    
    def get_channel_for_tags(self, ep):
        return None
    
    @property
    def no_analog_data(self):
        return True if (self.n_episodes == 0) else self.header.no_analog_data
    
    def sample_type(self, ep, ch):
        return self.header.tpData
    
    def sampling_period(self, ep, ch):
        return self.header.dX
    
    def n_samples(self, ep, ch):
        return self.header.n_samples
    
    def x_tag_scale_factors(self, ep):
        return ElphyScaleFactor(
            self.header.dX,
            self.header.X0
        )
    
    def x_scale_factors(self, ep, ch):
        return ElphyScaleFactor(
            self.header.dX,
            self.header.X0
        )
    
    def y_scale_factors(self, ep, ch):
        dY = self.header.dY_ar[ch - 1]
        Y0 = self.header.Y0_ar[ch - 1]
        # TODO: see why this kind of exception exists
        if dY is None or Y0 is None :
            raise Exception('bad Y-scale factors for episode %s channel %s' % (ep, ch))
        return ElphyScaleFactor(dY, Y0)
    
    def x_unit(self, ep, ch):
        return self.header.x_unit

    def y_unit(self, ep, ch):
        return self.header.y_units[ch - 1]
    
    @property
    def ep_size(self):
        return self.header.ep_size
    
    @property
    def file_duration(self):
        return self.header.dX * self.n_samples
    
    def get_tag(self, episode, tag_channel):
        return None
    
    def create_channel_mask(self, ep):
        return np.arange(1, self.header.n_channels + 1)

class DAC2GSLayout(ElphyLayout):
    """
    A subclass of :class:`ElphyLayout` to know
    how the 'DAC2 / GS / 2000' format is organised.
    Extends :class:`ElphyLayout` to store the
    offset used to retrieve directly raw data :
    
    ``data_offset`` : an offset to jump directly
    after the 'MAIN' block where 'DAC2SEQ' blocks
    start.
    
    ``main_block```: a shortcut to access 'MAIN' block.
    
    ``episode_blocks`` : a shortcut to access blocks
    corresponding to episodes.
    """
    
    def __init__(self, fileobj, data_offset):
        super(DAC2GSLayout, self).__init__(fileobj)
        self.data_offset = data_offset
        self.main_block = None
        self.episode_blocks = None
    
    def get_blocks_end(self):
        return self.file_size #data_offset
    
    def is_continuous(self):
        main_block = self.main_block
        return main_block.continuous if main_block else False
    
    def get_episode_blocks(self):
        raise NotImplementedError()
    
    def set_main_block(self):
        main_block = self.get_blocks_of_type('MAIN')
        self.main_block = main_block[0] if main_block else None
    
    def set_episode_blocks(self):
        ep_blocks = self.get_blocks_of_type('DAC2SEQ')
        self.episode_blocks = ep_blocks if ep_blocks else None
    
    def set_info_block(self):
        i_blks = self.get_blocks_of_type('USER INFO')
        assert len(i_blks) < 2, "too many info blocks"
        if len(i_blks) :
            self.info_block = i_blks[0]
    
    def set_data_blocks(self):
        data_blocks = list()
        identifier = 'DAC2GSData'
        size = self.main_block.n_samples * self.main_block.sample_size * self.main_block.n_channels
        if not self.is_continuous() :
            blocks = self.get_blocks_of_type('DAC2SEQ')
            for block in blocks :
                start = block.start + self.main_block.preSeqI
                data_blocks.append(DummyDataBlock(self, identifier, start, size))
        else :
            start = self.blocks[-1].end + 1 + self.main_block.preSeqI
            data_blocks.append(DummyDataBlock(self, identifier, start, size))
        self.data_blocks = data_blocks
    
    def get_data_blocks(self, ep):
        return [self.data_blocks[ep - 1]]
    
    def episode_block(self, ep):
        return self.main_block if self.is_continuous() else self.episode_blocks[ep - 1]
    
    def tag_mode(self, ep):
        return 1 if self.main_block.withTags else 0
     
    def tag_shift(self, ep):
        return self.main_block.tagShift
    
    def get_channel_for_tags(self, ep):
        return 1
    
    def sample_type(self, ep, ch):
        return self.main_block.tpData
    
    def sample_size(self, ep, ch):
        size = super(DAC2GSLayout, self).sample_size(ep, ch)
        assert size == 2, "sample size is always 2 bytes for DAC2/GS/2000 format"
        return size
    
    def sampling_period(self, ep, ch):
        block = self.episode_block(ep)
        return block.dX
    
    def x_tag_scale_factors(self, ep):
        block = self.episode_block(ep)
        return ElphyScaleFactor(
            block.dX,
            block.X0,
        )
    
    def x_scale_factors(self, ep, ch):
        block = self.episode_block(ep)
        return ElphyScaleFactor(
            block.dX,
            block.X0,
        )
    
    def y_scale_factors(self, ep, ch):
        block = self.episode_block(ep)
        return ElphyScaleFactor(
            block.dY_ar[ch - 1],
            block.Y0_ar[ch - 1]
        )
    
    def x_unit(self, ep, ch):
        block = self.episode_block(ep)
        return block.x_unit

    def y_unit(self, ep, ch):
        block = self.episode_block(ep)
        return block.y_units[ch - 1]
    
    def n_samples(self, ep, ch):
        return self.main_block.n_samples
    
    def ep_size(self, ep):
        return self.main_block.ep_size
    
    @property
    def n_episodes(self):
        return self.main_block.n_episodes
    
    def n_channels(self, episode):
        return self.main_block.n_channels
    
    def n_tags(self, episode):
        return 2 if self.main_block.withTags else 0
    
    @property
    def file_duration(self):
        return self.main_block.dX * self.n_samples
    
    def get_tag(self, episode, tag_channel):
        assert episode in range(1, self.n_episodes + 1)
        # there are none or 2 tag channels
        if self.tag_mode(episode) == 1 :
            assert tag_channel in range(1, 3), "DAC2/GS/2000 format support only 2 tag channels"
            block = self.episode_block(episode)
            t_stop = self.main_block.n_samples * block.dX
            return ElphyTag(self, episode, tag_channel, block.x_unit, 1.0 / block.dX, 0, t_stop)
        else :
            return None
    
    def n_tag_samples(self, ep, tag_channel):
        return self.main_block.n_samples
    
    def get_tag_data(self, episode, tag_channel):
        #memorise some useful properties
        block = self.episode_block(episode)
        sample_size = self.sample_size(episode, tag_channel)
        sample_symbol = self.sample_symbol(episode, tag_channel)
        
        #create a bit mask to define which
        #sample to keep from the file
        channel_mask = self.create_channel_mask(episode)
        bit_mask = self.create_bit_mask(channel_mask, 1)
        
        #get bytes from the file
        data_block = self.data_blocks[episode - 1]
        n_bytes = data_block.size
        self.file.seek(data_block.start)
        databytes = np.frombuffer(self.file.read(n_bytes), '<i1')
        
        #detect which bits keep to recompose the tag
        ep_mask = np.ones(n_bytes, dtype=int)
        np.putmask(ep_mask, ep_mask, bit_mask)
        to_keep = np.where(ep_mask > 0)[0]
        raw = databytes.take(to_keep)
        raw = raw.reshape([len(raw) / sample_size, sample_size])
        
        #create a recarray containing data
        dt = np.dtype(numpy_map[sample_symbol])
        dt.newbyteorder('<')
        tag_mask = 0b01 if (tag_channel == 1) else 0b10
        y_data = np.frombuffer(raw, dt) & tag_mask
        x_data = np.arange(0, len(y_data)) * block.dX + block.X0
        data = np.recarray(len(y_data), dtype=[('x', b_float), ('y', b_int)])
        data['x'] = x_data
        data['y'] = y_data
        
        return data
    
    def create_channel_mask(self, ep):
        return np.arange(1, self.main_block.n_channels + 1)



class DAC2Layout(ElphyLayout):
    """
    A subclass of :class:`ElphyLayout` to know
    how the Elphy format is organised.
    Whereas other formats storing raw data at the
    end of the file, 'DAC2 objects' format spreads
    them over multiple blocks :
    
    ``episode_blocks`` : a shortcut to access blocks
    corresponding to episodes.
    """
    
    def __init__(self, fileobj):
        super(DAC2Layout, self).__init__(fileobj)
        self.episode_blocks = None
        
    def get_blocks_end(self):
        return self.file_size
    
    def is_continuous(self):
        ep_blocks = [k for k in self.blocks if k.identifier.startswith('B_Ep')]
        if ep_blocks :
            ep_block = ep_blocks[0]
            ep_sub_block = ep_block.sub_blocks[0]
            return ep_sub_block.continuous
        else :
            return False
    
    def set_episode_blocks(self):
        self.episode_blocks = [k for k in self.blocks if k.identifier.startswith('B_Ep')]
    
    def set_info_block(self):
        #in fact the file info are contained into a single sub-block with an USR identifier
        i_blks = self.get_blocks_of_type('B_Finfo')
        assert len(i_blks) < 2, "too many info blocks"
        if len(i_blks) :
            i_blk = i_blks[0]
            sub_blocks = i_blk.sub_blocks
            if len(sub_blocks) :
                self.info_block = sub_blocks[0]
    
    def set_data_blocks(self):
        data_blocks = list()
        blocks = self.get_blocks_of_type('RDATA')
        for block in blocks :
            start = block.data_start
            size = block.end + 1 - start
            data_blocks.append(DummyDataBlock(self, 'RDATA', start, size))
        self.data_blocks = data_blocks
    
    def get_data_blocks(self, ep):
        return self.group_blocks_of_type(ep, 'RDATA')

    def group_blocks_of_type(self, ep, identifier):
        ep_blocks = list()
        blocks = [k for k in self.get_blocks_stored_in_episode(ep) if k.identifier == identifier]
        for block in blocks :
            start = block.data_start
            size = block.end + 1 - start
            ep_blocks.append(DummyDataBlock(self, identifier, start, size))
        return ep_blocks
    
    def get_blocks_stored_in_episode(self, ep):
        data_blocks = [k for k in self.blocks if k.identifier == 'RDATA']
        n_ep = self.n_episodes
        blk_1 = self.episode_block(ep)
        blk_2 = self.episode_block((ep + 1) % n_ep)
        i_1 = self.blocks.index(blk_1)
        i_2 = self.blocks.index(blk_2)
        if (blk_1 == blk_2) or (i_2 < i_1)  :
            return [k for k in data_blocks if self.blocks.index(k) > i_1]    
        else :
            return [k for k in data_blocks if self.blocks.index(k) in xrange(i_1, i_2)]
    
    def set_cyberk_blocks(self):
        ck_blocks = list()
        blocks = self.get_blocks_of_type('RCyberTag')
        for block in blocks :
            start = block.data_start
            size = block.end + 1 - start
            ck_blocks.append(DummyDataBlock(self, 'RCyberTag', start, size))
        self.ck_blocks = ck_blocks
    
    def episode_block(self, ep):
        return self.episode_blocks[ep - 1]
    
    @property
    def n_episodes(self):
        return len(self.episode_blocks)
    
    def analog_index(self, episode):
        """
        Return indices relative to channels
        used for analog signals.
        """
        block = self.episode_block(episode)
        tag_mode = block.ep_block.tag_mode
        an_index = np.where(np.array(block.ks_block.k_sampling) > 0)
        if tag_mode == 2 :
            an_index = an_index[:-1]
        return an_index
    
    def n_channels(self, episode):
        """
        Return the number of channels used
        for analog signals but also events.
        
        NB : in Elphy this 2 kinds of channels
        are not differenciated.
        """
        block = self.episode_block(episode)
        tag_mode = block.ep_block.tag_mode
        n_channels = len(block.ks_block.k_sampling)
        return n_channels if tag_mode != 2 else n_channels - 1
    
    def n_tags(self, episode):
        block = self.episode_block(episode)
        tag_mode = block.ep_block.tag_mode
        tag_map = {0:0, 1:2, 2:16, 3:16}
        return tag_map.get(tag_mode, 0)
    
    def n_events(self, episode):
        """
        Return the number of channels
        dedicated to events.
        """
        block = self.episode_block(episode)
        return block.ks_block.k_sampling.count(0)
    
    def n_spiketrains(self, episode):
        spk_blocks = [k for k in self.blocks if k.identifier == 'RSPK']
        return spk_blocks[0].n_evt_channels if spk_blocks else 0
    
    def sub_sampling(self, ep, ch):
        """
        Return the sub-sampling factor for
        the specified episode and channel.
        """
        block = self.episode_block(ep)
        return block.ks_block.k_sampling[ch - 1] if block.ks_block else 1
    
    def aggregate_size(self, block, ep):
        ag_count = self.aggregate_sample_count(block)
        ag_size = 0
        for ch in range(1, ag_count + 1) :
            if (block.ks_block.k_sampling[ch - 1] != 0) :
                ag_size += self.sample_size(ep, ch)
        return ag_size
    
    def n_samples(self, ep, ch):
        block = self.episode_block(ep)
        if not block.ep_block.continuous :
            return block.ep_block.nbpt / self.sub_sampling(ep, ch)
        else :
            # for continuous case there isn't any place
            # in the file that contains the number of 
            # samples unlike the episode case ...
            data_blocks = self.get_data_blocks(ep)
            total_size = np.sum([k.size for k in data_blocks])
            
            # count the number of samples in an
            # aggregate and compute its size in order
            # to determine the size of an aggregate
            ag_count = self.aggregate_sample_count(block)
            ag_size = self.aggregate_size(block, ep)
            n_ag = total_size / ag_size
            
            # the number of samples is equal
            # to the number of aggregates ...
            n_samples = n_ag 
            n_chunks = total_size % ag_size
            
            # ... but not when there exists
            # a incomplete aggregate at the
            # end of the file, consequently
            # the preeceeding computed number
            # of samples must be incremented
            # by one only if the channel map
            # to a sample in the last aggregate
            
            # ... maybe this last part should be
            # deleted because the n_chunks is always
            # null in continuous mode
            if n_chunks :
                last_ag_size = total_size - n_ag * ag_count
                size = 0
                for i in range(0, ch) :
                    size += self.sample_size(ep, i + 1)
                if size <= last_ag_size :
                    n_samples += 1
            
            return n_samples
    
    def sample_type(self, ep, ch):
        block = self.episode_block(ep)
        return block.kt_block.k_types[ch - 1] if block.kt_block else block.ep_block.tpData
    
    def sampling_period(self, ep, ch):
        block = self.episode_block(ep)
        return block.ep_block.dX * self.sub_sampling(ep, ch)
    
    def x_tag_scale_factors(self, ep):
        block = self.episode_block(ep)
        return ElphyScaleFactor(
            block.ep_block.dX,
            block.ep_block.X0
        )
    
    def x_scale_factors(self, ep, ch):
        block = self.episode_block(ep)
        return ElphyScaleFactor(
            block.ep_block.dX * block.ks_block.k_sampling[ch - 1],
            block.ep_block.X0,
        )
    
    def y_scale_factors(self, ep, ch):
        block = self.episode_block(ep)
        return ElphyScaleFactor(
            block.ch_block.dY_ar[ch - 1],
            block.ch_block.Y0_ar[ch - 1]
        )
    
    def x_unit(self, ep, ch):
        block = self.episode_block(ep)
        return block.ep_block.x_unit
    
    def y_unit(self, ep, ch):
        block = self.episode_block(ep)
        return block.ch_block.y_units[ch - 1]
    
    def tag_mode(self, ep):
        block = self.episode_block(ep)
        return block.ep_block.tag_mode
    
    def tag_shift(self, ep):
        block = self.episode_block(ep)
        return block.ep_block.tag_shift
    
    def get_channel_for_tags(self, ep):
        block = self.episode_block(ep)
        tag_mode = self.tag_mode(ep)
        if tag_mode == 1 :
            ks = np.array(block.ks_block.k_sampling)
            mins = np.where(ks == ks.min())[0] + 1
            return mins[0]
        elif tag_mode == 2 :
            return block.ep_block.n_channels
        else :
            return None
    
    def aggregate_sample_count(self, block):
        """
        Return the number of sample in an aggregate.
        """
        
        # compute the least common multiple
        # for channels having block.ks_block.k_sampling[ch] > 0
        lcm0 = 1
        for i in range(0, block.ep_block.n_channels) :
            if block.ks_block.k_sampling[i] > 0 :
                lcm0 = least_common_multiple(lcm0, block.ks_block.k_sampling[i])
        
        # sum quotients lcm / KSampling
        count = 0
        for i in range(0, block.ep_block.n_channels) :
            if block.ks_block.k_sampling[i] > 0 :
                count += lcm0 / block.ks_block.k_sampling[i]
        
        return count
    
    def create_channel_mask(self, ep):
        """
        Return the minimal pattern of channel numbers
        representing the succession of channels in the
        multiplexed data. It is useful to do the mapping
        between a sample stored in the file and its relative
        channel.
        
        NB : This function has been converted from the
        'TseqBlock.BuildMask' method of the file 'ElphyFormat.pas'
        stored in Elphy source code.
        """
        
        block = self.episode_block(ep)
        ag_count = self.aggregate_sample_count(block)
        mask_ar = np.zeros(ag_count, dtype='i')
        ag_size = 0
        i = 0
        k = 0
        while k < ag_count :
            for j in range(0, block.ep_block.n_channels) :
                if (block.ks_block.k_sampling[j] != 0) and (i % block.ks_block.k_sampling[j] == 0) :
                    mask_ar[k] = j + 1
                    ag_size += self.sample_size(ep, j + 1)
                    k += 1
                    if k >= ag_count :
                        break
            i += 1
        return mask_ar
    
    def get_signal(self, episode, channel):
        block = self.episode_block(episode)
        k_sampling = np.array(block.ks_block.k_sampling)
        evt_channels = np.where(k_sampling == 0)[0]
        if not channel in evt_channels :
            return super(DAC2Layout, self).get_signal(episode, channel)
        else :
            k_sampling[channel - 1] = -1
            return self.get_event(episode, channel, k_sampling)
    
    def get_tag(self, episode, tag_channel):
        """
        Return a :class:`ElphyTag` which is a
        descriptor of the specified event channel.
        """
        assert episode in range(1, self.n_episodes + 1)
        
        # there are none, 2 or 16 tag 
        # channels depending on tag_mode
        tag_mode = self.tag_mode(episode)
        if tag_mode :
            block = self.episode_block(episode)
            x_unit = block.ep_block.x_unit
            
            # verify the validity of the tag channel
            if tag_mode == 1 :
                assert tag_channel in range(1, 3), "Elphy format support only 2 tag channels for tag_mode == 1"
            elif tag_mode == 2 :
                assert tag_channel in range(1, 17), "Elphy format support only 16 tag channels for tag_mode == 2"
            elif tag_mode == 3 :
                assert tag_channel in range(1, 17), "Elphy format support only 16 tag channels for tag_mode == 3"
            
            smp_period = block.ep_block.dX
            smp_freq = 1.0 / smp_period
            if tag_mode != 3 : 
                ch = self.get_channel_for_tags(episode)
                n_samples = self.n_samples(episode, ch)
                t_stop = (n_samples - 1) * smp_freq
            else :  
                # get the max of n_samples multiplied by the sampling
                # period done on every analog channels in order to avoid
                # the selection of a channel without concrete signals
                t_max = list()
                for ch in self.analog_index(episode) :
                    n_samples = self.n_samples(episode, ch)
                    factors = self.x_scale_factors(episode, ch)
                    chtime = n_samples * factors.delta
                    t_max.append(chtime)
                time_max = max(t_max)
                
                # as (n_samples_tag - 1) * dX_tag
                # and time_max = n_sample_tag * dX_tag
                # it comes the following duration
                t_stop = time_max - smp_period
                
            return ElphyTag(self, episode, tag_channel, x_unit, smp_freq, 0, t_stop)
        else :
            return None
    
    def get_event(self, ep, ch, marked_ks):
        """
        Return a :class:`ElphyEvent` which is a
        descriptor of the specified event channel.
        """
        assert ep in range(1, self.n_episodes + 1)
        assert ch in range(1, self.n_channels + 1)
        
        # find the event channel number
        evt_channel = np.where(marked_ks == -1)[0][0]
        assert evt_channel in range(1, self.n_events(ep) + 1)
        
        block = self.episode_block(ep)
        ep_blocks = self.get_blocks_stored_in_episode(ep)
        evt_blocks = [k for k in ep_blocks if k.identifier == 'REVT']
        n_events = np.sum([k.n_events[evt_channel - 1] for k in evt_blocks], dtype=int)
        x_unit = block.ep_block.x_unit
        
        return ElphyEvent(self, ep, evt_channel, x_unit, n_events, ch_number=ch)
    
    def load_encoded_events(self, episode, evt_channel, identifier):
        """
        Return times stored as a 4-bytes integer
        in the specified event channel.
        """
        data_blocks = self.group_blocks_of_type(episode, identifier)
        ep_blocks = self.get_blocks_stored_in_episode(episode)
        evt_blocks = [k for k in ep_blocks if k.identifier == identifier]
        
        #compute events on each channel
        n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0)
        pre_events = np.sum(n_events[0:evt_channel - 1], dtype=int)
        start = pre_events
        end = start + n_events[evt_channel - 1]
        expected_size = 4 * np.sum(n_events, dtype=int)
        return self.load_bytes(data_blocks, dtype='<i4', start=start, end=end, expected_size=expected_size)
    
    def load_encoded_spikes(self, episode, evt_channel, identifier):
        """
        Return times stored as a 4-bytes integer
        in the specified spike channel.
        NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label.
            These additiona bytes are appended trailing the times.
        """
        # to load the requested spikes for the specified episode and event channel:
        # get all the elphy blocks having as identifier 'RSPK' (or whatever)
        all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier]
        rspk_block = all_rspk_blocks[episode-1]
        # RDATA(h?dI) REVT(NbVeV:I, NbEv:256I ... spike data are 4byte integers
        rspk_header = 4*( rspk_block.size - rspk_block.data_size-2 + len(rspk_block.n_events))
        pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0)
        # the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte)
        start = rspk_header + (4*pre_events) + pre_events
        end = start + 4*rspk_block.n_events[evt_channel-1]
        raw = self.load_bytes( [rspk_block], dtype='<i1', start=start, end=end, expected_size=rspk_block.size )
        # re-encoding after reading byte by byte
        res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype='<i4')
        res.sort() # sometimes timings are not sorted
        #print "load_encoded_data() - spikes:",res
        return res

    def get_episode_name( self, episode ):
        episode_name = "episode %s" % episode
        names = [k for k in self.blocks if k.identifier == 'COM']
        if len(names) > 0 :
            name = names[episode-1]
            start = name.size+1 - name.data_size+1
            end = name.end - name.start+1
            chars = self.load_bytes([name], dtype='uint8', start=start, end=end, expected_size=name.size ).tolist()
            #print "chars[%s:%s]: %s" % (start,end,chars)
            episode_name = ''.join([chr(k) for k in chars])
        return episode_name
 
    def get_event_data(self, episode, evt_channel):
        """
        Return times contained in the specified event channel.
        This function is triggered when the 'times' property of 
        an :class:`ElphyEvent` descriptor instance is accessed.  
        """
        times = self.load_encoded_events(episode, evt_channel, "REVT")
        block = self.episode_block(episode)
        return times * block.ep_block.dX / len(block.ks_block.k_sampling)
    
    def get_spiketrain(self, episode, electrode_id):
        """
        Return a :class:`Spike` which is a
        descriptor of the specified spike channel.
        """
        assert episode in range(1, self.n_episodes + 1)
        assert electrode_id in range(1, self.n_spiketrains(episode) + 1)
        # get some properties stored in the episode sub-block
        block = self.episode_block(episode)
        x_unit = block.ep_block.x_unit
        x_unit_wf = getattr(block.ep_block, 'x_unit_wf', None)
        y_unit_wf = getattr(block.ep_block, 'y_unit_wf', None)
        # number of spikes in the entire episode
        spk_blocks = [k for k in self.blocks if k.identifier == 'RSPK']
        n_events = np.sum([k.n_events[electrode_id - 1] for k in spk_blocks], dtype=int)
        # number of samples in a waveform
        wf_sampling_frequency = 1.0 / block.ep_block.dX
        wf_blocks = [k for k in self.blocks if k.identifier == 'RspkWave']
        if wf_blocks :
            wf_samples = wf_blocks[0].wavelength
            t_start = wf_blocks[0].pre_trigger * block.ep_block.dX
        else:
            wf_samples = 0
            t_start = 0
        return ElphySpikeTrain(self, episode, electrode_id, x_unit, n_events, wf_sampling_frequency, wf_samples, x_unit_wf, y_unit_wf, t_start)
    
    def get_spiketrain_data(self, episode, electrode_id):
        """
        Return times contained in the specified spike channel.
        This function is triggered when the 'times' property of 
        an :class:`Spike` descriptor instance is accessed.
        
        NB : The 'RSPK' block is not actually identical to the 'EVT' one,
        because all units relative to a time are stored directly after all
        event times, 1 byte for each. This function doesn't return these
        units. But, they could be retrieved from the 'RspkWave' block with
        the 'get_waveform_data function'
        """
        block = self.episode_block(episode)
        times = self.load_encoded_spikes(episode, electrode_id, "RSPK")
        return times * block.ep_block.dX
    
    def load_encoded_waveforms(self, episode, electrode_id):
        """
        Return times on which waveforms are defined
        and a numpy recarray containing all the data
        stored in the RspkWave block.
        """
        # load data corresponding to the RspkWave block
        identifier = "RspkWave"
        data_blocks = self.group_blocks_of_type(episode, identifier)
        databytes = self.load_bytes(data_blocks)
        
        # select only data corresponding
        # to the specified spk_channel
        ep_blocks = self.get_blocks_stored_in_episode(episode)
        wf_blocks = [k for k in ep_blocks if k.identifier == identifier]
        wf_samples = wf_blocks[0].wavelength
        events = np.sum([k.n_spikes for k in wf_blocks], dtype=int, axis=0)
        n_events = events[electrode_id - 1]
        pre_events = np.sum(events[0:electrode_id - 1], dtype=int)
        start = pre_events
        end = start + n_events
        
        # data must be reshaped before
        dtype = [
            # the time of the spike arrival
            ('elphy_time', 'u4', (1,)),
            ('device_time', 'u4', (1,)),
            
            # the identifier of the electrode
            # would also be the 'trodalness'
            # but this tetrode devices are not
            # implemented in Elphy
            ('channel_id', 'u2', (1,)),
            
            # the 'category' of the waveform
            ('unit_id', 'u1', (1,)),
            
            #do not used
            ('dummy', 'u1', (13,)),
            
            # samples of the waveform
            ('waveform', 'i2', (wf_samples,))
        ]
        x_start = wf_blocks[0].pre_trigger
        x_stop = wf_samples - x_start
        return np.arange(-x_start, x_stop), np.frombuffer(databytes, dtype=dtype)[start:end]
    
    def get_waveform_data(self, episode, electrode_id):
        """
        Return waveforms corresponding to the specified
        spike channel. This function is triggered when the
        ``waveforms`` property of an :class:`Spike` descriptor
        instance is accessed.
        """
        block = self.episode_block(episode)
        times, databytes = self.load_encoded_waveforms(episode, electrode_id)
        n_events, = databytes.shape
        wf_samples = databytes['waveform'].shape[1]
        dtype = [
            ('time', float),
            ('electrode_id', int),
            ('unit_id', int),
            ('waveform', float, (wf_samples, 2))
        ]
        data = np.empty(n_events, dtype=dtype)
        data['electrode_id'] = databytes['channel_id'][:, 0]
        data['unit_id'] = databytes['unit_id'][:, 0]
        data['time'] = databytes['elphy_time'][:, 0] * block.ep_block.dX
        data['waveform'][:, :, 0] = times * block.ep_block.dX
        data['waveform'][:, :, 1] = databytes['waveform'] * block.ep_block.dY_wf + block.ep_block.Y0_wf
        return data
    
    def get_rspk_data(self, spk_channel):
        """
        Return times stored as a 4-bytes integer
        in the specified event channel.
        """
        evt_blocks = self.get_blocks_of_type('RSPK')
        #compute events on each channel
        n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0)
        pre_events = np.sum(n_events[0:spk_channel], dtype=int) # sum of array values up to spk_channel-1!!!!
        start = pre_events + (7 + len(n_events))# rspk header
        end = start + n_events[spk_channel]
        expected_size = 4 * np.sum(n_events, dtype=int) # constant
        return self.load_bytes(evt_blocks, dtype='<i4', start=start, end=end, expected_size=expected_size)


# ---------------------------------------------------------
# factories.py

class LayoutFactory(object):
    """
    Generate base elements composing the layout of a file.
    """
    
    def __init__(self, elphy_file):
        self.elphy_file = elphy_file
        self.pattern = "\d{4}(\d+|\D)\D"
        self.block_subclasses = dict()
    
    @property
    def file(self):
        return self.elphy_file.file
    
    def create_layout(self):
        """
        Return the actual :class:`ElphyLayout` subclass
        instance used in an :class:`ElphyFile` object.
        """
        raise Exception('must be overloaded in a subclass')
    
    def create_header(self, layout):
        """
        Return the actual :class:`Header` instance used
        in an :class:`ElphyLayout` subclass object.
        """
        raise Exception('must be overloaded in a subclass')

    def create_block(self, layout):
        """
        Return a :class:`Block` instance composing
        the :class:`ElphyLayout` subclass instance.
        """
        raise Exception('must be overloaded in a subclass')
    
    def create_sub_block(self, block, sub_offset):
        """
        Return a set of sub-blocks stored
        in DAC2 objects format files.
        """
        self.file.seek(sub_offset)
        sub_ident_size = read_from_char(self.file, 'B')
        sub_identifier, = struct.unpack('<%ss' % sub_ident_size, self.file.read(sub_ident_size))
        sub_data_size = read_from_char(self.file, 'H')
        sub_data_offset = sub_offset + sub_ident_size + 3
        size_format = "H"
        if sub_data_size == 0xFFFF :
            _ch = 'l'
            sub_data_size = read_from_char(self.file, _ch)
            size_format += "+%s" % (_ch)
            sub_data_offset += 4
        sub_size = len(sub_identifier) + 1 + type_dict[size_format] + sub_data_size
        if sub_identifier == 'Ep' :
            block_type = DAC2EpSubBlock
        elif sub_identifier == 'Adc' :
            block_type = DAC2AdcSubBlock
        elif sub_identifier == 'Ksamp' :
            block_type = DAC2KSampSubBlock
        elif sub_identifier == 'Ktype' :
            block_type = DAC2KTypeSubBlock
        elif sub_identifier == 'USR' :
            block_type = self.select_file_info_subclass()
        else :
            block_type = ElphyBlock
        block = block_type(block.layout, sub_identifier, sub_offset, sub_size, size_format=size_format, parent_block=block)
        self.file.seek(self.file.tell() + sub_data_size)
        return block
    
    def create_episode(self, block):
        raise Exception('must be overloaded in a subclass')
    
    def create_channel(self, block):
        raise Exception('must be overloaded in a subclass')
    
    def is_multistim(self, path):
        """
        Return a boolean telling if the 
        specified file is a multistim one.
        """
        match = re.search(self.pattern, path)
        return hasattr(match, 'end') and path[match.end() - 1] in ['m', 'M']
    
    def select_file_info_subclass(self):
        """
        Detect the type of a file from its nomenclature
        and return its relative :class:`ClassicFileInfo` or 
        :class:`MultistimFileInfo` class. Useful to transparently
        access to user file info stored in an Elphy file.
        """
        if not self.is_multistim(self.file.name) :
            return ClassicFileInfo 
        else :
            return MultistimFileInfo
    
    def select_block_subclass(self, identifier):
        return self.block_subclasses.get(identifier, ElphyBlock)
        
class Acquis1Factory(LayoutFactory):
    """
    Subclass of :class:`LayoutFactory` useful to
    generate base elements composing the layout
    of Acquis1 file format.
    """
    
    def __init__(self, elphy_file):
        super(Acquis1Factory, self).__init__(elphy_file)
        self.file.seek(16)
        self.data_offset = read_from_char(self.file, 'h')
        self.file.seek(0)
        
        # the set of interesting blocks useful
        # to retrieve data stored in a file
        self.block_subclasses = {
            "USER INFO" : self.select_file_info_subclass()
        }
    
    def create_layout(self):
        return Acquis1Layout(self.elphy_file, self.data_offset)
    
    def create_header(self, layout):
        return Acquis1Header(layout)
    
    def create_block(self, layout, offset):
        self.file.seek(offset)
        ident_size, identifier = struct.unpack('<B15s', self.file.read(16))
        identifier = identifier[0:ident_size]
        size = read_from_char(self.file, 'h')
        block_type = self.select_block_subclass(identifier)
        block = block_type(layout, identifier, offset, size, fixed_length=15, size_format='h')
        self.file.seek(0)
        return block

class DAC2GSFactory(LayoutFactory):
    """
    Subclass of :class:`LayoutFactory` useful to
    generate base elements composing the layout
    of DAC2/GS/2000 file format.
    """
    
    def __init__(self, elphy_file):
        super(DAC2GSFactory, self).__init__(elphy_file)
        self.file.seek(16)
        self.data_offset = read_from_char(self.file, 'i')
        self.file.seek(0)
        
        # the set of interesting blocks useful
        # to retrieve data stored in a file
        self.block_subclasses = {
            "USER INFO" : self.select_file_info_subclass(),
            "DAC2SEQ" : DAC2GSEpisodeBlock,
            'MAIN' : DAC2GSMainBlock,
        }
    
    def create_layout(self):
        return DAC2GSLayout(self.elphy_file, self.data_offset)
    
    def create_header(self, layout):
        return DAC2GSHeader(layout)
    
    def create_block(self, layout, offset):
        self.file.seek(offset)
        ident_size, identifier = struct.unpack('<B15s', self.file.read(16))
        # block title size is 7 or 15 bytes
        # 7 is for sequence blocs
        if identifier.startswith('DAC2SEQ') :
            self.file.seek(self.file.tell() - 8)
            length = 7
        else : 
            length = 15
        identifier = identifier[0:ident_size]
        size = read_from_char(self.file, 'i')
        block_type = self.select_block_subclass(identifier)
        block = block_type(layout, identifier, offset, size, fixed_length=length, size_format='i') 
        self.file.seek(0)
        return block



class DAC2Factory(LayoutFactory):
    """
    Subclass of :class:`LayoutFactory` useful to
    generate base elements composing the layout
    of DAC2 objects file format.
    """
    
    def __init__(self, elphy_file):
        super(DAC2Factory, self).__init__(elphy_file)
        
        # the set of interesting blocks useful
        # to retrieve data stored in a file
        self.block_subclasses = {
            "B_Ep" : DAC2EpisodeBlock,
            "RDATA" : DAC2RDataBlock,
            "RCyberTag" : DAC2CyberTagBlock,
            "REVT" : DAC2EventBlock,
            "RSPK" : DAC2SpikeBlock,
            "RspkWave" : DAC2WaveFormBlock
        }
    
    def create_layout(self):
        return DAC2Layout(self.elphy_file)
    
    def create_header(self, layout):
        return DAC2Header(layout)
    
    def create_block(self, layout, offset):
        self.file.seek(offset)
        size = read_from_char(self.file, 'l')
        ident_size = read_from_char(self.file, 'B')
        identifier, = struct.unpack('<%ss' % ident_size, self.file.read(ident_size))
        block_type = self.select_block_subclass(identifier)
        block = block_type(layout, identifier, offset, size, size_format='l')
        self.file.seek(0)
        return block




#caching all available layout factories

factories = {
    "ACQUIS1/GS/1991" : Acquis1Factory,
    "DAC2/GS/2000" : DAC2GSFactory,
    "DAC2 objects" : DAC2Factory
}


# --------------------------------------------------------
# ELPHY FILE


"""
Classes useful to retrieve data from the
three major Elphy formats, i.e : Acquis1, DAC2/GS/2000, DAC2 objects.

The :class:`ElphyFile` class is useful to access raw data and user info
that stores protocol metadata. Internally, It uses a subclass :class:`ElphyLayout`
to handle each kind of file format : :class:`Acquis1Layout`, :class:`DAC2GSLayout`
and :class:`DAC2Layout`.

These layouts decompose the file structure into several blocks of data, inheriting
from the :class:`BaseBlock`, corresponding for example to the header of the file,
the user info, the raw data, the episode or channel properties. Each subclass of
:class:`BaseBlock` map to a file chunk and is responsible to store metadata contained
in this chunk. These metadata could be also useful to reconstruct raw data.

Consequently, when an :class:`ElphyLayout` layout is requested by its relative
:class:`ElphyFile`, It iterates through :class:`BaseBlock` objects to retrieve
asked data.

NB : The reader is not able to read Acquis1 and DAC2/GS/2000 event channels.
"""


class ElphyFile(object):
    """
    A convenient class useful to read Elphy files.
    It acts like a file reader that wraps up a python
    file opened in 'rb' mode in order to retrieve
    directly from an Elphy file raw data and metadata
    relative to protocols.
    
    ``path`` : the path of the elphy file.
    
    ``file`` : the python file object that iterates
    through the elphy file.
    
    ``file_size`` : the size of the elphy file on the
    hard disk drive.
    
    ``nomenclature`` : the label that identifies the
    kind of elphy format, i.e. 'Acquis1', 'DAC2/GS/2000',
    'DAC2 objects'.
    
    ``factory`` : the :class:`LayoutFactory` object which
    generates the base component of the elphy file layout.
    
    ``layout`` : the :class:`ElphyLayout` object which
    decomposes the file structure into several blocks of
    data (:class:`BaseBlock` objects). The :class:`ElphyFile`
    object do requests to this layout which iterates through
    this blocks before returning asked data.
     
    ``protocol`` : the acquisition protocol which has generated
    the file.
    
    ``version`` : the variant of the acquisition protocol.
    
    NB : An elphy file could store several kind of data :
    
    (1) 'User defined' metadata which are stored in a block
    called 'USER INFO' ('Acquis1' and 'DAC2/GS/2000') or 'USR'
    ('DAC2 objects') of the ``layout``. They could be used for
    example to describe stimulation parameters.
    
    (2) Raw data acquired on separate analog channels. Data
    coming from each channel are multiplexed in blocks dedicated
    to raw data storage : 
    
        - For Acquis1 format, raw data are stored directly
        after the file header.
        
        - For DAC2/GS/2000, in continuous mode they are stored
        after all blocks composing the file else they are stored
        in a 'DAC2SEQ' block.
        
        - For 'DAC2 objects' they are stored in 'RDATA' blocks.
        In continuous mode raw data could be spread other multiple
        'RDATA' blocks. Whereas in episode mode there is a single
        'RDATA' block for each episode.
    
    These raw data are placed under the 'channels' node of a
    TDataFile object listed in Elphy's "Inspect" tool.
    
    (3) ElphyEvents dedicated to threshold detection in analog
    channels. ElphyEvents are only available for 'DAC2 objects'
    format. For 'Acquis1' and 'DAC2/GS/2000' these events are
    in fact stored in another kind of file format called
    'event' format with the '.evt' extension which is opened
    by Elphy as same time as the '.dat' file. This 'event'
    format is not yet implemented because it seems that it
    was not really used. 
    
    These events are also placed under the 'channels' node
    of a TDataFile object in Elphy's "Inspect" tool.
    
    (4) ElphyTags that appeared after 'DAC2/GS/2000' release. They
    are also present in 'DAC2 objects' format. Each, tag occupies
    a channel called 'tag' channel. Their encoding depends on the
    kind of acquisition card :
    
        - For 'digidata' cards (``tag_mode``=1) and if tags are acquired,
        they are directly encoded in 2 (digidata 1322) or 4 (digidata 1200)
        significant bits of 16-bits samples coming from an analog channel.
        In all cases they are only 2 bits encoding the tag channels. The
        sample value could be encoded on 16, 14 or 12 bits and retrieved by
        applying a shift equal to ``tag_shift`` to the right. 
    
        - For ITC cards (``tag_mode``=2), tags are transmitted by a channel
        fully dedicated to 'tag channels' providing 16-bits samples. In this
        case, each bit corresponds to a 'tag channel'.
        
        - For Blackrock/Cyberkinetics devices (``tag_mode``=3), tags are also
        transmitted by a channel fully dedicated to tags, but the difference is
        that only transitions are stored in 'RCyberTag' blocks. This case in only
        available in 'DAC2 objects' format.
    
    These tags are placed under the 'Vtags' node of a TDataFile
    object in Elphy's "Inspect" tool.
    
    (5) Spiketrains coming from an electrode of a Blackrock/Cyberkinetics
    multi-electrode device. These data are only available in 'DAC2 objects'
    format.
    
    These spiketrains are placed under the 'Vspk' node of a TDataFile
    object in Elphy's "Inspect" tool.
    
    (6) Waveforms relative to each time of a spiketrain. These data are only
    available in 'DAC2 objects' format. These waveforms are placed under the
    'Wspk' node of a TDataFile object in Elphy's "Inspect" tool.
    """
    
    def __init__(self, file_path) :
        self.path = file_path
        self.folder, self.filename = path.split(self.path)
        self.file = None
        self.file_size = None
        self.nomenclature = None
        self.factory = None
        self.layout = None
        # writing support
        self.header_size = None


    def __del__(self):
        """
        Trigger closing of the file.
        """
        self.close()
        # super(ElphyFile, self).__del__()


    def open(self):
        """
        Setup the internal structure.
        
        NB : Call this function before 
        extracting data from a file.
        """
        if self.file :
            self.file.close()
        try :
            self.file = open(self.path, 'rb')
        except Exception as e:
            raise Exception("python couldn't open file %s : %s" % (self.path, e))
        self.file_size = path.getsize(self.file.name)
        self.creation_date = datetime.fromtimestamp(path.getctime(self.file.name))
        self.modification_date = datetime.fromtimestamp(path.getmtime(self.file.name))
        self.nomenclature = self.get_nomenclature()
        self.factory = self.get_factory()
        self.layout = self.create_layout()


    def close(self):
        """
        Close the file.
        """
        if self.file :
            self.file.close()


    def get_nomenclature(self):
        """
        Return the title of the file header
        giving the actual file format. This
        title is encoded as a pascal string
        containing 15 characters and stored
        as 16 bytes of binary data.  
        """
        self.file.seek(0)
        length, title = struct.unpack('<B15s', self.file.read(16))
        self.file.seek(0)
        title = title[0:length]
        if not title in factories :
            title = "format is not implemented ('%s' not in %s)" % (title, str(factories.keys()))
        return title
    
    
    def set_nomenclature(self):
        """
        As in get_nomenclature, but set the title of the file header
        in the file, encoded as a pascal string containing 
        15 characters and stored as 16 bytes of binary data.  
        """
        self.file.seek(0)
        title = 'DAC2 objects'
        st = struct.Struct( '<B15sH' )
        header_rec = [len(title), title, 18] # constant header
        header_chr = st.pack( *header_rec )
        self.header_size = len( header_chr )
        self.file.write( header_chr )


    def get_factory(self):
        """
        Return a subclass of :class:`LayoutFactory`
        useful to build the file layout depending
        on header title.
        """
        return factories[self.nomenclature](self)


      
    def write(self, data):
        """
        Assume the blocks are already filled.
        It is able to write several types of block: B_Ep, RDATA, ...
        and subBlock: Adc, Ksamp, Ktype, dataRecord, ...
        In the following shape:
        B_Ep
            |_ Ep
            |_ Adc
            |_ Adc
            |_ ...
            |_ Ktype
        RDATA
            |_ dataRecord+data
        """
        # close if open and reopen for writing
        if self.file :
            self.file.close()
        try :
            self.file = open(self.path, 'wb')
        except Exception as e:
            raise Exception("python couldn't open file %s : %s" % (self.path, e))
        self.file_size = 0
        self.creation_date = datetime.now()
        self.modification_date = datetime.now()
        self.set_nomenclature()
        # then call ElphyFile writing routines to write the serialized string
        self.file.write( data ) # actual writing
        # close file
        self.close()


      
    def create_layout(self):
        """
        Build the :class:`Layout` object corresponding
        to the file format and configure properties of
        itself and then its blocks and sub-blocks.
        
        NB : this function must be called before all kind
        of requests on the file because it is used also to setup
        the internal properties of the :class:`ElphyLayout`
        object or some :class:`BaseBlock` objects. Consequently,
        executing some function corresponding to a request on
        the file has many chances to lead to bad results. 
        """
        # create the layout
        layout = self.factory.create_layout()
        
        # create the header block and
        # add it to the list of blocks
        header = self.factory.create_header(layout)
        layout.add_block(header)
        
        # set the position of the cursor
        # in order to be after the header
        # block and then compute its last
        # valid position to know when stop
        # the iteration through the file
        offset = header.size
        offset_stop = layout.get_blocks_end()
        
        # in continuous mode DAC2/GS/2000 raw data are not stored
        # into several DAC2SEQ blocks, they are stored after all 
        # available blocks, that's why it is necessary to limit the
        # loop to data_offset when it is a DAC2/GS/2000 format
        is_continuous = False
        detect_continuous = False
        detect_main = False
        while (offset < offset_stop) and not (is_continuous  and (offset >= layout.data_offset)) :
            block = self.factory.create_block(layout, offset)
            
            # create the sub blocks if it is DAC2 objects format
            # this is only done for B_Ep and B_Finfo blocks for
            # DAC2 objects format, maybe it could be useful to
            # spread this to other block types.
            #if isinstance(header, DAC2Header) and (block.identifier in ['B_Ep']) :
            if isinstance(header, DAC2Header) and (block.identifier in ['B_Ep', 'B_Finfo']) :
                sub_offset = block.data_offset
                while sub_offset < block.start + block.size :
                    sub_block = self.factory.create_sub_block(block, sub_offset)
                    block.add_sub_block(sub_block)
                    sub_offset += sub_block.size
                # set up some properties of some DAC2Layout sub-blocks
                if isinstance(sub_block, (DAC2EpSubBlock, DAC2AdcSubBlock, DAC2KSampSubBlock, DAC2KTypeSubBlock)) :
                    block.set_episode_block()
                    block.set_channel_block()
                    block.set_sub_sampling_block()
                    block.set_sample_size_block()

            # SpikeTrain
            #if isinstance(header, DAC2Header) and (block.identifier in ['RSPK']) :
                #print "\nElphyFile.create_layout() - RSPK"
                #print "ElphyFile.create_layout() - n_events",block.n_events
                #print "ElphyFile.create_layout() - n_evt_channels",block.n_evt_channels
            
            layout.add_block(block)
            offset += block.size
            
            # set up as soon as possible the shortcut 
            # to the main block of a DAC2GSLayout
            if not detect_main and isinstance(layout, DAC2GSLayout) and isinstance(block, DAC2GSMainBlock) :
                layout.set_main_block()
                detect_main = True
 
            # detect if the file is continuous when
            # the 'MAIN' block has been parsed
            if not detect_continuous :
                is_continuous = isinstance(header, DAC2GSHeader) and layout.is_continuous()
        
        # set up the shortcut to blocks corresponding
        # to episodes, only available for DAC2Layout
        # and also DAC2GSLayout if not continuous 
        if isinstance(layout, DAC2Layout) or (isinstance(layout, DAC2GSLayout) and not layout.is_continuous()) :
            layout.set_episode_blocks()
        
        layout.set_data_blocks()
        
        # finally set up the user info block of the layout
        layout.set_info_block()

        self.file.seek(0)
        return layout

    def is_continuous(self):
        return self.layout.is_continuous()
    
    @property
    def n_episodes(self):
        """
        Return the number of recording sequences.
        """
        return self.layout.n_episodes
    
    def n_channels(self, episode):
        """
        Return the number of recording
        channels involved in data acquisition
        and relative to the specified episode :
        
        ``episode`` : the recording sequence identifier. 
        """
        return self.layout.n_channels(episode)
    
    def n_tags(self, episode):
        """
        Return the number of tag channels
        relative to the specified episode :
        
        ``episode`` : the recording sequence identifier. 
        """
        return self.layout.n_tags(episode)
    
    def n_events(self, episode):
        """
        Return the number of event channels
        relative to the specified episode :
        
        ``episode`` : the recording sequence identifier. 
        """
        return self.layout.n_events(episode)
    
    def n_spiketrains(self, episode):
        """
        Return the number of event channels
        relative to the specified episode :
        
        ``episode`` : the recording sequence identifier. 
        """
        return self.layout.n_spiketrains(episode)
    
    def n_waveforms(self, episode):
        """
        Return the number of waveform channels :
        """
        return self.layout.n_waveforms(episode)
    
    def get_signal(self, episode, channel):
        """
        Return the signal or event descriptor relative
        to the specified episode and channel :
        
        ``episode`` : the recording sequence identifier.
        ``channel`` : the analog channel identifier.
        
        NB : For 'DAC2 objects' format, it could
        be also used to retrieve events.
        """
        return self.layout.get_signal(episode, channel)
    
    def get_tag(self, episode, tag_channel):
        """
        Return the tag descriptor relative to
        the specified episode and tag channel :
        
        ``episode`` : the recording sequence identifier.
        ``tag_channel`` : the tag channel identifier.
        
        NB : There isn't any tag channels for
        'Acquis1' format. ElphyTag channels appeared
        after 'DAC2/GS/2000' release. They are
        also present in 'DAC2 objects' format.
        
        """
        return self.layout.get_tag(episode, tag_channel)

    def get_event(self, episode, evt_channel):
        """
        Return the event relative the
        specified episode and event channel.
        
        `episode`` : the recording sequence identifier.
        ``tag_channel`` : the tag channel identifier.
        """
        return self.layout.get_event(episode, evt_channel)
    
    def get_spiketrain(self, episode, electrode_id):
        """
        Return the spiketrain relative to the
        specified episode and electrode_id.
        
        ``episode`` : the recording sequence identifier.
        ``electrode_id`` : the identifier of the electrode providing the spiketrain.
        
        NB : Available only for 'DAC2 objects' format.
        This descriptor can return the times of a spiketrain
        and waveforms relative to each of these times.
        """
        return self.layout.get_spiketrain(episode, electrode_id)

    @property
    def comments(self):
        raise NotImplementedError()
    
    def get_user_file_info(self):
        """
        Return user defined file metadata.
        """ 
        if not self.layout.info_block :
            return dict()
        else :
            return self.layout.info_block.get_user_file_info()
    
    @property
    def episode_info(self, ep_number):
        raise NotImplementedError()
    
    def get_signals(self):
        """
        Get all available analog or event channels stored into an Elphy file.
        """
        signals = list()
        for ep in range(1, self.n_episodes + 1) :
            for ch in range(1, self.n_channels(ep) + 1) :
                signal = self.get_signal(ep, ch)
                signals.append(signal)
        return signals
    
    def get_tags(self):
        """
        Get all available tag channels stored into an Elphy file.
        """
        tags = list()
        for ep in range(1, self.n_episodes + 1) :
            for tg in range(1, self.n_tags(ep) + 1) :
                tag = self.get_tag(ep, tg)
                tags.append(tag)
        return tags

    def get_spiketrains(self):
        """
        Get all available spiketrains stored into an Elphy file.
        """
        spiketrains = list()
        for ep in range(1, self.n_episodes + 1) :
            for ch in range(1, self.n_spiketrains(ep) + 1) :
                spiketrain = self.get_spiketrain(ep, ch)
                spiketrains.append(spiketrain)
        return spiketrains
    
    def get_rspk_spiketrains(self):
        """
        Get all available spiketrains stored into an Elphy file.
        """
        spiketrains = list()
        spk_blocks = self.layout.get_blocks_of_type('RSPK')
        for bl in spk_blocks :
            #print "ElphyFile.get_spiketrains() - identifier:",bl.identifier
            for ch in range(0,bl.n_evt_channels) :
                spiketrain = self.layout.get_rspk_data(ch)
                spiketrains.append(spiketrain)
        return spiketrains

    def get_names( self ) :
        com_blocks = list()
        com_blocks = self.layout.get_blocks_of_type('COM')
        return com_blocks



# --------------------------------------------------------



class ElphyIO(BaseIO):
    """
    Class for reading from and writing to an Elphy file.

    It enables reading:
    - :class:`Block`
    - :class:`Segment`
    - :class:`RecordingChannel`
    - :class:`RecordingChannelGroup`
    - :class:`EventArray`
    - :class:`SpikeTrain`

    Usage:
        >>> from neo import io
        >>> r = io.ElphyIO(filename='ElphyExample.DAT')
        >>> seg = r.read_block(lazy=False, cascade=True)
        >>> print(seg.analogsignals)  # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        >>> print(seg.spiketrains)    # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        >>> print(seg.eventarrays)    # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        >>> print(anasig._data_description)
        >>> anasig = r.read_analogsignal(lazy=False, cascade=False)

        >>> bl = Block()
        >>> # creating segments, their contents and append to bl
        >>> r.write_block( bl )
    """
    is_readable = True # This class can read data
    is_writable = False # This class can write data
    # This class is able to directly or indirectly handle the following objects
    supported_objects  = [ Block, Segment, AnalogSignalArray, SpikeTrain ] #, AnalogSignal
    # This class can return a Block
    readable_objects    = [ Block ]
    # This class is not able to write objects
    writeable_objects   = [ ]
    has_header         = False
    is_streameable     = False
    # This is for GUI stuff : a definition for parameters when reading.
    # This dict should be keyed by object (`Block`). Each entry is a list
    # of tuple. The first entry in each tuple is the parameter name. The
    # second entry is a dict with keys 'value' (for default value),
    # and 'label' (for a descriptive name).
    # Note that if the highest-level object requires parameters,
    # common_io_test will be skipped.
    read_params = {
    }
    # do not supported write so no GUI stuff
    write_params       = {
    }
    name               = 'Elphy IO'
    extensions         = [ 'DAT' ]
    # mode can be 'file' or 'dir' or 'fake' or 'database'
    mode = 'file' 
    # internal serialized representation of neo data
    serialized = None
    

    def __init__(self , filename = None) :
        """
        Arguments:
            filename : the filename to read
        """
        BaseIO.__init__(self)
        self.filename = filename
        self.elphy_file = ElphyFile(self.filename)


    def read_block(self,
                   # the 2 first key arguments are imposed by neo.io API
                   lazy = False,
                   cascade = True
                   ):
        """
        Return :class:`Block` filled or not depending on 'cascade' parameter.

        Parameters:
             lazy : postpone actual reading of the file.
             cascade : normally you want this True, otherwise method will only ready Block label.
        """
        # basic
        block = Block(name=None)
        # laziness
        if lazy:
            return block
        else:
            # get analog and tag channels
            try :
                self.elphy_file.open()
            except Exception as e:
                self.elphy_file.close()
                raise Exception("cannot open file %s : %s" % (self.filename, e))
        # cascading
        #print "\n\n==========================================\n"
        #print "read_block() - n_episodes:",self.elphy_file.n_episodes
        if cascade:
            # create a segment containing all analog,
            # tag and event channels for the episode
            if self.elphy_file.n_episodes == None :
                print("File '%s' appears to have no episodes" % (self.filename))
                return block
            for episode in range(1, self.elphy_file.n_episodes+1) :
                segment = self.read_segment(episode)
                segment.block = block
                block.segments.append(segment)
        # close file
        self.elphy_file.close()
        # result    
        return block
        



    def write_block( self, block ):
        """
        Write a given Neo Block to an Elphy file, its structure being, for example:
        Neo                        ->  Elphy
        --------------------------------------------------------------
        Block                          File
            Segment                        Episode Block (B_Ep)
                AnalogSignalArray              Episode Descriptor (Ep + Adc + Ksamp + Ktype)
                    multichannel           RDATA (with a ChannelMask multiplexing channels)
                    2D NumPy Array                     
                    ...
                AnalogSignalArray
                    AnalogSignal
                    AnalogSignal
                    ...
                ...
                SpikeTrain                 Event Block (RSPK) 
                SpikeTrain
                ...

        Arguments::
            block: the block to be saved
        """
        # Serialize Neo structure into Elphy file
        # each analog signal will be serialized as elphy Episode Block (with its subblocks)
        # then all spiketrains will be serialized into an Rspk Block (an Event Block with addons).
        # Serialize (and size) all Neo structures before writing them to file
        # Since to write each Elphy Block is required to know in advance its size,
        # which includes that of its subblocks, it is necessary to 
        # serialize first the lowest structures.
        # Iterate over block structures
        elphy_limit = 256
        All = ''
        #print "\n\n--------------------------------------------\n"
        #print "write_block() - n_segments:",len(block.segments)
        for seg in block.segments:
            analogsignals = 0 # init
            nbchan = 0
            nbpt = 0
            chls = 0
            Dxu = 1e-8 #0.0000001
            Rxu = 1e+8 #10000000.0
            X0uSpk = 0.0
            CyberTime = 0.0
            aa_units = []
            NbEv = []
            serialized_analog_data = ''
            serialized_spike_data = ''
            # AnalogSignals
            # Neo signalarrays are 2D numpy array where each row is an array of samples for a channel:
            # signalarray A = [[  1,  2,  3,  4 ],
            #                  [  5,  6,  7,  8 ]]
            # signalarray B = [[  9, 10, 11, 12 ],
            #                  [ 13, 14, 15, 16 ]]
            # Neo Segments can have more than one signalarray.
            # To be converted in Elphy analog channels they need to be all in a 2D array, not in several 2D arrays.
            # Concatenate all analogsignalarrays into one and then flatten it.
            # Elphy RDATA blocks contain Fortran styled samples:
            # 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16
            # AnalogSignalArrays -> analogsignals
            # get the first to have analogsignals with the right shape
            # Annotations for analogsignals array come as a list of int being source ids
            # here, put each source id on a separate dict entry in order to have a matching afterwards
            idx = 0
            annotations = dict( )
            # get all the others
            #print "write_block() - n_analogsignals:",len(seg.analogsignals)
            #print "write_block() - n_analogsignalarrays:",len(seg.analogsignalarrays)
            for asigar in seg.analogsignalarrays :
                idx,annotations = self.get_annotations_dict( annotations, "analogsignal", asigar.annotations.items(), asigar.name, idx )
                # array structure
                _,chls = asigar.shape
                # units
                for _ in range(chls) :
                    aa_units.append( asigar.units )
                Dxu = asigar.sampling_period
                Rxu = asigar.sampling_rate
                if isinstance(analogsignals, np.ndarray) :
                    analogsignals = np.hstack( (analogsignals,asigar) )
                else :
                    analogsignals = asigar # first time
            # collect and reshape all analogsignals
            if isinstance(analogsignals, np.ndarray) :
                # transpose matrix since in Neo channels are column-wise while in Elphy are row-wise
                analogsignals = analogsignals.T
                # get dimensions
                nbchan,nbpt = analogsignals.shape
                # serialize AnalogSignal
                analog_data_fmt = '<' + str(analogsignals.size) + 'f'
                # serialized flattened numpy channels in 'F'ortran style
                analog_data_64 = analogsignals.flatten('F')
                # elphy normally uses float32 values (for performance reasons)
                analog_data = np.array( analog_data_64, dtype=np.float32 )
                serialized_analog_data += struct.pack( analog_data_fmt, *analog_data )
            # SpikeTrains
            # Neo spiketrains are stored as a one-dimensional array of times
            # [ 0.11, 1.23, 2.34, 3.45, 4.56, 5.67, 6.78, 7.89 ... ]
            # These are converted into Elphy Rspk Block which will contain all of them
            # RDATA + NbVeV:integer for the number of channels (spiketrains) 
            # + NbEv:integer[] for the number of event per channel
            # followed by the actual arrays of integer containing spike times
            #spiketrains = seg.spiketrains
            # ... but consider elphy loading limitation:
            NbVeV = len( seg.spiketrains )
            #print "write_block() - n_spiketrains:",NbVeV
            if len(seg.spiketrains) > elphy_limit :
                NbVeV = elphy_limit
            # serialize format
            spiketrain_data_fmt = '<'
            spiketrains = []
            for idx,train in enumerate(seg.spiketrains[:NbVeV]) :
                #print "write_block() - train.size:", train.size,idx
                #print "write_block() - train:", train
                fake,annotations = self.get_annotations_dict( annotations,"spiketrain", train.annotations.items(), '', idx )
                #annotations.update( dict( [("spiketrain-"+str(idx),train.annotations['source_id'])] ) )
                #print "write_block() - train[%s].annotation['source_id']:%s" % (idx,train.annotations['source_id'])
                # total number of events format + blackrock sorting mark (0 for neo)
                spiketrain_data_fmt += str(train.size) + "i" + str(train.size) + "B"
                # get starting time
                X0uSpk = train.t_start.item()
                CyberTime = train.t_stop.item()
                # count number of events per train
                NbEv.append( train.size )
                # multiply by sampling period
                train = train * Rxu
                # all flattened spike train
                # blackrock acquisition card also adds a byte for each event to sort it
                spiketrains.extend( [spike.item() for spike in train] + [0 for _ in range(train.size)])
            # Annotations
            #print annotations
            # using DBrecord elphy block, they will be available as values in elphy environment
            # separate keys and values in two separate serialized strings
            ST_sub = ''
            st_fmt = ''
            st_data = []
            BUF_sub = ''
            serialized_ST_data = '' 
            serialized_BUF_data = ''
            for key in sorted(annotations.iterkeys()) :
                # take all values, get their type and concatenate
                fmt = ''
                data = []
                value = annotations[key]
                if isinstance( value, (int,np.int32,np.int64) ) :
                    # elphy type 2
                    fmt = '<Bq'
                    data = [2, value] 
                elif type( value ) == str :
                    # elphy type 4
                    str_len = len(value)
                    fmt = '<BI'+str(str_len)+'s'
                    data = [4, str_len, value] 
                else :
                    print("ElphyIO.write_block() - unknown annotation type: %s" % type(value))
                    continue
                # last, serialization
                # BUF values 
                serialized_BUF_data += struct.pack( fmt, *data )
                # ST values 
                # take each key and concatenate using 'crlf'
                st_fmt += str(len(key))+'s2s'
                st_data.extend( [ key, "\r\n" ] )
            # ST keys
            serialized_ST_data = struct.pack( st_fmt, *st_data )
            # SpikeTrains
            # serialized spike trains
            serialized_spike_data += struct.pack( spiketrain_data_fmt, *spiketrains )
            # ------------- Elphy Structures to be filled --------------
            # 'Ep'
            data_format = '<BiBB10sdd?BBddiddB10sB10sdI'
            # setting values
            uX = 'ms        '
            pc_time = datetime.now()
            pc_time = pc_time.microsecond * 1000
            data_values = [
                nbchan, # nbchan : byte
                nbpt,   # nbpt : integer - nominal number of samples per channel
                0,      # tpData : byte - not used
                10,     # uX length
                uX,     # uX : string - time units
                Dxu,    # Dxu : double - sampling rate, scaling parameters on time axis 
                0.0,    # X0u : double - starting, scaling parameters on time axis
                False,  # continuous : boolean
                0,      # TagMode : byte - 0: not a tag channel
                0,      # TagShift : byte
                Dxu,    # DxuSpk : double
                X0uSpk, # X0uSpk : double
                NbVeV,  # nbSpk : integer
                0.0,    # DyuSpk : double
                0.0,    # Y0uSpk : double
                10,     # uX length
                uX,     # unitXSpk : string
                10,     # uX length
                '          ',    # unitYSpk : string
                CyberTime,    # CyberTime : double
                pc_time # PCtime : longword - time in milliseconds
            ]
            Ep_chr = self.get_serialized( data_format, data_values )
            Ep_sub = self.get_serialized_subblock( 'Ep', Ep_chr )
            # 'Adc'
            # Then, one or more (nbchan) Analog/Digital Channel will be, having their fixed data format 
            data_format = "<B10sdd"
            # when Ep.tpdata is an integer type, Dyu nad Y0u are parameters such that
            # for an adc value j, the real value is y = Dyu*j + Y0u
            Adc_chrl = ""
            for dc in aa_units :
                # create 
                Adc_chr = [] # init
                Dyu,UnitY = '{}'.format(dc).split()
                data_values = [
                    10, # size
                    UnitY+'        ',   # uY string : vertical units
                    float(Dyu),  # Dyu double : scaling parameter
                    0.0   # Y0u double : scaling parameter            
                ]
                Adc_chr = self.get_serialized( data_format, data_values )
                Adc_chrl += Adc_chr
            Adc_sub = self.get_serialized_subblock( 'Adc', Adc_chrl )
            #print "Adc size:",len(Adc_sub)
            # 'Ksamp'
            # subblock containing an array of nbchan bytes
            # data_format = '<h...' # nbchan times Bytes
            # data_values = [ 1, 1, ... ] # nbchan times 1
            data_format = "<" + ("h" * nbchan)
            data_values = [ 1 for _ in range(nbchan) ]
            Ksamp_chr = self.get_serialized( data_format, data_values )
            Ksamp_sub = self.get_serialized_subblock( 'Ksamp', Ksamp_chr )
            #print "Ksamp size: %s" % (len(Ksamp_sub))
            # 'Ktype'
            # subblock containing an array of nbchan bytes
            # data_format = '<B...' # nbchan times Bytes
            # data_values = [ 2, ... ] # nbchan times ctype
            # Possible values are:
            #  0: byte 
            #  1: short 
            #  2: smallint 
            #  3: word 
            #  4: longint 
            #  5: single 
            #  6: real48 
            #  7: double 
            #  8: extended DATA
            # array of nbchan bytes specifying type of data forthcoming
            ctype = 5 # single float
            data_format = "<" + ("B" * nbchan)
            data_values = [ ctype for n in range(nbchan) ]
            Ktype_chr = self.get_serialized( data_format, data_values )
            Ktype_sub = self.get_serialized_subblock( 'Ktype', Ktype_chr )
            #print "Ktype size: %s" % (len(Ktype_sub))
            # Episode data serialization:
            # concatenate all its data strings under a block
            Ep_data = Ep_sub + Adc_sub + Ksamp_sub + Ktype_sub
            #print "\n---- Finishing:\nEp subs size: %s" % (len(Ep_data))
            Ep_blk = self.get_serialized_block( 'B_Ep', Ep_data )
            #print "B_Ep size: %s" % (len(Ep_blk))
            # 'RDATA'
            # It produces a two part (header+data) content coming from analog/digital inputs.
            pctime = time()
            data_format = "<h?dI"
            data_values = [ 15, True, pctime, 0 ]
            RDATA_chr = self.get_serialized( data_format, data_values, serialized_analog_data )
            RDATA_blk = self.get_serialized_block( 'RDATA', RDATA_chr )
            #print "RDATA size: %s" % (len(RDATA_blk))
            # 'Rspk'
            # like an REVT block + addons
            # It starts with a RDATA header, after an integer with the number of events, 
            # then the events per channel and finally all the events one after the other
            data_format = "<h?dII" + str(NbVeV) + "I"
            data_values = [ 15, True, pctime, 0, NbVeV ]
            data_values.extend(NbEv)
            Rspk_chr = self.get_serialized( data_format, data_values, serialized_spike_data )
            Rspk_blk = self.get_serialized_block( 'RSPK', Rspk_chr )
            #print "RSPK size: %s" % (len(Rspk_blk))
            # 'DBrecord'
            # like a block + subblocks
            # serializzation
            ST_sub = self.get_serialized_subblock( 'ST', serialized_ST_data )
            #print "ST size: %s" % (len(ST_sub))
            BUF_sub = self.get_serialized_subblock( 'BUF', serialized_BUF_data )
            #print "BUF size: %s" % (len(BUF_sub))
            annotations_data = ST_sub + BUF_sub
            #data_format = "<h?dI"
            #data_values = [ 15, True, pctime, 0 ]
            #DBrec_chr = self.get_serialized( data_format, data_values, annotations_data )
            DBrec_blk = self.get_serialized_block( 'DBrecord', annotations_data )
            #print "DBrecord size: %s" % (len(DBrec_blk))
            # 'COM'
            #print "write_block() - segment name:", seg.name
            # name of the file - NEO Segment name
            data_format = '<h'+str(len(seg.name))+'s'
            data_values = [ len(seg.name), seg.name ]
            SEG_COM_chr = self.get_serialized( data_format, data_values )
            SEG_COM_blk = self.get_serialized_block( 'COM', SEG_COM_chr )
            # Complete data serialization: concatenate all data strings
            All += Ep_blk + RDATA_blk + Rspk_blk + DBrec_blk + SEG_COM_blk
        # ElphyFile (open, write and close)
        self.elphy_file.write( All )



    def get_serialized( self, data_format, data_values, ext_data='' ):
        data_chr = struct.pack( data_format, *data_values )
        return data_chr + ext_data



    def get_serialized_block( self, ident, data ):
        """
        Generic Block Header
        This function (without needing a layout and the rest) creates a binary serialized version of
        the block containing the format string and the actual data for the following 
        Elphy Block Header structure:
        size: longint   // 4-byte integer 
        ident: string[XXX]; // a Pascal variable-length string 
        data: array[1..YYY] of byte; 

        For example:
        '<IB22s' followed by an array of bytes as specified
        """
        #        endian 4byte        ident 
        data_format = "<IB" + str(len(ident))+"s"
        data_size = 4 + 1 + len(ident) + len(data) # all: <IBs...data...
        data_values = [ data_size, len(ident), ident ]
        data_chr = struct.pack( data_format, *data_values )
        return data_chr + data



    def get_serialized_subblock( self, ident, data ):
        """
        Generic Sub-Block Header
        This function (without needing a layout and the rest) creates a binary serialized version of
        the block containing the format string and the actual data for the following 
        Elphy Sub-Block Header structure:
        id: string[XXX]; // a Pascal variable-length string 
        size1: word      // 2-byte unsigned integer 
        data: array[1..YYY] of byte; 

        For example:
        '<B22sH4522L' followed by an array of bytes as specified
        """
        data_size = len( data )
        #            endian  size+string         2byte   array of data_size bytes
        data_format = "<B" + str(len(ident))+"s" + "h" 
        data_values = [ len(ident), ident, data_size ]
        data_chr = struct.pack( data_format, *data_values )
        return data_chr + data



    def get_annotations_dict( self, annotations, prefix, items, name='', idx=0 ) :
        """
        Helper function to retrieve annotations in a dictionary to be serialized as Elphy DBrecord
        """
        for (key,value) in items :
            #print "get_annotation_dict() - items[%s]" % (key)
            if isinstance( value, (list,tuple,np.ndarray) ) :
                for element in value :
                    annotations.update( dict( [(prefix+"-"+name+"-"+key+"-"+str(idx), element)] ) )
                    idx = idx+1
            else :
                annotations.update( dict( [(prefix+"-"+key+"-"+str(idx),value)] ) )
        return (idx,annotations)



    def read_segment( self, episode ):
        """
        Internal method used to return :class:`Segment` data to the main read method.
        Parameters:
            elphy_file : is the elphy object.
            episode : number of elphy episode, roughly corresponding to a segment
        """
        #print "name:",self.elphy_file.layout.get_episode_name(episode)
        episode_name = self.elphy_file.layout.get_episode_name(episode)
        name = episode_name if len(episode_name)>0 else "episode %s" % str(episode + 1)
        segment = Segment( name=name )
        # create an analog signal for
        # each channel in the episode
        for channel in range(1, self.elphy_file.n_channels(episode)+1) :
            signal = self.elphy_file.get_signal(episode, channel)
            analog_signal = AnalogSignal(
                signal.data['y'],
                units = signal.y_unit,
                t_start = signal.t_start * getattr(pq, signal.x_unit.strip()),
                t_stop = signal.t_stop * getattr(pq, signal.x_unit.strip()),
                #sampling_rate = signal.sampling_frequency * pq.kHz,
                sampling_period = signal.sampling_period * getattr(pq, signal.x_unit.strip()),
                channel_name="episode %s, channel %s" % ( int(episode+1), int(channel+1) )
            )
            analog_signal.segment = segment
            create_many_to_one_relationship( analog_signal )
            segment.analogsignals.append(analog_signal)
        # create a spiketrain for each
        # spike channel in the episode
        # in case of multi-electrode
        # acquisition context
        n_spikes = self.elphy_file.n_spiketrains(episode)
        #print "read_segment() - n_spikes:",n_spikes
        if n_spikes>0 :
            for spk in range(1, n_spikes+1) :
                spiketrain = self.read_spiketrain(episode, spk)
                spiketrain.segment = segment
                create_many_to_one_relationship( spiketrain )
                segment.spiketrains.append( spiketrain )
        # segment
        return segment




    def read_recordingchannelgroup( self, episode ):
        """
        Internal method used to return :class:`RecordingChannelGroup` info.

        Parameters:
            elphy_file : is the elphy object.
            episode : number of elphy episode, roughly corresponding to a segment
        """
        n_spikes = self.elphy_file.n_spikes
        group = RecordingChannelGroup(
            name="episode %s, group of %s electrodes" % (episode, n_spikes)
        )
        for spk in range(0, n_spikes) :
            channel = self.read_recordingchannel(episode, spk)
            group.recordingchannels.append(channel)
        return group
            



    def read_recordingchannel( self, episode, chl ):
        """
        Internal method used to return a :class:`RecordingChannel` label.

        Parameters:
            elphy_file : is the elphy object.
            episode : number of elphy episode, roughly corresponding to a segment.
            chl : electrode number.
        """
        channel = RecordingChannel(
            name="episode %s, electrodes %s" % (episode, chl)
        )
        return channel
        



    def read_eventarray( self, episode, evt ):
        """
        Internal method used to return a list of elphy :class:`EventArray` acquired from event channels.

        Parameters:
            elphy_file : is the elphy object.
            episode : number of elphy episode, roughly corresponding to a segment.
            evt : index of the event.
        """
        event = self.elphy_file.get_event(episode, evt)
        event_array = EventArray(
            times=event.times * pq.s,
            channel_name="episode %s, event channel %s" % (episode + 1, evt + 1)
        )
        return event_array
    



    def read_spiketrain( self, episode, spk ):
        """
        Internal method used to return an elphy object :class:`SpikeTrain`.

        Parameters:
            elphy_file : is the elphy object.
            episode : number of elphy episode, roughly corresponding to a segment.
            spk : index of the spike array.
        """
        block = self.elphy_file.layout.episode_block(episode)
        spike = self.elphy_file.get_spiketrain(episode, spk)
        spikes = spike.times * pq.s
        #print "read_spiketrain() - spikes: %s" % (len(spikes))
        #print "read_spiketrain() - spikes:",spikes
        dct = {
            'times':spikes,
            't_start': block.ep_block.X0_wf if block.ep_block.X0_wf < spikes[0] else spikes[0], #check
            't_stop': block.ep_block.cyber_time if block.ep_block.cyber_time > spikes[-1] else spikes[-1],
            'units':'s',
            # special keywords to identify the 
            # electrode providing the spiketrain
            # event though it is redundant with
            # waveforms
            'label':"episode %s, electrode %s" % (episode, spk),
            'electrode_id':spk
        }
        # new spiketrain
        return SpikeTrain(**dct)